14. J. M. Morris, Laws of data refinement. Acta Informatica,

26, 287308 (1989).

and the programming calculus. Science of Computer
Programming, 9 (3), 298-306 (1987).

16. E. Sekerinski, A calculus for predicative programming.
Proceedings of the 2nd International Conference on the
Mathematics of Program Construction, Oxford, June 1992.

J.C.P.WOODCOCK

To be published in Lecture Notes in Computer Science,

Springer Verlag, Heidelberg (1992).
15. J. M. Morris, A theoretical basis for stepwise. refinement 17. J. M. Spivey,

The Z Notation: a Reference Manual.
Prentice-Hall International, London (1989).

18. J. C. P. Woodcock, A tutorial on the refinement calculus.

In VDM'91: Formal Software Development Methods.
Lecture Notes in Computer Science 552, pp. 79-140.
Springer-Verlag, Heidelberg (1991).

Book Reviews

Y. Takerus. Neural Network Parallel Com-
puting. Kluwer Academic Publishers Group,
Dordrecht, 1992, £44.25 ISBN 0-7923-9190-X

In his ackowledgements Takefuji admits to
being inspired by the work of Hopfield and
Tank on using neural network architectures to
solve problems in optimisation. The book sets
out many extensions to the approach where
mathematical models of constraint satisfaction
problems are implemented and tested in neural
nets. The variety of topics that are addressed
and the variety of methods used to convey the
ideas are distinctive characteristics.

The first ten chapters deal with many hard
optimisation problems such as N-queen
problems and k-colorability problems. The
remaining chapters deal with hardware imple-
mentations and mathematical derivations.
Some Turbo PASCAL code is provided and
each chapter has its own list of references.
Most of the chapters have student exercises
attached. The exercises are clearly an attempt
to make this a text book, but 1 feel that
students generally benefit most when model
answers are supplied. However, after a cursory
glance, 1 did wonder just how the average
undergraduate might cope with Exercise 11.5
No. 4 —‘Survey research on silicon neural
network implementations and optical imple-
mentations’.

Takefuji’s general approach is to provide
various gradient descent methods for solving
constraint satisfaction problems. The aim is to
construct something known as a motion
equation which species a ‘ fabricated computa-
tional energy function’ (p.4). An artificial
neural net is then developed to implement
parallel gradient descent as a method to
minimise the fabricated energy function. Vari-
ous types of artificial neurons are considered,
and each is defined relative to a different
input/output function. Takefuji discusses the
basic McCulloch and Pitts neuron defined as a
binary threshold logic unit (TLU). An alterna-
tive to this is a unit using a sigmoid input/
output function as studied by Hopfield. Nets
comprising either sort of unit are then exam-
ined. Detailed comparisons revealed that the
TLU net tended to converge faster than the
sigmoid net, although the TLU net did exhibit
unfortunate oscillatory behaviour. To over-
come this, Takefuji discusses using units that
employ an hysteresis McCulloch-Pitts input/
output function. With this, the idea is to have
a unit with essentially two thresholds. The
upper threshold sets a value above which
inputs must be for the unit to turn on, the
lower threshold sets a value below which the
unit turns off. Input values between the upper
and lower bounds have no effect on the unit.
Nets with these units no longer exhibited
oscillation, but problems remained over how
best to set the threshold values.

Although Takefuji discusses Boltzmann
machines in passing, his favoured model is one
known as the ‘maximum neuron model’. This
is a variant on the theme of a winner-take-all
net. One of the advantages of these nets is that
they are ‘guaranteed to generate satisfactory
solutions’ (p. 181). Another is that ‘turing
coefficients parameters in the motion equation
is not required’. From this last statement I am
happy to conclude either that my rather
slender grasp of mathematics lets me down, or
that something has gone wrong in the type-
setting.

Nevertheless, my general impression was
that the book has been cobbled together.
Some of it is rather too obviously the product
of ‘cut-and-paste’, there are inconsistencies in
style (compare the formatting of the references
for Chapters 1 and 13), and some of the
writing is dreadful. Moreover, the formula
typesetting is untidy. This can be off-putting
to those who find unpacking mathematical
expressions into natural language daunting.
Equation 1.8 (p. 9) is a case in point (see also
the proof on p. 191).

This is truly a book for computer scientists
with a strong background in mathematics.
Although a wide range of topics is covered —
from natural brains to VLSI chips ~ the book
is perhaps going to fit most comfortably in the
hands of applied mathematicians.

P. QuINLAN
York

L. C. PauLsons. ML for the Working Pro-
grammer, Cambridge University Press. £27.50.
ISBN 0 521 39022 2

Standard ML (henceforth referred to as SML)
is a major influence in the design of pro-
gramming languages. It is widely used in the
research community and is increasingly used
for teaching computer science. It is even
beginning to find its way into the commercial
world, both as a prototyping tool and as a
delivery language. Therefore there is a signi-
ficant demand for a good introductory text.
Paulson’s book, while not perfect, meets that
demand well.

As the title suggests, Paulson aims his book
at people who already know how to program
and who want to use SML on real programs.
His book is also suitable for advanced under-
graduate teaching.

Paulson introduces the features of SML by
example. His explanations are generally clear
and form a good introduction to both func-
tional and imperative programming with
SML. Most of his examples are based on code
that he has used himself, rather than purely
illustrative code from the classroom. So the

450 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

reader is shown how to write basic tools such
as binary trees, priority queues, tree searches,
parsers and pretty-printers in a functional
style. Some ‘lazy’ data structures are also
examined in detail. Paulson also gives syntax
diagrams at the back of the book, which
newcomers to SML will find useful.

Other examples introduce the basic ideas of
first-order classical logic and the lambda-
calculus, which are used in two major case
studies once the presentation of the language
is complete. Obviously these examples aren’t
directly useful to programmers from other
fields, but Paulson is on home ground here,
and presents his examples well. The code for
many of the examples in the book is available
by anonymous FTP.

There is a particularly strong need for a
textbook that explains how to use the SML
modules system. Paulson does a good job of
presenting the basics. There is more that he
could have said, but he shows enough for
people to use the language to build real
programs. Similarly, although I disagree with
his discussion of abstract types in SML, his
presentation is good enough for people to get
things done.

Paulson also offers a chapter on formal
reasoning about functional programs. He
cover the ground well, and discusses both the
limitations and the virtues of the techniques.
However, I felt that he would have done better
to integrate this discussion with the main text.
Putting it in a separate chapter may make it
rather indigestible to the ‘working program-
mer’ of the title.

Working programmers need efficient pro-
grams, and Paulson does discuss the efficiency
of his examples. However, he doesn’t present
any techniques for analysing the efficiency of
recursive programs. Perhaps surprisingly for a
book aimed at imperative programmers, he
also doesn’t deal directly with questions such
as ‘How do I write a loop in functional
language?’. Although the techniques are de-
scribed, readers are left to find them for
themselves.

Overall, 1 like the book. The treatment of
the core language is very good -1 could
quibble with details, but these are mainly
matters of personal taste and style. I have
more disagreements with his treatment of
modules, and he leaves room for a more
comprehensive coverage of the modules sys-
tem, but his presentation is both adequate in
itself and better than the competition. Apart
from this, my main criticism is that there is not
enough discussion of when to use which
features of the language. However, the
examples provide a useful guide. In my
opinion, this is the best general SML textbook
currently available.

DAVE BERRY
Edinburgh

202 Iudy || uo1senb Aq 062201/e-05/G/SE/2101e/|ulwoo/wod dno-olwapede//:sdiy wolj pepeojumo(d

