
Introduction to Algebraic Specification. Part 1: Formal
Methods for Software Development

H. EHRIG,1 B. MAHR,1 I. CLASSEN1 AND F. OREJAS2

' Technical University of Berlin, Fachbereich 20 Informalik, Institul fur Software und Theoretische Informatik, Franklinstrasse 28/29,

W-1000 Berlin 10, Germany
2 Technical University of Catalunya

The intention of this part 1 of an overview paper on algebraic specifications is an informal introduction to formal
methods for software development in general and to applications of algebraic specifications in particular. Horizontal
structuring and vertical refinement techniques for algebraic specifications are shown to support the general software
development process. Moreover, a short overview of case studies and tools in the ESPRIT projects LOTOSPHERE
and PROSPECTRA is given. In part 2 of this paper we give a survey of the research field of algebraic specifications
developed within the last two decades, which shows how the classical view of algebraic specifications has been extended
towards a general theory of foundations of system specifications.

Received June 1992

1. INTRODUCTION
Algebraic specification is a formal specification approach
that emerged in the mid-70s as a technique to deal with
data structures in an implementation-independent man-
ner. The approach was based on specifying data types in
a similar way to that used for the study of different
mathematical structures (e.g. groups, rings, fields, etc.) in
modern algebra. In this sense, equational logic was
chosen as the specification formalism and universal
algebra and category theory provided the underlying
semantical techniques.

Since then, the research efforts have led to a good
understanding of various specification concepts, includ-
ing structuring mechanism and constructs that can now
be found in a number of existing specification languages.
Moreover, the influence of algebraic specification has
gone beyond the area of specification itself. On the one
hand, several modern programming languages (e.g.
object-oriented languages, ADA, ML, Miranda) provide
constructs whose origins can only be found in algebraic
specification. On the other hand, this research field has
also contributed to a better language-independent under-
standing of certain programming constructs. An obvious
example are data structures, whose presentation and
study have been considerably influenced by the in-
troduction of algebraic specification.

Although, originally, algebraic specification was in-
tended as a technique for the description of data types, it
soon grew into a formal specification technique aiming
to cover the whole specification phase within the software
development process. In this sense, algebraic specification
shares the advantages of other formal specification
approaches in comparison to informal ones, as follows.

• By 'forcing' the specifier to analyse the problem in
question until a level of detail is reached that may not
necessarily be reached when using an informal method.

• By allowing for tools and methods to detect ambigu-
ities and inconsistencies otherwise hidden.

• By allowing for prototyping tools that in an early
stage of development can be used for detecting
inadequacies of the system specification with respect
to the customer/user needs.

In addition, within the algebraic specification approach
several structuring and modularisation constructs have
been defined such that:

• Specifications can be built in a stepwise manner,
facilitating the analysis of the problem in question by
making systematic use of the principle of separation of
concerns in a systematic manner.

• The design phase can make use of the modular
structure introduced in the specification phase in order
to simplify the system's correct implementation.

Nowadays, algebraic specification is regarded as pro-
viding support for the whole software development
process.

• Conceptually, algebraic specification provides a frame-
work to formally describe software design. This
framework allows for a better understanding of the
software development process providing methodo-
logical insight concerning different issues.

• Practically, algebraic specification provides methods
and tools that can be used in actual software design. In
Section 5 two examples of this are shown.

The rest of the paper is organised as follows. In Section
2, we describe a number of aspects of software
development in which formal methods (and, in particular,
algebraic specification) play a major role. In Section 3,
some constructs for the horizontal structuring of specifi-
cations are briefly described. Section 4 is devoted to
discussing correctness aspects related to vertical devel-
opment. In Section 5, two algebraic specification-based
systems, namely LOTOSPHERE and PROSPECTRA,
are described. Finally, in Section 6 some new perspectives
are discussed.

2. GENERAL ASPECTS OF SOFTWARE
DEVELOPMENT
In this section we give a short review of requirements for
software systems, try to summarise the main conceptual
stages and steps of the software development process,
and discuss the role of formal methods for both of these
topics.

460 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

INTRODUCTION TO ALGEBRAIC SPECIFICATION

2.1 Requirements for software systems

Instead of a detailed discussion of requirements for
software systems, which may be found in textbooks on
software engineering, we summarise the main aspects
with the keywords 'adequacy', 'quality', 'modifiability'
and 'reusability'.

Adequacy. First of all the software system should be an
adequate solution of the given problem.

Quality. The quality of a software system is mainly
determined by its reliability, correctness, efficiency,
security and error tolerance.

Modifiability/version update. Software system modi-
fications for the update of versions should be possible
with reasonable effort in order to adapt the system to
new requirements or to improve adequacy or quality.

Reusability. It is most desirable to be able to reuse the
architectural design of the system, and the specification
or code of suitable components of the system for the
development of other software systems.

2.2 Conceptual software development process

We are aware that there is no commonly accepted model
for the software development process from a given
problem via specification and design to an efficient
version of the software system. But we would like to
summarise in Fig. 1 those conceptual stages and steps
which we consider to be mainly important in order to
discuss the role of formal aspects of software development

Requirement engineering

OVERALL REQUIREMENT

DEFINITION

Functional
requirement
analysis

r 1

Architec
analysis

r

FUNCTIONAL REQUIREMENT

SPECIFICATION

Local .M—H. Global

Design decisions and trans-
formation of specifications

DESIGN SPECIFICATION

Local Global

Implementation of prototype resp.
transformation of specifications

^

PROTOTYPE/EXECUTABLE

SPECIFICATION

Local Global

Implementation resp.
compilation

EFFICIENT SOFTWARE SYSTEM

VERSION / PRODUCT

Local | | Global

Figure 1. Main conceptual stages and steps in the software development process.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 461

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

H. EHRIG, B. MAHR, I. CLASSEN AND F. OREJAS

below (for this reason we disregard, for example, all the
aspects of software management).

The stages in Fig. 1 are indicated by a cloud for the
given problem and by boxes for later conceptual stages in
the development. The development steps are indicated by
horizontal and vertical edges and the big clamps left and
right. The stages and steps are 'conceptual' in the sense
that not all of them have to be taken within the actual
development process; parts of the system may actually
be in different stages and different steps may be performed
concurrently.

The bone-like structure of most of the boxes repre-
senting the conceptual development stages indicates the
'horizontal structuring process' within each of them
which is shown in Fig. 2 in more detail.

Local
components

Conceptual development

Documentation

Interconnection
^

stage

- > •

Global
structure

Decomposition

Figure 2. Horizontal structuring of a conceptual development
stage.

In each of these conceptual development stages we
distinguish between local components and the global
structure of the system within this stage. The horizontal
structuring process includes the interconnection of local
components leading to a global structure as well as the
decomposition of large components into small ones.

The complexity of the overall development process
increases by the fact that horizontal structuring steps and
vertical development steps can be mixed, i.e. an arbitrary
path of vertical and horizontal edges in Fig. 1 may be
used to proceed from the problem to the product.

2.3 Role of stages and steps and support by formal
methods

In the following we want to discuss briefly the role of the
conceptual stages and steps within the software de-
velopment process and the role of formal methods for
software specification and development.

(1) Support for requirements of software systems.
Formal methods are essential to support quality, mainly
concerning reliability and efficiency aspects, as well as
modifiability and reusability by formal concepts for data
abstraction and modularity. Suitable notions of sem-
antics and correctness for both of them should lead to
semantically integrated interfaces between the com-
ponents of the system on all conceptual development
stages.

(2) Conceptual development stages. The first concep-
tual stage following the given problem is the overall
requirement definition for the software system to be
developed. It is usually written in natural language in
order to be understandable by the user and the software
engineer.

In the functional requirement specification the func-
tionality of the operations of the entire system and - as
far as possible - of suitable subsystems should be given,
together with the main properties which are required for
these operations. Conceptually this corresponds to an
algebraic or logical specification including equational,
first- or higher-order axioms and constraints, which can
be considered as requirements for the operations and
their domains. The semantics should be the class of all
algebras or structures satisfying the given axioms and
constraints.

The design specification is intended to be an abstract
model of the intended software system. It should be
independent of any particular representation. Con-
ceptually this corresponds to an algebraic specification
with tight semantics, like initial or final semantics. This
means that the semantics is given by one abstract data
type, i.e. an isomorphism class of data types.

If the design specification is already executable it can
be used as an early prototype of the system. Otherwise it
might be transformed to become an executable specifi-
cation. Executability means that the operations of the
corresponding abstract data type can be correctly
simulated by interpretation or compilation of the term
rewriting system which can be automatically derived
from the axioms of the specification.

Finally an efficient version of the software system,
especially the software system product to be delivered,
should be implemented in a suitable programming
language. This language should have a formal semantics
in order to be able to prove correctness w.r.t. the system
specifications in previous development stages.

(3) Conceptual development steps. The main idea of
the conceptual development steps is to describe the
development process within one stage and between
different conceptual stages of development. The process
within one stage, also called 'horizontal development',
essentially means to interconnect local components to
global structures or to decompose large components into
smaller ones. These horizontal development steps should
be supported by a suitable formal notion of components
(or modules) and semantically well-defined inter-
connection mechanisms, which can be considered as
operations on these components (not to be confused with
the operations in these components defined by the
corresponding data types).

The conceptual development steps between different
stages are called 'vertical development steps'. Like the
horizontal steps, they are mainly governed by design
decisions. But the vertical steps should be supported by
suitable transformation concepts and tools, which in
most cases will be interactive to allow design decisions
and in some cases automatic, e.g. the compilation of an
executable specification into some programming lan-
guage. For all these development steps formal methods
are highly desirable in order to obtain semantic com-
patibility within one stage and to allow interactive or
automatic correctness proofs between different stages
which eventually should lead to correctness of the
software product w.r.t. the specifications in all conceptual
development stages. In addition to these formal correct-
ness proofs adequacy and quality of the system (see
Section 3.1) have to be checked by suitable evaluations
leading to updated versions of the system in different
conceptual development stages.

462 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

INTRODUCTION TO ALGEBRAIC SPECIFICATION

3. HORIZONTAL STRUCTURING OF
SPECIFICATIONS

In this section we discuss construction mechanisms for
specifications which lead to a horizontal structuring of
the system specification in the sense of Section 2. This
idea was first advocated for algebraic specifications by
Burstall and Goguen in Ref. 1, leading to the first
algebraic specification language, called CLEAR. Later
on several other languages were designed where the
language features for specification in the large correspond
exactly to certain construction mechanisms for specifi-
cations. One important concept for structuring and
construction of specifications is that of parameterised
specifications,32 i.e. specifications with a designated
formal parameter part, and actualisation of the formal
by an actual parameter. In analogy to procedures in
programming languages the actualisation process is also
called parameter passing.

Another important concept of structuring and de-
composing large software systems into smaller units is
the notion of modules, first advocated by Parnas in
] 972 29 p o r a]j stages within the software development
process modules or module specifications are seen as
completely self-contained units which can be developed
independently and interconnected with each other. In the
context of algebraic specifications several different
module concepts have been developed supporting these
ideas, e.g. in the algebraic specification languages
Extended ML30 and ACT TWO.1333 For a discussion of
different module concepts in specification and pro-
gramming languages we refer to Ref. 12.

In the following we restrict ourselves to discussing only
some construction mechanisms for basic and para-
meterised specifications as used in the language ACT
ONE,11 and we only discuss the syntactical aspects, while
the corresponding semantics will be discussed in Part 2 of
this paper.

3.1 Basic types and operations

A specification for a basic type is given by an algebraic

specification SPEC = {St0P,E)

consisting of a set 5 of sorts, a set OP of operation
symbols and a set E of equations or axioms.

Let us consider some structuring mechanisms to build
up larger specifications from smaller pieces, called
extension, union, and renaming. The extension concept
allows us to add sorts, operation symbols and equations
to a given specification. If ListO is a basic list specification
with empty list and an operation for appending elements
from one side only, List, including a concatenation

Nat for natural numbers and shared subspecification
Bool for boolean values and extend this union by
operation symbols for the length function, the equality
predicate on lists and suitable axioms. The renaming
concept allows us to have a bijective renaming of sorts
and operation symbols of a specification.

3.2 Parameterised specifications

In software development data structures are often needed
that share a common principle. For example, lists of
natural numbers, lists of characters and lists of records
are instances of lists of arbitrary data elements. To
exploit such a polymorphism, a parameterisation and an
instantiation mechanism are necessary. In the algebraic
specification context parameterisation is given by para-
meterised specifications and instantiation by actuali-
sation.

A parameterised specification PSPEC consists of a pair
(PAR, BOD) of algebraic specifications, where the formal
parameter PAR is a subspecification of the body
specification BOD.

PSPEC:

Example. In a parameterised specification List for lists
over arbitrary data elements the formal parameter
contains a specification of data elements and the
construction of lists over these data elements is given in
the body (see Section 3.3 below for more detail).

A parameterised specification PSPEC\ = (PAR\,
BOD\) can be actualised by an algebraic specification
B0D2 or by another parameterised specification PSPEC2
= (PAR2, BODT). These actualisation mechanisms are
called standard and parameterised parameter passing
respectively. Both of them are using a 'parameter passing
morphism' h: PAR\ -> B0D2, which defines the replace-
ment of formal sorts and operation symbols by actual
ones.
Standard parameter passing

PAR BOD

PSPECX: \ PARl BODY

SPEC3: | BODl

SPEC2: | B0D2 \

Example. The actualisation of lists over (arbitrary)
data (elements) by natural numbers leads to lists over
natural numbers.
Parameterised parameter passing

PSPECl:

PSPEC2: PAR2 \

PARl BODl |

I"
B0D2

operation for lists, is an extension of ListO. The union
concept allows us to construct the union of given
specifications with shared subspecifications. If we need a
length function and an equality predicate for lists, we
take the union of the specification List with a specification

PSPECl:| PARl \ BODl \

Example. The actualisation of 'lists of data' by 'lists
over data' leads to 'lists of lists over data'.

In both cases the body specification BODl can be
constructed by textual substitution of PARl in BODl by
BOD2 according to the parameter passing morphism
h:PARl^B0D2.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 463

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

H. EHRIG, B. MAHR, I. CLASSEN AND F. OREJAS

3.3 Example (Construction of texts from lists)

The parameterised specification List mentioned is a basic
type given in ACT ONE by

Type list js
Parameter

Sorts Data

Body
Sorts
Opns

List(Data)
X: -^List(Data)
{empty list}
[_]: Data ^-List(Data)
{construction of lists of length 1}
o: List(Data).List(Data) -> List(Data)
{concatenation of lists}

Eqns for all s1. s2. s3: List(Data)
(s1 os2)os3 = s1 O(s2os3)

{associativity}

Endtype

This means that the formal parameter of List consists of
a sort Data and in the body lists are constructed in the
sort List (Data) using an empty list, one-element lists and
associative concatenation of lists. The dots in the
parameter and body part of List indicate that the
parameter can be extended by further sorts, like Bool;
operation symbols, like a less-equal predicate considered
as an operation symbol with range sort Bool; and
equations specifying an order relation of data elements;
and that the body part can be extended to specify a
lexicographical order on lists of arbitrary elements and
other operations on lists.

Now we show how to use List to obtain lists of lists
of data (first actualisation) and lists of lists of characters
(second actualisation) leading to a specification Text
where the sorts List(Char) and List(L_ist(Char)) have
been renamed by Line and Text respectively, using a
morphism r:

Type Text |s (List actualised by
Sortnames

actualised by
Sortnames
renaming
Sortnames

List using
List(Data) for
Data
Char using
Char for Data

Line for
List(Char)
Text for
List(LlsT(Char))

Endtype

The parameter passing morphisms, called h\ and h2,
map the sort 'Data' to 'List(Data)' in the first actual-
isation and ' Data' to 'Char' in the second actualisation.

The horizontal structuring of the type Text according
to this specification is visualised in Fig. 3.

4. VERTICAL REFINEMENT AND
CORRECTNESS

In this section we review the main ideas concerning the
implementation process starting from a given (formal)
specification and leading to a final software system. This

Text

[DATA

1 * 2
Char

DATA

;*•
List

List

Actualisation

Actualisation

Renaming

Figure 3. Example of horizontal structuring.

process is always seen as stepwise, in the sense that it
consists of a sequence of implementation steps. Starting
from the ' high-level' specification So, it yields a final' low
level' system Sn. In between, different 'intermediate-
level ' specifications Slt..., Sn are produced, i.e.:

Additionally, implementation is considered to be a
modular process in the sense that every step, Sf->S,+1,
consists of a local transformation of some specification
units of St. However, sometimes global transformations
are considered: this may be the case in re-structuring
steps. It must also be noted that the process may be
considered as never-ending, in the sense that the evolution
of a software system in the maintenance phase can be
considered as part of the development process.

One of the main aims of the use of formal methods in
software development is to ensure the correctness of the
whole process. In the rest of the section, we first study the
different correctness notions involved in the software
development process and then we discuss the kind of
implementation steps, together with their associated
proof obligations, that may occur within that process. In
our discussion on correctness we exclude the problem of
adequacy and restrict ourselves to 'internal' correctness,
i.e. correctness with respect to the given specification.
Note however that formal methods also help in the
solution of the adequacy problem by construction of
prototypes in very early stages of development. Various
approaches to vertical refinement in the literature are
discussed and summarised in Refs 28 and 31.

4.1 Software correctness

Several different notions of correctness may be associated
with a software unit, depending on its kind and its
application. For instance, correctness notions for a
specification unit and for a code unit are different. Also,
correctness of a function implementation is different
from correctness of a data-type implementation. Even
for the same unit, different correctness notions may be
considered depending on its application. For example, in
a given context a procedure may be asked to be totally
correct, while in a different context the same procedure
may be asked to be robust.

464 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

INTRODUCTION TO ALGEBRAIC SPECIFICATION

In general, correctness of a software unit refers to the
existence of certain relations with other units. This
includes the existence of such relations with' old versions'
of the unit, e.g. correctness of a code unit with respect to
the implemented specification unit. As discussed in
Section 2, we may distinguish between horizontal and
vertical relations. Correctness conditions associated with
horizontal relations refer to the interconnection of two
units, e.g. the correct matching of the formal and actual
parameter in the instantiation of a parameterised
specification. Correctness conditions associated with
vertical relations refer to the fact that a given unit is a
refinement or an implementation of another one.

In this sense, global correctness throughout the whole
development process must be a consequence of the
correctness of all its units. This implies that the given
framework must satisfy different compositionality pro-
perties. The property of vertical composition states that
if a unit Ul is a correct implementation of U2 and U2 is
a correct implementation of U3, Ul must be a correct
implementation of U3. The property of horizontal
composition states that if a unit Ul can be interconnected
correctly with U2, and Ul' and U2' are, respectively,
correct implementations of Ul and U2, it must be
possible to interconnect correctly Ul' with U2' and,
additionally, the interconnection of Ul ' and U2' must be
a correct implementation of Ul and U2.

4.2 Refinement steps and verification

As said above, software development may be considered
as a sequence of steps, each of them consisting, normally,
in the refinement of a unit into another unit. Steps have
associated certain proof obligations to ensure the
correctness of the resulting unit. The task of satisfying
these proof obligations is called verification.

In general, development steps are 'correctness preserv-
ing'. However, in the maintenance phase it is common to
perform development steps where some parts of the
system are redesigned, providing new units that cannot
be considered in any way correct refinements of previous
ones. Conversely, in correctness-preserving steps, a
(specification) unit is replaced by a 'more concrete' unit
(a program unit or less abstract specification unit) that
implements the former in a well-defined manner. Al-
gebraic specification has paid special attention to the
study of the refinement relations (and their associated
proof obligations) associated with data-type units (e.g.
see Ref. 28).

Given a specification unit Ul there are, basically, three
ways of performing a development step and providing a
new unit U2 implementing Ul, as follows.
• By direct implementation: the implementor constructs

U2 directly' by hand'. In this case the proof obligations
associated with this step concern the implementation
relation between Ul and U2.

• By transformation: the implementor constructs U2 by
applying some transformation to Ul. This may be
supported by tools in the software development
environment. In this case the proof obligations
associated with this step concern the conditions that
define the applicability of that transformation.

• By reuse: the implementor constructs U2 by adapting
some other unit that had been previously developed in
a different context. Again, this may (should) be

supported by tools in the software development
environment. In this case the proof obligations
associated with this step may be related to how the
reused component is adapted to fit, since the proofs
for the vertical relations of the new unit would
probably also be reused.

5. CASE STUDIES AND TOOLS
In this section we give a short overview of case studies
and tools that have been developed within DFG
(Deutsche Forschungsgemeinschaft) project ACT and
the ESPRIT projects LOTOSPHERE and PROSPEC-
TRA. The goal of both projects was to support the
specification of realistic software systems and to provide
methods and tools for the stepwise development of
implementations from specifications. The stepwise de-
velopment consists of vertical refinements in the sense of
Section 4, and is achieved by transformational methods.

5.1 LOTOSPHERE and ACT

The aim of the project LOTOSPHERE was to support
the specification and implementation of distributed and
concurrent systems. Using methods and tools for
specification in the ISO-standardised language LOTOS
(Language of Temporal Ordering Specification),23 we
obtained the following results.

• A design structuring methodology for the initial
specification as well as for development steps.

• A catalogue of LOTOS-to-LOTOS transformations.
These transformations can be used for development
steps and to ensure correctness of the resulting
implementation-oriented specification w.r.t. the initial
specification.

• A comprehensive tool environment to check, trans-
form, simulate, compile and test specifications. The
Lotos Integrated Tool Environment (LITE) provides
a user-friendly development system with a menu-
based user interface.

• Large case studies of specification and implementation
of OSI protocols and of an ISDN application.
Transaction processing and the related standards for
association control and commitment, concurrency
and recovery were selected as a basis for the work on
OSI protocols. As an ISDN application a service
called 'mini mail' was selected that provides a simple
mail facility for ISDN subscribers.

The specification language LOTOS is based on a
process calculus derived from CCS26 and CSP22 and on
a variant of the algebraic specification language ACT
ONE.911 ACT ONE has been developed within the DFG
project ACT (Algebraic specification techniques for
Correct design of Trusty software systems). A first tool
environment (called the ACT system)20 was implemented
in 1984 on an IBM mainframe. Further developments of
the language (see Ref. 5) and experience in the ESPRIT
project SEDOS8 have led to a reimplementation of the
system on SUN workstations. The current system consists
of a static semantics checker, a completeness and
consistency checker and a powerful simulator based on
narrowing techniques. The ACT system is mainly used in
student projects dealing with the specification of non-
trivial software systems. Examples are a syntax-directed

30

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 465
CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

H. EHRIG, B. MAHR, I. CLASSEN AND F. OREJAS

editor, the user operations of the UNIX file system, and
the semantics of a functional programming language.

5.2 PROSPECTRA
PROSPECTRA (PROgram development by SPECifi-
cation and TRAnsformation)24 is a successful example of
a system supporting a methodology covering the com-
plete software life-cycle (including redevelopment), where
algebraic specification provides the unifying theoretical
framework. PROSPECTRA has been the result of an
ESPRIT project involving nine research groups from
industry and university coordinated by Bremen Uni-
versity.

The main idea underlying PROSPECTRA method-
ology is that any activity can be regarded, both at the
conceptual and the technical levels, as a transformation
of a 'specification'. In particular, not only development
steps but also system interaction and proof construction
are regarded as transformations. On the other hand, the
fact that transformations themselves are considered to be
specifications allows the use of transformations for the
development of new transformations. This is the basis of
PROSPECTRA's meta-development methodology that
provides the means for the definition of development
tactics, both for specifications and programs and for
proofs.

At the technical level, the uniformity achieved through
this unified view is the reason for the simplicity of the
PROSPECTRA system. The core of this system is
formed by four subsystems: the Library Manager
providing version and configuration control; the Con-
troller that handles user interaction with the system and
supplies interfaces with all other components; the
Transformer Shell takes care of displaying, at any
moment, the set of applicable transformations in a given
context and of actually applying a selected one; finally,
the Proof Subsystem is the tool to support the (interactive)
construction of proofs. In addition to these components,
the system consists of a number of editors and translators
associated with the various system languages.

An interesting example of a case study developed with
PROSPECTRA is the development of two specifications
with different degrees of abstraction for describing
topologies of solid objects. The more concrete specifi-
cation was proved to be a correct refinement of the more
abstract one.

6. CONCLUSION

Algebraic specification has emerged from concepts in

programming, category theory and equational logic and
has evolved into a full-grown theory which is concerned
with the systematic study of formal techniques applicable
to all phases of the software development process.
Although initially confined to the specification of data
types, the topics of research and development in algebraic
specification soon addressed questions of horizontal
structuring, vertical refinement and modularisation pre-
dominant in all software development stages. Algebraic
specification is first of all a mathematical theory with the
goal to provide foundations and techniques for software
production. Case studies have not only served for insight
into questions and requirements arising with system
specification, but also validated the techniques and tools
in view of their applicability and adequacy. Fundamental
to algebraic specifications and to structuring concepts
and modularisation in algebraic specification languages
are the following: the algebraic point of view, i.e.
modelling with sorts and operations; the denotational
meaning, i.e. tight, constrained or loose semantics in
terms of classes of algebra; the principle of compo-
sitionality, i.e. the meaning of composed units as
composition of the meaning of the unit's components;
the semantic correctness, i.e. all syntactic and operational
units and steps received their justification through
invariants expressed by their denotational meaning.

In keeping with these fundamentals, more and more
elaborate techniques have been developed and applied to
various languages and systems design. Furthermore,
algebraic specification has influenced new language
design and new systems architectures also in a less direct
way. Examples are functional programming languages
like ML or OPAL and the management for open
distributed processing in a medical environment at the
German Heart Centre, Berlin,14 where also the use of
algebraic specification techniques is being explored within
a large research and development project including
several academic and industrial partners.

Future work in algebraic specification will emphasise
extensions of the formal techniques and the study of
prototypical applications with the goal to make the body
of work from almost two decades better understood and
better available to practical software development.

7. LITERATURE
For reasons of space in this section we have preferred to
provide a very small list of references and bibliographic notes
that should not be considered representative of the state of the
art in the area. Entries have been included in this list sometimes
for historical reasons and sometimes for their generality. For a
more complete picture of the work in algebraic specification,
the reader is addressed to Reference 7.

REFERENCES

1. R. M. Burstall and J. A. Goguen, Putting theories together
to make specifications. Proc. Int. Conf. Artificial Intelligence
(1977).

2. D. Bjorner and C. B. Jones, The Vienna Development
Method: the Meta-language. L[ecture] N[otes in] C[om-
puter] S[cience] 61. Springer (1978).

3. CIP Language Group, The Munich Project CIP, Vol. 1:
The Wide Spectrum language CIP-L. LNCS 183. Springer
(1985).

4. CIP Language Group, The Munich Project CIP, Vol. 2:

The Transformation System CIP-S. LNCS 292. Springer
(1987).

5. I. Classen, Semantik der revidierten Version der algebra-
ischen Spezifikalionssprache ACT ONE. Technical Report
No. 88-24, TU Berlin, FB 20 (1988).

6. COMPASS Basic Research Working Group No. 3264, A
Comprehensive Algebraic Approach to System Specification
and Development, ESPRIT BRA-Proposal (1988); see also
Bulletin EATCS 40, 144-157 (1990).

7. COMPASS ESPRIT Basic Research Working Group No.

466 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

INTRODUCTION TO ALGEBRAIC SPECIFICATION

3264, A Comprehensive Algebraic Approach to System
Specification and Development, Final Report. Technical
Report, University of Bremen 7/91 (1991).

8. M. Diaz, C. Vissers and S. Budkowski, ESTELLE and
LOTOS software environments for the design of open
distributed systems. Proc. 4th Annual ESPRIT Conference,
pp. 543-558. North-Holland, Amsterdam (1987).

9. H. Ehrig, W. Fey and H. Hansen, ACT ONE: An Algebraic
Specification Language with Two Levels of Semantics.
Technical Report No. 83-03, TU Berlin, FB 29 (1983).

10. H. Ehrig and M. Grosse-Rhode, Structural Theory of
Algebraic Specifications in a Specification Logic, Part 1:
Functorial Parameterized Specifications. Technical Report
No. 91-23, TU Berlin, FB 20 (1991).

11. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifi-
cation. 1. Equations and Initial Semantics. EATCS Mono-
graphs on Theoretical Computer Science, vol. 6. Springer
(1985).

12. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifi-
cation. 2. Module Specifications and Constraints. EATCS
Monographs on Theoretical Computer Science, vol. 21.
Springer (1990).

13. W. Fey, Pragmatics, Concepts, Syntax, Semantics, and
Correctness Notions of ACT TWO: An Algebraic Module
Specification and Interconnection Language, Diss. TU
Berlin, 1988; also Technical Report No. 88-26, TU Berlin,
FB 20 (1988).

14. E. Fleck and H. Oswald (eds.), Neue Techniken und
Konzepte der Diagnoseunterstiitzung bei Herz-Kreislaufer-
krankungen (mainly the contributions by Fleck, Hansen,
Mahr and Oswald), Blackwell Wissenschaft, Berlin (1992).

15. J. A. Goguen and R. M. Burstall, CAT, a System for the
Structured Elaboration of Correct Programs from Structured
Specifications. Technical Report CSL-118, Comp. Sci.
Lab., SRI Int. (1981).

16. J. A. Goguen and R. M. Burstall, Introducing institutions.
Proc. Logics of Programming Workshop, Carnegie-Mellon,
pp. 221-256. LNCS 164, Springer (1984).

17. J. V. Guttag and J. J. Horning, Preliminary Report on the
Larch Shared Language. Technical Report CSL 83-6
(Xerox), Palo Alto (1983).

18. J. V. Guttag, The specification and application to pro-
gramming of abstract data types. Ph.D. Thesis, University
of Toronto (1975).

19. J. A. Goguen, J. W. Thatcher and E. G. Wagner, An Initial
Algebra Approach to the Specification, Correctness and
Implementation of Abstract Data Types. IBM Research
Report RC 6487 (1976). Also: Current Trends in Pro-
gramming Methodology IV: Data Structuring, edited R.
Yeh, pp. 80-144. Prentice-Hall, London (1978).

20. H. Hansen, The ACT-System: experiences and future
enhancements. In Recent Trends in Data Type Specifi-
cation, pp. 113-130, LNCS 332. Springer (1987).

21. C. A. R. Hoare, Proofs of correctness of data representa-
tions. Ada Informatica 1 271-281 (1972).

22. C. A. R. Hoare, Communicating Sequential Processes. In-
ternational Series in Computer Science. Prentice-Hall.
London (1985).

23. ISO, Information Processing Systems — Open Systems Inter-
connection — LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour.
International Standard ISO 8807, ISO (1989).

24. B. Krieg-Briickner and B. Hoffmann (eds.), PROgram De-
velopment by SPECification and TRAnsformation, Part I:
Methodology, Part II: Language Family, Part III: System.
PROSPECTRA Reports M. 1.1 .S3-R-55.2, -57.2. Uni-
versity of Bremen (to appear in Springer LNCS).

25. J. Meseguer, General logics. In Logic Colloquium '87, pp.
275-329. Elsevier (1989).

26. R. Milner, Communication and Concurrency. International
Series in Computer Science. Prentice-Hall, London (1989).

27. B. Mahr and J. A. Makowsky, An Axiomatic Approach to
Semantics of Specification Languages, 6. GI-Fachtagung
Theoret. Informatik, Dortmund 1983, LNCS 145, pp.
211-220.

28. F. Orejas, M. Navarro and A. Sanchez, Implementation
and behavioural equivalence: A survey. To appear in Proc.
8th Workshop on Alg. Spec. {Dourdan, 1991). Springer
LNCS.

29. D. C. Parnas, A technique for software module specifi-
cation with examples. CACM 15, 5, 330-336 (1972).

30. D. T. Sannella and A. Tarlecki, Extended ML: an insti-
tution-independent framework for formal program de-
velopment. Proc. Workshop on Category Theory and Comp.
Programming, Guildford. LNCS 240, pp. 364-389. Springer
(1986).

31. D. T. Sannella and A. Tarlecki, Toward formal devel-
opment of programs from algebraic specifications: imple-
mentations revisited. Extended abstract in: Proc. Joint
Conf. on Theory and Practice of Software Development,
Pisa (1987), pp. 96-110, LNCS 249, Springer; full version
to appear in Ada Informatica.

32. J. W. Thatcher, E. G. Wagner and J. B. Wright, Data type
specification: parameterization and the power of specifi-
cation techniques. Proc. 10th Symp. Theory of Computing
(1978), pp. 119-132. Trans. Prog. Languages and Systems
4, 711-732 (1982).

33. H. Weber and H. Ehrig, Specification of modular systems.
IEEE Transactions on Software Engineering, SE-12 (7),
784-798 (1986).

Special issue on Spatial Data - Call for Papers

Later in 1993 The Computer Journal will be publishing a
special issue on Spatial Data. This is a particularly
important subject at the present time and the issue is seen
as being a major contribution to the scientific literature.
For this reason a formal Call for Papers is being issued.
Papers are invited related to techniques for the pro-
cessing, storage or retrieval of spatial data or related

applications involving spatial data. Novel technical
contributions, surveys and tutorial papers all will be
considered. They must be written for a general audience
of computer scientists, not just for specialists. Please send
all contributions to the Editor-in Chief at the address
given on the front inside cover of this Journal. Deadline:
15 March 1993.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 467

30-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/460/402311 by guest on 09 April 2024

