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1. I N T R O D U C T I O N

refinement (-nm-) n. Refining or being refined; fineness of
feeling or taste, polished manners etc.; subtle or ingenious
manifestation of, piece of elaborate arrangement, {all the
refinements of reasoning, torture; a countermine was a refinement
beyond their skill); instance of improvement (up)on; piece of
subtle reasoning, fine distinction.

The Concise Oxford Dictionary, 7th Edition

In this paper, we give an account of algorithm refinement:
the process of producing code that correctly implements
a specification. We describe the laws that allow us to
introduce programming constructs progressively, and
that may be used as part of a programming method
based upon calculation.

In Section 2 we come to a definition of refinement by
considering the circumstances under which one program
may be substituted for another without a user being able
to notice the difference. From this definition, we derive
the usual proof rules for refinement: that of weakening
the precondition and strengthening the postcondition.

In Section 3 we show how specifications and programs
may be set in the same semantic framework, so that
proof rules may be derived for refinement steps using the
various program combinators. However, by writing our
specifications in a particular way, the burden of proof
may be dramatically reduced. For this purpose, at the
end of this section, we arrive at the specification
statement.

In Section 4 we give the refinement calculus: some
basic laws for manipulating specification statements and
developing code from them; and in Section 5 we give
some small program developments.

2. DEFINING REFINEMENT

In this section we arrive at a definition of refinement, and
explore a few of its properties.

Suppose that you are a supplier of computer programs,
and that you have a customer. You enter into a binding
contract to supply your customer with the program A.
However, you already have another, different program
B, which you intend to substitute for A, thereby saving
development costs. Are you going to get away with this
subterfuge? If the customer can detect the fact that you
have delivered B, then you will have to face the full force
of the law; if there is no way of detecting your misdoings,
then you must succeed.

Let us try to formalise this. The customer must not be
able to tell if you substitute B for A. Let us write A U B
to denote the program which behaves either like A or like

B, the choice being arbitrary in the sense that it cannot
be influenced by the user of the program. In fact, the
choice is yours: to deliver A, or to deliver B. Now we can
describe the circumstances under which the deception
can succeed:

A LJ B = A,

that is, the program A U B cannot be distinguished from
the program A.

In order to formalise the LJ operator, we should fix out
notation for programs: we shall use the Z notation to
describe them.5'l7 In Z, there is already a choice operator
that combines programs: schema disjunction. Suppose
that we have a program state that consists simply of the
variable x that ranges over the set s. A program may be
specified by describing the relation between x's value
before the program is executed and its value after the
program has been executed. We distinguish the latter
from the former by decorating x with a prime, thus: x'.
Suppose that p and q are both predicates involving x and
x', then the programs A and B might be specified as

A = [x,x':s\p]
B = [x,x':s\q].

The choice of programs A\J B behaves either like A, or
like B, and is given by

A V B = [x,x':s\p V q],

that is, either the relation specified by p holds between x
and x', or the relation specified by q holds between them.

The precondition of a program describes all the states
in which the program is guaranteed to terminate with the
correct result. In our example, the precondition of A
consists of all those values of x which are related to an x'
by p: the domain of the relation. If the precondition of
A is denoted by preA, then we have

preA = [x:s\3x' :smp].

That is, all those values of* in s, such that there exists an
x' in j satisfying p. It is easy to show that the precondition
operator distributes through the schema disjunction
operator, so

pre(A V B) = (pre/1) V (prefi).

Suppose that we have a particular value of x, say x0,
which lies in the precondition of A, but outside the
precondition of B. Clearly, it is in the precondition of
A v B. Should it also be in the precondition of A LJ Bl
The answer must be no: if the user activates the program
A LJ B in this state, and you the supplier have chosen to
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deliver the program B, then the result will not be what is
expected: namely, termination in a correct state. Thus,
the user has a test that can distinguish whether or not
you have substituted B for A. This leads us to suppose
that x0 is in the precondition of A U B if it is both in the
precondition of A and in the precondition of B. At last,
we can define our u operator:

A U B = VS, S' • (pre A) A (prefi) A (A V B),

where S denotes the before-state, and S" denotes the
after-state.*

Thus we have the difference between the two choice
operators: A V B is very obliging, since if termination is
possible, it will happen; A U B is more awkward, since if
non-termination is possible, it will happen. We describe
the former as angelic, and the latter as demonic.

If we have the equation

A U B = A,

we say that B is a refinement of A, denoted

So, if B is a refinement of A, we can use B wherever using
A is acceptable, safe in the knowledge that no test can
detect the difference.

Proposition 1. Demonic choice is idempotent, commuta-
tive, and associative:

A U A = A
A U B = B LJ A
A U (B U Q = (A U B) U C.

Proposition 2. Refinement is reflexive, antisymmetric, and
transitive:

A^A
A e f i A B^A^-A = B
A^BAB^C=>A^C.

Transitivity forms the basis for stepwise development.
Thus, if a user cannot tell the difference between A and
B, nor between B and C, then of course the user cannot
tell the difference between A and C. This transitivity
result is a consequence of the associativity of the demonic
choice operator.

Refinement consists in two ideas: weakening the
precondition and strengthening the effect. This is
demonstrated by the following proposition.

Proposition 3. If A is refined by B, B has a stronger effect
(within the precondition of A), and a weaker precondition.

(preA) A B=>A) A
A E

(yS,S'

What do these two ideas mean ? Suppose again that B is
a refinement of A. That the precondition of B may be
weaker than the precondition of A means that B must be
defined everywhere that A is. It may well be defined
elsewhere, but that is irrelevant. The other idea is that
wherever A is defined, B must be as strong as A: any
'extra' behaviour is disregarded. Now what do we mean
by saying that B must be at least as strong as A1 We

* This definition may be read as 'The non-deterministic choice
between A and B is defined to be, for all before-states S and all after-
states S', the precondition of A and the precondition of B and the
disjunction of A and B\

mean that whatever B does is correct with respect to A.
Everywhere that A is defined, B is required to produce a
result that A could produce.

Our approach of defining refinement using demonic
choice is similar, for example, to that of Sekerinski.16

3. LINKING SPECIFICATIONS AND CODE

The purpose of this paper is to discuss algorithm
refinement, that is, the process of developing code that
implements a specification. In this section, we discuss the
formal link between specifications and code. We start off
by giving an introduction to the problem of algorithm
refinement by means of a simple example. In order to
establish our formal link we need a way of giving
meaning to specifications and to code, and we do this in
terms of the method of weakest preconditions; this also
gives us a way of addressing the concerns of refinement.
We describe how a step of development may be carried
out using the existing weakest precondition apparatus.
This leads to a method that is somewhat cumbersome,
and we then set out to improve the method of eliminating
some of this burden of proof. We introduce the
specification statement, the basis of our streamlined
method.

Let us take a simple example. Suppose that we have
the little specification!

Update = [x,x':M\x' = x + 2];

thus, it is Update's task to increment x's value by 2. In the
unlikely event that we have a fast way of incrementing by
1, but not by 2, we might choose to implement Update
with the code

x := x + 1;
x := x + 1.

How can we be certain that this is correct? Well, if the
fragment of code is a refinement of Update, all will be
well. We need a way of understanding the program
combinators, such as the ';', and program commands,
such as the assignment operator, ' :=', in the same
framework as our specification; then we shall we be able
to say whether or not this development step is correct.

One simple way of giving a meaning to a programming
language is by using predicate transformers. In this
approach, each combinator and command of the
language is defined by explaining, for any postcondition,
the precondition that will guarantee termination in a
final state satisfying the postcondition. As we have taken
schemas as our means of specifying programs, we shall
use a variation on this theme: a schema transformer. Our
language fragment is an operation on the state, and we
shall take as our postcondition a schema which relates
before-and-after values of the state. The weakest pre-
condition for an operation to establish a postcondition
will be a set of states, described as a schema.J

Definition 1. Suppose that Op is an operation on the state
S; that R is a schema relating the before-state S and the
after-state S'\ then the weakest precondition for Op to
establish R is:

wps. {Op, R) = (3S' • Op) A (VS' • Op =>/?).

t Where ftl denotes the natural numbers; that is, 0, 1,2,3,...
% This follows (Joseph, 1988); weakest preconditions are explained

in Dijkstra.6
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By comparing Proposition 3 and our definition, notice
that a consequence is that refinement can be explained in
a third way.

Proposition 4. Refinement can be defined using the weakest
precondition construction:

Now that we have a way of giving meaning to our
programming language, let us try to formalize the
development of Update. First, we need a meaning for
sequential composition. Before we can start, we need a
little bit of notation. If Op is a schema that relates a
before-state (undecorated) with an after-state (decorated
with a prime), Op° is a schema that relates a before-state
(undecorated) with an after-state (decorated with a °);
similarly, °Op is a schema that relates a before-state
(decorated with a °) with an after-state (decorated with a
prime).

Definition 2

wps. (First; Second, R) = wps. (First0, wps, ("Second, R)).

Given

IncByl = [x,x':N\x' = x+\],

we have

wps.(IncByl; IncByl, Update)
o wps. (IncBy 1 °, wps,(°IncBy 1, Update))
•e>wps.(IncByl°,(3S'm°IncByl) A (VS'm°IncByl

=> Update))
•owps.(IncByl°,VS'»°IncByl => Update)
o ( 3 S ° • IncByl0) A (VS° • IncByl0

=> (VS' • °IncByl => Update))
> (VS° • IncBy 1 ° => (VS' • °IncBy 1 => Update))

Update
+ 1 => x' = x + 2

>VS°,S'mIncByl0 A °IncByl

<=> true.

Using the weakest precondition calculus directly thus
is rather tiresome: what is needed is a set of simple
but sufficient conditions, proved in advance, to tell us
whether the refinement step is correct. We can derive
such a set from the definitions that we have.

Proposition 5. In order to show that

it is sufficient to prove the three theorems

pre A h- pre B
pre A A B°\- pre °C
preA A B° A °C\- A.

In our example, since Update and IncByl are both total,
the only thing to show is that

IncByl0 A °IncByl h- Update

that is, that

A [x°,x/:N\xf = x
\- [x, x':

]
| x' = x + 2],

which is rather trivial (as it should be).
In general, having to prove three theorems in order to

introduce the sequential composition operator is ex-
cessive; can anything be done to smooth the process?
There are two notational changes that may be made to

our specifications that will help somewhat. The first is to
reuse past results, and to record the precondition for our
specifications separately from their postconditions. Thus,
specifications become precondition/postcondition pairs.
Suppose that each condition is given as a predicate on a
single state (we shall revisit this presently). Then we can
eliminate the need for proof completely in a development
step that introduces sequential composition. Let us try to
give a meaning to this new idea. Suppose that pre is a
predicate on the state S; that post is a predicate on the
state S'; and that R is a relation between the before-state
S and the after-state S'. Then the meaning of the
precondition/postcondition specification is given by the
definition

wps, ([pre,post], R) = pre A (VS' 9 post => R).

Note that this is very similar to the meaning of a schema
specification, say Op, but with the asserted precondition
in place of the term IS' 9Op: the actual precondition.

Now, we can hazard a guess at a refinement rule. If we
need to implement the specification [pre,post], then why
not choose a mid-point, mid to achieve in a first step, and
to proceed from in a second step? Our rule would be

[pre,post] E [pre,mid'];[mid,post].

Is this correct? Before we answer that, we can make a
notational change which simplifies things even further:
let us write both the precondition and the postcondition
without any decoration.

Definition 3. Suppose that pre, post, and R are predicates
on the state S. Then, the meaning of the precondition/
postcondition specification is given by the definition

wp ([pre,post], R) = pre A (VSmpost => R).

Consider the following:

[pre,post] E [pre,mid];[mid,post]
•»• VS • pre => wp ([pre, mid]; [mid,post], post)
<=> VS • pre => wp ([pre, mid], wp ([mid, post], post))
<=> VS • pre => wp ([pre, mid], mid A VS • post =>post)
<=> VS • pre => wp ([pre, mid], mid)
<=> VS • pre => pre A VS • mid => mid
o VS • pre => pre

o true.

Thus our refinement rule is correct.

Proposition 6. For any predicate mid,

[pre,post] E [pre,mid];[mid,post].
On the fact of it, this is a very nice refinement rule:
choose your mid-point, and then snap the specification in
half about that point. This works for any mid, although
if mid is very weak, the first subtask will be easy to
achieve, but the second will be difficult; if mid is very
strong, the first subtask will be difficult to achieve, but
the second will be easier. However, if we return to our
very simple problem of refining Update, we have a more
immediate difficulty: how do we write Update in terms of
a pair of predicates, each of which is of a single state?

The program

\[conX:Tmprog]\

introduces a logical constant named X, which ranges
over T. Its scope is delimited by the local block brackets.
We can think of con X as choosing a value for X which
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makes subsequent preconditions true, is possible. This is
a kind of angelic non-determinism, and may be contrasted
with varx, which is demonic. Logical constants should
not be confused with the sort of constants that one might
find in a real programming language.

Logical constants may be used to give names to things
that must exist. A simple example of this is the way in
which they may be used to fix the before-value of a
variable. That is what is being done in the block

|[con JT*x:[x = X,x = X+2]]\.

The logical constant X takes a value that makes
subsequent preconditions true, if possible. Within the
scope of X there is only one precondition x = X, and so
X takes on this value: namely, the value of * before the
specification statement. This kind of thing happens so
frequently that we introduce an abbreviation.

Abbreviation 1 (initial variables). Zero-subscripted
variables in the postcondition of a specification statement
refer to the before-values of those variables:

w:[pre,post] =
\[conX:Tm

w:[pre A x = X,post[X/x0]]
]|-

The fact that we can use zero-subscripted variables does
not change our view that a postcondition is a predicate on
just a single state, since these variables are explained using
logical constants.

Example 1. Consider the specification statement

It is abbreviation for

Y:N»x,y:[y = x+1 A x = X A y = Y,x
Y]]\.

Now, we would like to be able to refine Update to the
sequential composition

[true, x = x0 + 2] E [true, x = x0 + 1]; [true, x — x0 + 1].

How do we justify this development step?
If we choose as our mid-point x = xo +1, then we have

a problem, since it is no good for the precondition of the
second part, since in our notation that must be a
predicate of a single state. Furthermore, the second part
ought to have the same postcondition as the specification:
x = x0 + 2, and the x0 should refer to the value of the
variable x before the execution of the first part. These
two problems have a common solution: rename the
troublesome xos. If we chose x = X+1 as the pre-
condition of the second part, and x = X+ 2 as its
postcondition, that would conform to our notation.
Thus we are proposing the development step

[true, x = x0 + 2] E
|[conA'*

[true,x = xo+\];
[x = X+l,x = X+2]

II-
The first part of the composition increments x by 1. The
second part assumes that x = X+ 1. As A' is a logical
constant, it is chosen so as to make this true, and thus we
have that X = x0; that is, A'fixes the value of x before the
execution of the composition. The second part now

increases x value again, so that it is equal to X+2, two
more than the value of x before the execution of the
composition. Now our notation allows the introduction
of a second logical constant, whose scope encloses the
second part of the composition, and we obtain the
program

[true,x = xo+\];
|[con Y»

[x = X+l A X = Y,x = X+2]

Now, if we use the equality Y = X+1 in the post-
condition, and then weaken the precondition, we obtain

[true,x = xo+
|[con Ym

[X= Y,X=

and using the abbreviation,

[true,x = xo+X\;
[true,x = xo+ 1]

]l-
If we drop the redundant logical constant, we have
finished.

Finally, we introduce one last piece of notation: the
program frame. Suppose that the program state contains
the variables x, y and z, but that we want to change only
the variable x. Normally, we must say explicitly that y
and z do not change: the meaning of silence is that
anything might happen. At the specification level, it is
important to remember that if we do not mention the
fate of a variable in an operation, anything might happen
to its value. An operation is a relation, and we constrain
its behaviour further by adding a stronger predicate. In
a sequential programming language such as Pascal, if a
program statement does not mention a variable (in an
assignment for example), it does not change. In the
refinement calculus, we see a half-way house: if a
variable is not in the frame, then, as in a programming
language, it cannot be changed, no matter what we say in
the postcondition; if it is mentioned in the frame, it may
be changed, and we can constraint its after-value by
adding a stronger predicate. We shall write the names of
variables which may be changed by the code
implementing a specification; if a variable does not
appear in this list it must be kept constant. We can now
write down the anatomy of a specification statement:

precondition

pre

frame

post ] .

postcondition

The frame is a - possibly empty - list of variables, and
the precondition and postcondition are each a predicate
on a single state: the before-state and the after-state,
respectively. The specification statement describes a task
for an implementor: a program is required that
terminates whenever pre is true, and when it does so it
produces a correct result, satisfying post. The specific-
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ation statement is pronounced in something like the
following manner:

By changing only the variables w, and by assuming
that the state satisfies pre, change it so that it satisfies
post.

4. THE REFINEMENT CALCULUS

The so-called refinement calculus comprises several laws
for manipulating specification statements. In this section
we give some examples of specifications, and some of the
laws that we use to turn them into implementations. The
work on refinement calculi has been reported by Back,1"1

Gardiner and Morgan,7 Morgan,10"12 Morgan and
Robinson,13 and Morris.14'18

Example 2. The operation that finds the root in the
interval [a, b] of a continuous function f providing that it
has one, is

Bisect = m: [f(a) xf(b) < 0 A a ̂  b, \f(m)\ < 0.1 A a
< m < b].

4.1 Extremities

Certain specification statements have particular names.
The specification statement ' w: [false, true]' is called
abort; it is never guaranteed to terminate (it has
precondition false); if it does terminate, it might produce
any result (postcondition true). The specification state-
ment ' w: [true, true]' is called choose w; it is always
guaranteed to terminate, but it might produce any result.
The specification statement': [true, true]' is called skip; it
is always guaranteed to terminate, without changing
anything (its frame is empty). The specification statement
' w: [true,false]' is called magic; it is always guaranteed to
terminate, and when it does so, it establishes the
impossible (a state satisfying false).

4.2 Some simple laws

A program in the refinement calculus may consist of a
single specification statement, or it may consist entirely
of code in the guarded command language (an idealised
programming language), or it may consist of a mixture of
specification statements and code. An example of the
latter is

x,y:[x = X A y = Y,x = X— Y A y = X]\x:=y — x.

The task of developing code in the refinement calculus
usually starts with a single specification statement, goes
through several intermediate stages of mixed programs,
and ends up with code in the guarded command language,
free from specification statements. If a program contains
no specification statements, then we call it code. It might
be that a particular development leads to a dead-end, so
sometimes no code can be produced from a specification
statement. In this section we give some laws for refining
specification statements.

One way of improving a specification is to do more
than was required. Thus, if post' is a stronger predicate
than post, then any client who was satisfied with w:[pre,
post] must also be satisfied with w:[pre,post'].* This
corresponds to the removal of non-determinism.

* Remember that in this example, and in what follows, post' is just
another mathematical variable.

Law 1 (strengthen postcondition 'sp')- If post'=> post
then

w:[pre,post] E w:\pre,post'].

Example 3. Since x < 0.01 =>x < 0.1, we have that

m:[f(a) xf(b) < 0 A a ̂  b,\f(m)\ < 0.1 A a =$ m s? b]
E'sp'
m:[f(a) xf(b) < 0 A a sj b,\f(m)\ < 0.01 A ^ m ^ i ] .

This refinement step has improved the accuracy of the
result computed by this specification statement. The
annotation 'sp' denotes the particular law that justifies the
refinement.

Another simple way of improving a specification is to
make it apply to more situations than was asked for.
Thus, if pre' is a weaker predicate than pre, any client
who was satisfied with w: [pre, post] must also be satisfied
with w:[pre',post'], since it works at least as often. This
corresponds to the widening of preconditions.

Law 2 (weaken precondition 'wp'). If pre => pre' then

w: [pre, post] E vv: [pre', post].

Example 4. Since

f(a) xf(b) ^ 0 A a < b =>/(«) xf{b) sj 0,

we have that

m:[f(a) xf(b) ^ 0 A a < b,\f(m)\ < 0.01 A a < m ̂  b]
E 'wp'
m:[f{a) xf{b) < 0, \f{m)\ < 0.01 ha^m^b].
This refinement step means that we now require an
implementation to produce a correct result even when a
and b do not describe an interval. It seems that we have
given up too much: ifb<a, then the postcondition is not
going to be satisfiable.

Definition 4 (feasibility). w:[pre,post] is feasible iff

pre=> 3w: T• post.

Recalling our definition of the precondition of an
operation defined using a schema, we can see that
feasibility is a check that the predicate that we claim is
the precondition, pre, is at least as strong as the real
precondition. If a specification is infeasible, then we
cannot refine it to code; all code is feasible. Thus, an
infeasible specification cannot lead to incorrect code,
since it cannot lead to any code at all. For this reason, we
are not obliged to perform feasibility checks during our
development; however, there is always the opportunity
of doing so.

Example 5. Since

-.(/(a)xf{b) < 0 =>3m• \f(m)\ < 0.01 Aa^m^b),

the specification

™ • [f(a) xf(b) < 0, \f{m)\ < 0.01 A a ̂  m ̂  b]
is infeasible.

4.3 Assignment

Law 3 (assignment 'assl'). Ifpre=>post[E/w] then

w, x: [pre, post] E w:= E.
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If we use initial variables, we must be careful with the
application of certain laws. The assignment introduction
law must be changed in order to cope with the fact that
the precondition and postcondition use different names
for the same values.

Law 4 (assignment introduction§ 'assl§'). Ifpre A w = w0
=>post[E/w] then

w, x: [pre, post] E iv := E.

Example 6. Since

x = x0

o X + 1 = Xo + 1

<=>(x = xo+l)[x+\/x],

we have

x:[true,x = xo+ 1] E x:= x+ 1.

Example 7. Since

Law 7 (sequential composition ' semi'). For any predicate
mid

w:[pre, post]
E w:[pre,mid];w:[mid,post].

If a zero-subscripted variable is used in a postcondition
P, it refers to the value of the variable before that
specification statement. If we break the statement in two
using eml, the zero-subscripted variable in P now refers
to the value of the variable at the mid-point. The law is
updated to avoid this mistake.

Law 8 (sequential composition introduction§ 'seml§'). For
fresh constants X,

w, x:[pre, post]

x: [pre, mid];
w, x: [mid[X/x0],post [X/xg]]

<=>(* =5Ay=XAz= 6)[5,x, 6/x,y,z],

x,y,z:[x = X,x = 5 f\y = X/\z = 6\
E'assI'
x,y,z:=5,x, 6.

In the refinement calculus, we introduce program
variables using a declaration that is rather like an
axiomatic definition: we name the variables, say what
sets they range over, and add an invariant.

Law 5 (introduce local block 'varl'). If w and x are
disjoint, then

w:[pre,post] E
|[var.x: T\inv

w,x:[pre,post]
]|-

Example 8
Bisect
= 'by definition'

m:[f(a) xf(b) ^ 0 A a sj b, \f{m)\ < 0.1 A a

E 'varl '
\[\arx,ym

x,y,m: [/(a)

We usually abbreviate this as
Bisect
E var x, y •

x , y , m : \f{a) x f ( b ) ^ O A

b, \f(m)\
< 0.1 A

b, \f(m)\
< 0.1

The presence of invariants means that we must tighten
up our notion of feasibility.

Definition 5 (feasibility), w: [pre, post] is feasible iff

pre A inv =>3w.Tm inv A post.

Law 6 (skip command 'skipl'). If pre => post then

w:[pre,post] E skip.

Example 9. Since x = 5 A y = x3 => x = 5, we have that
x,y:[x = 5 A y = x3,x = 5]
E skip.

The predicate mid must not contain initial variables other
than x0.

Example 10

x: [true, x = x0 + 2]
E 'seml§' con A7*

x:\true, x — xo+ 1];
x:[x = X+\,x = X+2].

Example 11. In Example 7 we used a multiple assignment
to implement a specification; not all programming
languages have this facility, so here is a development that
does the necessary assignments in sequence:

x,y,z:[x = X,x= 5 A y = X A z = 6]
E'semI'

[\]

x , y , z : [ y X , x 5 A y A 6]
E'assI'
y:=x
t E'semI'
x,y,z:[y = X,x=5Ay = X]
x,y,z:[x = 5 A y = X,x = 5 A y = X A z = 6]
E'assI'
x:=5
X E'assI'
z:=6.

Note the use of marginal markers. We shall be using a
convention that the left-hand (<) always points to the
next part of the program to be refined. Other marginal
markers, such as the obelisk and double obelisk used
here, refer to parts of the program whose development
proceeds at a later point. Thus we end up with a flattened
tree as the record of the development. It is not difficult to
see how the tree may be walked in order to extract the
code from the development. It is easier to see the final
code once it has been retrieved from the development;
however, it becomes more difficult to see how it was
obtained once the development record has been thrown
away.

Example 12. Notice that we were fortunate in our last
development to find a correct order for our assignments.
What would have happened if we had not been so fortunate ?
Consider this:
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x,y,z:[x = X,x = 5 A y = X A z = 6]

x,y,z:[x = X,x=5];
x,y,z:[x=5,x = 5 Ay = X A z = 6]

x:=5
tE'seml'
x,y,z:[x=5,x=5Ay = X];
x,y,z:[x = 5 A y = X,x = 5 A . V = A ' A Z = 6 ]
E'assF
z:=6.

The specification marked with % has not been reduced to
code. We cannot assign the value X to y, since X is a logical
constant, and so ' y := A" would not be code. In fact, this
specification is infeasible: no code can be produced to
satisfy %. Having destroyed the value of x, we cannot re-
create it.

Very often, we require combinations of some of the
previous basic laws. The following is a good example of
this.

Law 9 (following assignment 'fassl§')- For any expression
E,

w, x: [pre, post]
c

w, x: [pre, post [E/x]]
x:=E.

This is an easy law to apply. First we decide upon the
assignment that we would like to perform, then we calculate
the new specification statement.

Example 13

x,y,z:[x = X,x = 5 A y = X A z = 6]
E'fassI'
x,y,z:[x = X,x = 5 Ay = X];
z:=6
E 'fassl'
x,y,z:[x = X,y = X];
x:=5
E'assI'
y := x.

Notice that we could have used assl a third time, and
obtained the code

skip;
y:=x;
x:=5;
z:=6.

Law 10 (leading assignment 'lassl§')« For any expression
E,

w, x: [pre [E/x], post [EJx0]]

x:=E;
w,x:[pre,post].

4.4 Conditional statements

In the guarded command language, the conditional
statement has the form

if GY -> comx

Q G2 ->• com2

fi.

Each of the branches G^com, is called a guarded
command, with G, the guard, and com, the command.
When the conditional is activated the guards GX,G2,...,
Gn are evaluated, and one of the commands whose guard
is true is executed. If no guard is true, the program
aborts. A more compact notation for the conditional
uses a generalised notation

if • i»G,->comfi.

Law 11 (conditional 'ifl'). If pre=>\'i»G,,

w:[pre,post]
E if • i • Gt -> w: [G( A pre, post] fi.

Whenever the specification is required to terminate, the
conditional must not abort; thus the precondition must
establish that at least one guard is true. Whichever branch
is taken must implement the specification, but we can
strengthen the precondition with the guard in the knowledge
that it must be true for that branch to have been taken.

Example 14. Given two variables x and y, we require a
program that will ensure that x ^ y, by preserving their
values, or swapping them if necessary:

x,y:[x = X A y= Y,(X^ r = > x = X Ay= Y)
A ( 7 < Z = > x = Y A y = X)]

E'ifT
if x ^ y->• x,y:[x ^ y A x = X A y = Y,

(X < Y => x = X A y = Y) A (Y < X

x^x,y.[y ^XAX = XA}>= Y,
y = > x = X A y = Y) A (Y«$ X

fi
^ skip
f E 'assV x,y:=y,x.

Notice that the disjunction of the guards is true, thus
validating the introduction of the conditional. The program
is

if x ^ j>-*skip

fi.

4.5 Logical constants

We can introduce a logical constant in much the same
way as we would introduce an existential quantifier.

Law 12 (introduce logical constant 'conl')- If pre=>
(3C: T*pre'), and C is afresh name, then

w: [pre, post]
E |[con C: T* w:[pre',post]]\.

Getting rid of logical constants is important, since they
are not code. If a logical constant is no longer mentioned
in a program, we can eliminate it (again, in much the
same way as removing an existential quantifier).

Law 13 (eliminate logical constant 'conE'). If C occurs
nowhere in prog,

|[con C: Tmprog]\ E prog.

Finally in this section we give a law for contracting
the frame in a specification statement: if we drop the
name of a variable from the frame, it cannot change;
thus, we can drop the zero-subscript on any of its
occurrences in the postcondition.
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Law 14 (contract frame 'conF')

w,x:\_pre,post] E w:[pre,post[x/x0]].

4.6 Iteration

In the guarded command language, the loop construct is
rather similar in form to the conditional:

do Gx

• G2

od,

com1

com2

comn

with the generalised notation

do • /•(?,-> cow, od.

When the loop is activated the guards GVG2, ...,Gn are
evaluated, and one of the commands whose guard is true
is executed. This is done repeatedly until no guard is true,
when the loop terminates. We give a simplified form of
the introduction rule, which is applicable to developing a
loop with a single branch.

Law 15 (loop introduction 1 'doll')

w: [inv, inv A -> G]
E do G->w:[inv A G,irw A 0 V <

The task of the developer is to discover an invariant inv,
a guard G, and a variant V.

The more general form of the law involves many
branches.

Law 16 (loop introduction 'doI')

w: [inv, inv A -> (V / • GJ]
E do D imGt-*w:[inv A G{,inv A 0 ^ V <

5. C A S E S T U D I E S

5.1 Initialising an array

Suppose that we wish to initialise an array so that every
entry is zero. An array may be modelled mathematically
as a total function from a set of indices to values (in this
case numbers):

The initialisation operation has the task of assigning
the value 0 to every element in the array. Its specification
is given by

Init = ar-.[true, ran ar = {0}].

Our first step in developing the code for this rather
simple operation is to use an obvious transformation of
the postcondition:

Init = ar: [true, V/: 1.. n m arj = 0].

The motivation for this is that we intend to implement
the operation using a loop, and the universal quantifier
points to the way that the loop might be developed. One
strategy for loop development is to take such a quantified
expression, and replace a constant by a variable. The
following shorthand helps us in doing this:

zeroed (i, ar) = V/: 1.. i • arj = 0.

The development of the code follows in rather a

detailed manner. The refinement calculus should be used
with a light touch, rather than in this heavy-handed
manner; however, we go into greater detail so that the
reader may follow this, the first case study.

ar: [true, zeroed {n, ar)]
E var/|l sgysjM+1 •*

j , ar: [true, zeroed {n, ar)]
E'seml't

j , ar: [true, zeroed (j — 1, ar)]; [ O ]
j , ar: [zeroed (j— 1, ar), zeroed (n, ar)] [1]

E 'assl'j

[l]E<sp'§
j , ar-.[zeroed (j—],ar), zeroed (j—\,ar) Aj= n+\]

E'dol l ' | |

j , ar :[/=)= n + 1 A zeroed (j— 1, ar),
0^n-j+l <n-jo+l A zeroed (j- 1, ar)]

od
E'fassI'H

j,ar:[j + n+\
A zeroed(j—l,ar),j + n+1 A zeroed(j,ar)]; [<\]

E 'assl'**
ar:=ar(S{j\^0}.

We included the proof obligations as part of the
annotations of the refinement steps; here is a summary of
those obligations (the trivial arithmetic ones have been
discarded):

zeroed(0,ar)
zeroed'{J— 1, ar) A j = n +1
j 4= n + 1 A zeroed(j— 1, ar)

> zeroed(n, ar)
>j 4= n + 1
A zeroed {j, ar © 0}).

Obviously, the second predicate follows from Leibniz's
law; the first and third are simple properties of zeroed.

Summarizing our development, we have that

Init
E

| [ v a r / | l^j^n+lm

ar := update {arj, 0);

* The variable j will be used as a loop counter; thus it will range
from the smallest element in the domain of ar to just after the highest.

t We introduce the semicolon in order to choose the loop invariant.
At the beginning of the loop, and after each iteration, we will have
zeroed all the blocks up, but not including/ The specification statement
before the semicolon must establish the invariant, and the one after
must be developed into the loop.

I Provided
(zeroed(J-\,ar) A 1 ̂ y < n+ l)[\/j\.

If we sety to 1, we have zeroed no blocks.
§ Provided
zeroed(j— \,ar) A j = n + 1 => zeroed(n, ar).

We need to put the invariant into the postcondition before we can
apply the loop introduction rule.

[| We must choose a variant n—j+ 1 will do: when we enter the loop
withy= 1, we have n more iterations to perform.

r In the implementation of the body of the loop, we shall need to
increment/ Since we startedy with the value 1, the assignment toy must
be done at the end of the loop.

** Provided
y =t= n+ 1 A zeroed (J— \,ar)

=• (J =t= n + 1 A zeroedij, ar))[(ar 0 U^ 0})/ar].
The only thing left to do is to free the next element ofar, that is, theyth
element.
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od

This might be translated into Pascal as

procedure Init;
fory := 1 to n do ar\J] := 0.

5.2 Translating numbers

We would like to develop an algorithm that converts
numbers from a base /? to the base 10. For an n+ 1 digit
number, a solution that requires more than n
multiplications is not acceptable.

The key to this development is to recall Horner's rule
about evaluating polynomials:

where

f ° r

Now, suppose that we have a number in base p with
digits anan_t ...a2a1; then our algorithm must satisfy the
specification

d:\true,d=

Now, if we substitute /? for x in the definitions of H, we
obtain

d:[true,d=Gln]
E vary: 1 . . « •

d,j:[true,d= Gln]
E 'semi'

d,j:[true,d=Gln];
d,j:[d=Ghn,d=Gln]

e 'assl'
d,j-=ann

je'sp'
d,j:[d=Ghn,d=Gl,nKj=\]

E'sp'
d,j:[d=Ghn,d=GhnKj=\]

e 'dor
do y+ 1-+

d,j:\j;* \ Ad= Gin,0 ^j<j0 A d=G,J
od

= d,j: [U> 0 A d = GH1.) [/- 1 h\ (0 ^ j
<7oA^=GJ,JL/o-

E ' lassl '

7 - 7 - 1 ;
d,j:[j^ 0 Ad=Gi+1 ,,0 <7 ^7o A d = G,. J

c'doI.conF'
</ := aj + x x d.

Thus, we have derived the following program:

[f]

d,j:=an,n;
doj # 1 ^

7-7-1;
d:=a} + x

od

Gt,n = at + pxGl+ln for i<n

and our specification can be rewritten as

d:[true,d=Gln].

The strategy for calculating the code for this algorithm is
quite clear: we can develop a loop which varies the first
index of G. It is easy enough to establish Gn „, and we
want to end up with Gln, so the loop counter is
decreasing, and the invariant will involve d = G} „, for
loop counter j .
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Book Reviews

Y. TAKEFUJI. Neural Network Parallel Com-
puting. Kluwer Academic Publishers Group,
Dordrecht, 1992, £44.25 ISBN 0-7923-9190-X

In his ackowledgements Takefuji admits to
being inspired by the work of Hopfield and
Tank on using neural network architectures to
solve problems in optimisation. The book sets
out many extensions to the approach where
mathematical models of constraint satisfaction
problems are implemented and tested in neural
nets. The variety of topics that are addressed
and the variety of methods used to convey the
ideas are distinctive characteristics.

The first ten chapters deal with many hard
optimisation problems such as N-queen
problems and k-colorability problems. The
remaining chapters deal with hardware imple-
mentations and mathematical derivations.
Some Turbo PASCAL code is provided and
each chapter has its own list of references.
Most of the chapters have student exercises
attached. The exercises are clearly an attempt
to make this a text book, but I feel that
students generally benefit most when model
answers are supplied. However, after a cursory
glance, I did wonder just how the average
undergraduate might cope with Exercise 11.5
No. 4 - ' Survey research on silicon neural
network implementations and optical imple-
mentations'.

Takefuji's general approach is to provide
various gradient descent methods for solving
constraint satisfaction problems. The aim is to
construct something known as a motion
equation which species a ' fabricated computa-
tional energy function' (p. 4). An artificial
neural net is then developed to implement
parallel gradient descent as a method to
minimise the fabricated energy function. Vari-
ous types of artificial neurons are considered,
and each is denned relative to a different
input/output function. Takefuji discusses the
basic McCulloch and Pitts neuron defined as a
binary threshold logic unit (TLU). An alterna-
tive to this is a unit using a sigmoid input/
output function as studied by Hopfield. Nets
comprising either sort of unit are then exam-
ined. Detailed comparisons revealed that the
TLU net tended to converge faster than the
sigmoid net, although the TLU net did exhibit
unfortunate oscillatory behaviour. To over-
come this, Takefuji discusses using units that
employ an hysteresis McCulloch-Pitts input/
output function. With this, the idea is to have
a unit with essentially two thresholds. The
upper threshold sets a value above which
inputs must be for the unit to turn on, the
lower threshold sets a value below which the
unit turns off. Input values between the upper
and lower bounds have no effect on the unit.
Nets with these units no longer exhibited
oscillation, but problems remained over how
best to set the threshold values.

Although Takefuji discusses Boltzmann
machines in passing, his favoured model is one
known as the 'maximum neuron model'. This
is a variant on the theme of a winner-take-all
net. One of the advantages of these nets is that
they are 'guaranteed to generate satisfactory
solutions' (p. 181). Another is that 'turing
coefficients parameters in the motion equation
is not required'. From this last statement I am
happy to conclude either that my rather
slender grasp of mathematics lets me down, or
that something has gone wrong in the type-
setting.

Nevertheless, my general impression was
that the book has been cobbled together.
Some of it is rather too obviously the product
of'cut-and-paste', there are inconsistencies in
style (compare the formatting of the references
for Chapters 1 and 13), and some of the
writing is dreadful. Moreover, the formula
typesetting is untidy. This can be off-putting
to those who find unpacking mathematical
expressions into natural language daunting.
Equation 1.8 (p. 9) is a case in point (see also
the proof on p. 191).

This is truly a book for computer scientists
with a strong background in mathematics.
Although a wide range of topics is covered -
from natural brains to VLSI chips - the book
is perhaps going to fit most comfortably in the
hands of applied mathematicians.

P. QUINLAN
York

L. C. PAULSONS. ML for the Working Pro-
grammer, Cambridge University Press. £27.50.
ISBN 0 521 39022 2

Standard ML (henceforth referred to as SML)
is a major influence in the design of pro-
gramming languages. It is widely used in the
research community and is increasingly used
for teaching computer science. It is even
beginning to find its way into the commercial
world, both as a prototyping tool and as a
delivery language. Therefore there is a signi-
ficant demand for a good introductory text.
Paulson's book, while not perfect, meets that
demand well.

As the title suggests, Paulson aims his book
at people who already know how to program
and who want to use SML on real programs.
His book is also suitable for advanced under-
graduate teaching.

Paulson introduces the features of SML by
example. His explanations are generally clear
and form a good introduction to both func-
tional and imperative programming with
SML. Most of his examples are based on code
that he has used himself, rather than purely
illustrative code from the classroom. So the

reader is shown how to write basic tools such
as binary trees, priority queues, tree searches,
parsers and pretty-printers in a functional
style. Some 'lazy' data structures are also
examined in detail. Paulson also gives syntax
diagrams at the back of the book, which
newcomers to SML will find useful.

Other examples introduce the basic ideas of
first-order classical logic and the lambda-
calculus, which are used in two major case
studies once the presentation of the language
is complete. Obviously these examples aren't
directly useful to programmers from other
fields, but Paulson is on home ground here,
and presents his examples well. The code for
many of the examples in the book is available
by anonymous FTP.

There is a particularly strong need for a
textbook that explains how to use the SML
modules system. Paulson does a good job of
presenting the basics. There is more that he
could have said, but he shows enough for
people to use the language to build real
programs. Similarly, although I disagree with
his discussion of abstract types in SML, his
presentation is good enough for people to get
things done.

Paulson also offers a chapter on formal
reasoning about functional programs. He
cover the ground well, and discusses both the
limitations and the virtues of the techniques.
However, I felt that he would have done better
to integrate this discussion with the main text.
Putting it in a separate chapter may make it
rather indigestible to the 'working program-
mer' of the title.

Working programmers need efficient pro-
grams, and Paulson does discuss the efficiency
of his examples. However, he doesn't present
any techniques for analysing the efficiency of
recursive programs. Perhaps surprisingly for a
book aimed at imperative programmers, he
also doesn't deal directly with questions such
as 'How do I write a loop in functional
language?'. Although the techniques are de-
scribed, readers are left to find them for
themselves.

Overall, I like the book. The treatment of
the core language is very good -1 could
quibble with details, but these are mainly
matters of personal taste and style. I have
more disagreements with his treatment of
modules, and he leaves room for a more
comprehensive coverage of the modules sys-
tem, but his presentation is both adequate in
itself and better than the competition. Apart
from this, my main criticism is that there is not
enough discussion of when to use which
features of the language. However, the
examples provide a useful guide. In my
opinion, this is the best general SML textbook
currently available.

DAVE BERRY
Edinburgh
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