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1. INTRODUCTION
Algebraic specification is a formal specification approach
that emerged in the mid 1970s in order to provide an
abstract and implementation-independent definition of
data types. This original idea of using algebraic specifi-
cations as a formal specification technique for abstract
data types was quite successful. It was extended within
the last decade to horizontal and vertical structuring of
specifications as required from the software engineering
point of view. Today algebraic specification is a well-
known formal method for software development. In part
1 of this paper we have given an introduction to algebraic
specification from the software engineering point of view
which shows how algebraic specification techniques can
support the general software development process.14 In
this second part of the introduction to algebraic
specification we concentrate more on the mathematical
theory, which has been developed from a subfield of
universal algebra to a categorical theory for the founda-
tions of system specifications.

Algebraic specification originally concentrated on the
use of equational logic as the basic formalism for
research. This use has been one of the causes of its
success, since the good behaviour of equational logic
with respect to a number of semantic constructs has
helped in the study of new specification concepts and
constructs. Moreover, the abstract categorical techniques
used to obtain these results allow a generic study of
specification constructs independent of any specific
formalism. In this sense, research in algebraic specifi-
cation departed from equational logic a number of years
ago and has concentrated, on the one hand, in extending
the concepts and results for more expressive formalisms.
On the other hand, the generic study of specification
constructs provides the new aim of allowing the
possibility of integrating several 'logics' into a single
specification framework, in such a way that different
aspects of a given system could be specified using the
most appropriate formalism. Therefore, one may argue
now that the area has broadened so much, with respect
to techniques, aims and views, that it is no longer
appropriate to call it algebraic specification. As a
consequence, to describe all the work going on in this
area we advocate using the name 'Foundations of

System Specification', where algebraic specifications can
be considered to be an important special case.

The rest of the paper is organised as follows. In the
following section we present the basic specification
concepts using the equational formalism, i.e. the classical
view of algebraic specifications. In Sections 3 and 4 we
present the main constructions for building specifications
and for implementations of specifications. Current work
in the foundations of system specification is briefly
described in Section 5. Finally a conclusion and references
are given in Sections 6 and 7.

2. CLASSICAL VIEW OF ALGEBRAIC
SPECIFICATIONS
In this section we review the basic concepts underlying
the classical view of algebraic specifications as given in
Refs 20 and 12. These concepts have not lost their
scientific relevance: the more general ones still provide
guidelines for future research and foundation of systems
specification, and the more technical ones still stand as a
paradigm of mathematical strength in development of
new techniques with a higher degree of expressiveness
and flexibility.

Information structures, data structures and data types
appear in programming in an implicit and in an explicit
way. With the advent of languages aiming at higher
levels of description in the late 1960s and early 1970s
there came the need for a language-independent and
more mathematical understanding of these notions. It
was observed then that the concepts of abstract algebra,
heterogeneity and equational presentation in the fields of
universal algebra and equational logic as well as the
concept of free construction in algebraic categories can
provide an appropriate basis for a theory that helps this
understanding. In subsequent years such a theory - the
theory of algebraic specification of abstract data types -
has been developed. Its basic general and technical
concepts are as follows.

2.1 Abstract data types and their specification in
general

Information structures, data structures and data types -
we will not discuss possible differences here, but simply
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INTRODUCTION TO ALGEBRAIC SPECIFICATION

speak of data types - are seen as many-sorted algebras,
i.e. as collections of data domains and operations on
these domains. Abstract data types correspond to classes
of algebras. What makes abstract data types abstract and
in what sense, is to be modelled by the choice of class.
With the basic intention that any member of the class is
considered good as a data type, abstraction in this
context has two goals, as follows.

• To neglect certain differences of the data types under
consideration. This is achieved by admitting with each
algebra in the class also those algebras as members
whose differences are to be neglected.

• To focus on certain commonalities and invariants of
the data types under consideration. This is achieved by
denning the class in such a way that all its members
share these commonalities and obey these invariants.

An elementary example of an abstract data type is that of
binary trees whose nodes are strings over some fixed-size
alphabet. Let TREE(n*) denote the class of algebras
modelling this abstract data type. Which algebras exactly
belong to this class requires a (formal) specification. But
in any case, we would like to neglect differences in the
choice of alphabet symbols, the representation of strings
and of trees and in the computational aspects of string
and tree operations. On the other hand, we would like to
imply that all algebras have the same structure, con-
cerning domains and operations, and that its data objects
really represent strings and trees.

Specification of abstract data types concerns the
definition of classes of algebras. This is distinct from the
specification of a single data type, which would mean the
definition of a single algebra. Specification of abstract
data types is seen to combine two things:

• a formal description SPEC, called specification, of
commonalities and invariants, to be shared and obeyed
by all members of the class;

• a semantic construction SEM, used to define from the
specification SPEC the class of algebras in such a way
that the specification is satisfied and that additional
global requirements for the choice of class are fulfilled.

Most formal approaches to specification of abstract data
types give specifications in terms of signatures and
axioms and use semantic constructions, which ensure
that the classes chosen are closed under isomorphism.
Differences, however, are found in the form of axioms
and in the global requirements. These requirements
mainly express the conceptual understanding of abstract
data types in general (initial semantics, final semantics,
loose semantics, etc.).

2.2 Algebraic specification of abstract data types

In the algebraic approach to specification of abstract
data types concepts and results from the fields of
universal algebra, equational logic and algebraic cate-
gories are used to provide a mathematical formalism for
specifications and semantic construction. The theory of
algebraic specifications documents the study of this
formalism and gives results for its practical use.

An algebraic specification SPEC = (S, OP, E) consists
of a signature (S,OP) and equational axioms E. S
denotes a set of sort symbols and OP a set of constant
and operation declarations. Constant declarations have

the form c:^-s for some sort symbols s, and operation
declarations have the form op:si ...sn->s for sort
symbols sl,...,sn,s. A signature is meant to declare the
structure of a data type, while the interpretation of a
signature by an algebra (SA, OPA) defines the extension of
a data type. SA associates with each sort symbol seS a
domain As, with each constant declaration c : - » n data
element cA e As, and with each operation declaration op:
si ... sn -*• s a function opA: Asl x .. . x Asn -> As.

Sorted variables and constant and operation declara-
tions allow the formation of sorted terms t which, in a
sense, make the linguistic level for the handling of
abstract data types. Equational axioms are then defined
to be equations of the form t = t' or implications of the
form t\ = t\' A ... Atn = tn'-^t = t'.

The following algebraic specification tree(n*) can serve
as a specification of the abstract data type TREE(n*)
above:

tree(n*) =
sorts alphabet, string, tree
opns a\,...,an:-> alphabet

empty: -»• string
make: alphabet->• string
concatenate: string string -»• string
leaf: string -»• tree
compose: tree string tree -» tree

eqns concatenate (s, empty) = s
concatenate (empty, s) = s
concatenate (concatenate (sl,s2),s3) =

concatenate (si,concatenate (s2,s3J)
compose (tl,s, tT) = compose (t2,s, tl)

There are various forms of semantic construction in the
algebraic approach to specification of abstract data
types. The most prominent ones are loose semantics and
initial semantics.

Loose semantics associates with each specification (S,
OP,E) the class Klg(S,OP,E) of all algebras A = (SA,
OPA) which satisfy the equational axioms E. Loose
semantics is mainly of technical interest. It stems from
universal algebra, where classes of algebras with a given
signature obeying a given set of equations - so-called
varieties or quasi-varieties - are the object of study. For
an abstract data type loose semantics has little expressive-
ness, since one would not accept every member of
Alg (S, OP, E) as a data type to the given specification.
The trivial algebra, for example, with singleton domains
and trivial operations, shows little correspondence with
the intended meaning of tree(n*).

Initial semantics associates with each specification
SPEC = (S,OP,E) the class Ink (S, OP, E) of initial
SPiTC-algebras. In this class all algebras are isomorphic
and cannot be distinguished by properties expressible in
first-order logic. Furthermore, all algebras in this class
are generated, i.e. for every data element there is a
variable-free term representing it, and typical, i.e. they
satisfy a variable-free equation if and only if this equation
is satisfied by all algebras in Alg (5, OP, E). These two
properties form the global requirements for the choice of
class with this semantic construction. One can show that
these two properties uniquely determine the class Init(5,
OP,E). They reflect a certain relationship between an
abstract data type and its specification, namely that no
data type is accepted which has data objects unreachable
by executing operations ('no junc') or which satisfies
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elementary properties not required in the specification
('no confusion'). Despite the fact that initial semantics is
intuitively very appealing, in its purest form it is often
too restrictive. This observation, as well as variants in the
understanding of abstract data types, has led to semantic
constructions mediating between loose and initial sem-
antics. Among those are final semantics, semantic
constructions with constraints and others.

Initial semantics of the algebraic specification tree(n*)
nicely reflects the intended meaning of the abstract data
type TREE(/i*): all its data types have three domains
corresponding to alphabet, string and tree; alphabets
always have n symbols and the strings in each case are
exactly concatenated symbols; trees can in each case be
represented by a graph in the usual way without loss of
information. Trees, however, are not ordered (due to the
last equation), so that their graph representation or their
description by a term may be misinterpreted.

A good understanding of initial semantics and also a
rather practical tool for 'computing' and 'reasoning' on
the level of terms is obtained by picking a particular
member of the class Init (S, OP, E), the so-called quotient
term algebra Q. This algebra is an example of the so-
called 'free construction', predominant in the study of
varieties and algebraic categories, and is defined as
follows.

The domains of the quotient term algebra Q are sets of
classes [t] of terms obtained by factorisation, where terms
t\ and t2 are congruent if the equation t\ = t2 is
derivable from E. The constants and operations of Q are
defined by c°-=[c] and op%[t,],...,[tn]).= [op{t\,...,tn)}
respectively.

Q is initial and we have Init (S, OP,E) = {A \A s Q}.
The quotient term algebra nicely reflects the relationship
between the linguistic level of terms and the specified
abstract data type. It realises a general understanding of
semantics as a form of classification and abstraction in a
concrete way.

2.3 Algebraic specification and universal algebra

It has already been mentioned that algebraic specification
has its conceptual roots in universal algebra, equational
logic and algebraic categories. Apart from notational
and methodological influences which these mathematical
theories have, it is mainly the study of classes of algebras
and their presentation and the equational calculus with
its proof theory, which forms the mathematical basis for
algebraic specification.

Birkhoff, who is known as the founder of universal
algebra as a mathematical discipline (see Refs 5 and 7)
studied classes of algebras which can be presented, i.e.
axiomatised, by sets of equations. He characterised such
equational classes by closure properties and proved
among other results that a class C of algebras is
equational if and only if it contains all products,
subalgebras and homomorphic images of its members.
This characterisation is of particular interest, since it
allows us to show that equational classes are abstract in
the sense that they contain with every member all its
isomorphic copies, and that they admit free constructions
for every set of generators. Equational algebraic specifi-
cations can therefore be seen as presentations of
equational classes, and initial semantics as the iso-
morphism class of the free algebra over the empty set of

generators. Deduction with algebraic specifications then
corresponds, at least in its simplest form, to proofs in the
equational calculus.

This correspondence turned out to be very fruitful for
the study of algebraic specification and formed the basis
of further investigations in the light of the new application
to universal algebra. These investigations also made use
of category-theoretic notions, namely of categories,
functors and transformations,2323 which proved most
appropriate for the study of algebraic implementations
and abstraction techniques in specification languages.

3. HORIZONTAL STRUCTURING
TECHNIQUES
In this section we introduce formal structuring techniques
for algebraic specifications. This allows us to build up
larger specifications from smaller units leading to a
horizontal structuring of system specifications as dis-
cussed in part 1 of our paper.41430 In order to formalise
horizontal structuring concepts we introduce specifi-
cation morphisms between algebraic specifications lead-
ing to the category SPEC of algebraic specifications. The
category SPEC satisfies a number of properties, formu-
lated as main lemmas, leading to several interesting
results concerning horizontal structuring techniques
including extension union, renaming and parameter
passing of parameterised specifications, formulated as
main results of this section. For more details of horizontal
structuring techniques for basic and parameterised
specifications we refer to Ref. 12. Moreover, we would
like to mention the concept of algebraic module
specifications with explicit import and export interfaces
in the sense of modules in software engineering (see Ref.
28), which are studied in detail in Refs 13, 16 and 31.

3.1 Categories of algebraic specifications and SPEC-
algebras
In order to define specification morphisms we first
consider the special case of signature morphisms. Given
two signatures (S\,OP\) and (S2,OP2) in the sense of
2.2 a signature morphism/:(Sl, 0P1)^(S2, OPT) con-
sists of a pai r /= (fs:S\^S2,fOP:OPl->OP2) of com-
patible functions between sort symbols and (constant
and) operation declarations respectively. Compatibility
means that op:si...sn^s in OP\ implies

fopiPP):fs(sl).. .fjsn) in OP2.

A signature morphism/:(Sl, 0/M)->(S2, 0/>2) is called
specification morphism / : SPECl -» SPEC2 with SPECi
= {Si,OPi,Ei) (/=1,2), if the translated equations

f#(E\) of E\ are derivable from £2.
The category SPEC of algebraic specifications consists

of all algebraic specifications SPEC = (S, OP, E) as
objects and all specification morphisms as morphisms,
with componentwise notion of identities and composition
of morphisms. For each specification SPEC there is also
a category Cat(SPEC) of SPEC-algebras and SPEC-
homomorphisms on the semantic level and for each
specification morphism / : SPEC] ->• SPEC2 there is a
forgetful functor ^:Cat(SPEC2)-*Cat(SPECl) which
assigns to each Si>£C2-algebra A2 the SPECI -algebra
A\ obtained by restricting A2 to SPECI according to/ .
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INTRODUCTION TO ALGEBRAIC SPECIFICATION

3.1.1 Main lemma for specifications and algebras

(1) The category SPEC has pushouts, i.e. for each pair
of specification morphisms fl: SPECO -> SPEC\ and fl:
SPECO-* SPEC2 there are a specification SPEC3 and
specification morphisms g\ : SPECl -+SPEC3 and g2:
SPECIE SPEC3 with/I og\ = /2og2, which satisfy the
universal properties of pushouts in a category (see Ref.
12 for more detail).

property in 3.1.2 taking A\ = Vgl(A3), A2 = Vg2(A3) and
F ( l ) K ( 2 )

SPECO •

/2

/ I
— SPECl

(1)

SPEC! • SPEC3

(2) For each pushout (1) in SPEC we have the
following amalgamation properties for algebras. Given
SPisC/'-algebras Ai for / = 0, 1, 2 so that the restriction
of A\ and A2 to SPECO is equal to A0, there is a unique
5P£C3-algebra A3, called amalgamation of A\ and A2
via A0, written

A3 =A\+A0A2,

so that the restriction of A3 to SPECl and SPEC2 is
equal to A\ and A2 respectively. In more detail the
restriction of Al to SPECO, and similar in other cases, is
denned by application of the forgetful functor Vn:
Cat(SPECl) -» Cat(SPECO) so that the amalgamation
property means the following: for all Ai in Cat(SPECi)
for i = 0,1,2 with Vfl(Al) = A0 = Vf2(A2) there is a
unique /13 in Cat(SPEC3) with Vgl(A3) = Vg2(A3).

3.2 Horizontal structuring techniques for basic
specifications

The horizontal structuring techniques introduced in part
1 of this paper for basic specifications can be formalised
using the notions of 3.1 above as follows.

3.2.1 Extension

An extension of a specification SPEC\ is a specification
morphism f. SPECl ^ SPEC2. It is called initial con-
servative, if the restriction of the initial 5/>£C2-algebra
TSPEC2

 t 0 SPEC\ is isomorphic to the initial SPEC\-
algebra TSPEC1, i.e. Vf{TSPEC2) ^ TSPECV The extension/
of SPECl is called loose conservative, if for each SPECl -
algebra A\ there is a S/)£'C2-algebra A2, so that A1 is the
restriction of A2, i.e. V^A2) = Al.

3.2.2 Union

The union of specifications SPECl and SPEC2 with
shared specification SPECO given by specification morph-
isms / I : SPECO -+ SPECl and fl: SPECO -+ SPEC2 is
the pushout specification SPEC3 (see 3.1.1). On the
semantic level each algebra A3 of the union specification
has a unique decomposition into algebras A0, Al, and
A2 of the component specifications, so that A3 is the
amalgamation of Al and A2 via A0:

A3 = Al+AOA2.

This fact is a direct consequence of the amalgamation

J.2.J Renaming
The renaming of specification SPECl is a bijective
specification morphism / : SPECl -> SPEC2, i.e. an iso-
morphism in the category SPEC of algebraic specifi-
cations. This implies that there is also an inverse
morphism f-l:SPEC2^ SPECl and that the corre-
sponding categories of SPECl- and STfO-algebras are
isomorphic, i.e.

Cat(SPECl) s Cat(SPEC2)

so that for each SPECl -algebra Al there is a cor-
responding SP EC2-algebra A2 given by A2 = Vf-i(Al)
with the same structural properties, and vice versa.

3.3 Parameterised specifications
Parameterised specifications in the sense of part 1 of this
paper can be formalised and generalised as follows.

(1) A parameterised specification PSPEC = (PAR,
BOD,s) consists of a formal parameter specification
PAR, a body specification BOD and a specification
morphism

s.PAR^BOD.

(2) The semantics of a parameterised specification
PSPEC is given by a free construction

Fs: Cat(PAR) -> Cat(BOD)

which assigns to each PA /{-algebra P a freely generated
BCD-algebra B = FS(P), which satisfies the universal
properties of free constructions,12 and can be extended
uniquely to a functor between the categories Cat(PAR)
and Cat(BOD) of PAR- and BOD-algebras respectively.

(3) The parameterised specification PSPEC = (PAR,
BOD,s) is called (internal) correct if for each PAR-
algebra P the restriction of the free construction FS(P) to
PAR is isomorphic to P. This means that the free
construction does not change the parameter part.

In more detail, PSPEC is internal correct if the free
construction Fs is strongly persistent or at least persistent,
i.e. Vt o FK is equal or natural isomorphic to the identity on
Cat(PAR).

Finally let us note that our notion of semantics of
PSPEC corresponds to 'initial semantics' of parameter-
ised specifications as discussed in Ref. 12 and there are
also different notions of'loose semantics' of parameter-
ised specifications in the literature. Moreover, in addition
to 'internal correctness' as introduced above, 'model
correctness' of parameterised specifications is discussed
in Ref. 12.

3.4 Horizontal structuring via parameter passing

According to the discussion in part 1 of this paper,
another important structuring technique is given by
parameterised specifications in connection with para-
meter passing, where the result specification can be
considered as a composition of the parameterised
specification and the actual parameter specification. This
kind of compositionality holds not only on the syntactic
level of specifications using pushouts, but also on the
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semantic level using an important extension property for
strongly persistent functors, especially for strongly
persistent free constructions.

3.4.1 Main lemma for parameterised specifications and
functors

(1) For each parameterised specification PSPEC =
(PAR, BOD,s) there is a free construction

Fs: Cat(PAR) -> CAT(BOD)

and hence a semantics of PSPEC uniquely defined up to
isomorphism (see 3.3.2).

(2) For each pushout (1) in SPEC as given in 3.1.1 we
have the following extension property for functors. For
each strongly persistent functor

F: Cat(SPECO) -> Cat(SPECl)

there is a unique strongly persistent functor

F*: Cat(SPEC2) -> Cat(SPEC3),

called extension of F via fl, so that we have

FoV/2=VtloF*,

where F*(A2) is given by the following amalgamation

F*(A2) = F(A0) + AOA2 with AO = Vf2(A2).

Moreover, F* is a free construction, i.e. F* s Fgi, if F is
a free construction, i.e. F ̂  Ffl.

Now we are able to formalise parameter passing of
parameterised specifications and to state the main results
concerning induced correctness and compositionality.
Given parameterised specifications

PSPECi = (PARi, BODi, si)(i = 1 , 2 )

and a parameter passing morphism Ir.PARl -»• BOD2
the result of parameterised parameter passing is the
parameterised specification

PSPEC3 = (PAR2, BOD3, S3),

where B0D3 is defined as pushout in (1) and s3 = si'o
s2 in (2).

PAR]
si

•*BOD\

PAR2-

(1)

s2
-+BOD2-

(2)
s i '

-+BOD3

If PSPECI is non-parameterised, i.e. PAR! = 0, the
result PSPEC3 is also non-parameterised given by B0D3.
This special case is called standard parameterised passing.

3.4.2 Main results for parameter passing

(1) Induced Correctness. Correctness of the given para-
meterised specifications PSPEC\ and PSPEC2 implies
correctness of the result PSPEC3 of parameterised
parameter passing, i.e. Fsl and Fs2 strongly persistent
implies strong persistency of Fs3.

(2) Compositionality. Given correct parameterised
specification PSPECI and PSPEC2 with semantics Fsl

and Fti, the semantics Fe3 of the result PSPEC3 is given
by

Fs3 = Ftl°F.2>

where F* : Cat(BOD2) -> Cat(BOD3) is the extension of
Fsl via h. These main results are essential for stepwise
construction of correct software system specifications.

4. IMPLEMENTATIONS OF
SPECIFICATIONS
In this section we review the main ideas that underlie the
study of the implementation process in the algebraic
specification literature. As discussed in part 1 of this
paper, this process is always seen as stepwise in the sense
that it consists of a sequence of implementation steps:

SPEC0^SPECl SPECn

where each step, SPEC^ SPECt+1, consists in the
refinement of some specification unit of SPECt. Being
more specific, in our framework, we may consider that a
refinement step consists of the implementation of the
data type specified by such a unit. In the rest of the
section, we provide a general notion of implementation,
and then we review the conditions that have to be
fulfilled in order to infer the correctness of the whole
implementation process from the correctness of each
step. A more detailed study of the topics of this section
(including a more comprehensive list of references) can
be found in Ref. 27. For other algebraic techniques of
stepwise refinement via transformations we refer to Refs
8 and 9.

4.1 Implementations

Given specifications SPECl = (SI, OP\, E\) and SPEC!
= (S2, OP2, E2) we may consider that implementing the
data type specified by SPECl by the data type specified
by SPEC2 consists in defining the operations (and the
data sorts) in (51, OPl) in terms of the operations (and
data sorts) from (52, OP2), in such a way that the
enriched 5i)£'C2-algebras 'behave' like the SPECl-
algebras. In this sense, syntactically, an implementation
would be an enrichment together with a mapping
(technically, a signature morphism) relating the sorts and
operations from (51, OPl) with the sorts and operations
from the enriched (52, OPT) signature and, semantically,
it would be a construction (associated with the en-
richment) together with some kind of behavioural
abstraction that relates the SPECl -algebras to the
enriched 5/'£C2-algebras.

4.1.1 Definition (syntax of implementations)

Given two specifications SPECl and SPEC2, the syntax
of an implementation / = ((5, OP, E), h) of SPECl by
SPEC2 consists of (1) an enrichment (S,OP,E) of
SPECl and (2) a signature morphism h: (51, OPl) -> (52,
OP2) + (S, OP). Now in order to define the semantics of
implementations we shall first define the concepts of
constructors and abstractors. Constructors are intended
to give semantics to the enrichment associated with the
implementation while abstractors define which is the
class of algebras that 'simulate' or 'reify' a given
algebra.
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4.1.2 Definition (constructors)

Given two specifications SPEC\ and SPEC2, with
SPEC\ £ SPEC2, a constructor k is a mapping from
SPEC\ -algebras to SPfO-algebras. Usually, given an
enrichment, its associated constructor is considered to be
the free constructor (see Section 3).

4.1.3 Definition (abstractors)

Given a specification SPEC = (5, OP, E), an abstractor
a on (5, OP) is a mapping from SPiTC-algebras to sets of
(5, 0/^-algebras satisfying:

(a) Reflexibility. For every 5P£C-algebra A,Aea(A)
(b) Transitivity. For every (5, OP)-a\gebra A1, and all

SPEC-a\gebras A2, A3 we have:

A\ e<x(A2) and A2ea(A3) implies A\ ea{A3).

Intuitively, given an algebra A, a{A) is the class of all
algebras that may be considered adequate realisations of
A. For instance, according to Hoare,21 A1 may be in a(A)
if there is an abstraction function from A\ to A.
Nevertheless, other kinds of abstractor have been used in
the literature on algebraic specification.27

4.1.4 Definition (semantics and correctness of
implementations)

The semantics of an implementation / = ((5, OP, E), h)
of SPEC] by SPEC2 is a pair (Vnok,,a,), where k, is a
constructor from 5/>£C2-algebras to SPEC2 + (S,OP,
£)-algebras, a., is an abstractor over (51, OP\) and Vh is
the forgetful functor associated with h. The implemen-
tation / is correct iff for every SPECX-algebra AX there
exists a 5/>£C2-algebra A2 such that Vllok,(A2)ea,(AX).

4.1.5 Example (implementation of sets by sequences)

Let SPECX be the following specification of sets of
integers:

SPECX = INTEGER +BOOLEAN+
sorts set
opns e-set: -> set

add: set int-* set
-is-in_: int set -> bool

eqns add(add{s, n), n') = add(add(s,n'), n)
add(add(s, n), n) = add(s, n)
n is-in e-set = false
n is-in add(S,n') = (neqn') or

(n is-in S)

and let SPEC2 be the following specification of sequences
of integers:

SPEC = INTEGER + BOOLEAN +
sorts seq
opns e-seq: -+ seq

app: seq int ->• seq
head: seq -»• int
tail: seq -> seq

eqns tail(app(S, X)) = S
head(app{S, X)) = X
tail(e-seq) = e-seq
head(e-seq) = 0

Then we may define a correct implementation of sets by
sequences by means of the enrichment ( 0 , OP, E) defined
below and the signature morphism h, from (51, OP\) to
(52, OP2 + OP), mapping the sort set into the sort seq
and the operations e-set, add and _w-m_ into e-seq, app
and _«-/«_, respectively.

( 0 , OP, E) = opns _«-/'/?_: int seq
j /

eqns n is-in app(S, n') = {n eq n')
or (n is-in S)

If we consider that k, is the free constructor from
5/"£C2-algebras to 5i>£'C2 + (0,O/),£')-algebras then,
given the algebra A2 of sequences of integers, kt(A2) is
the algebra of sequences of integers including a new
operation that, given a sequence 5 and an integer X, tells
if X is an element of 5. Now, Vh{k,(A2)) is the same
algebra as k,(A2) but not including the operations head
and tail and having renamed the rest of the operations
according to h, i.e. Vh{k,{A2)) is an (51,OPl)-algebra.
Finally, if A\ is the algebra of sets of integers and if we
define a, as in Ref. 21, then Vh{k,{A2) e a,(A 1) considering
the abstraction function / mapping every sequence
<xl,..., x«> into the set {x\,..., xn}.

4.2 Correctness of the implementation process
A key issue in the software development process is that
the correctness of the whole process could be established
from the correctness of all steps. Moreover, global
correctness must be independent of the order in which
some development steps are performed. These questions
were first studied in Ref. 17, where the software
development process was described as a bidimensional
process and two properties were identified as essential.

4.2.1 Vertical composition property

If SPEC is a correct implementation of SPEC and
SPEC is a correct implementation of SPEC", SPEC
must be a correct implementation of SPEC".

4.2.2 Horizontal composition property

If PSPECl =(PAR\,BOD\) and PSPEC2 = (PAR2,
B0D2) are two parameterised specifications such that
PSPEC2 is a correct implementation of PSPECl and if
SPEC\ and SPEC! are two specifications such that
SPEC2 is a correct implementation of SPEC\ and
SPECX is an actual parameter for PSPECl, SPEC2
must be an actual parameter for PSPEC2 and, ad-
ditionally, PSPEC2(SPEC2) must be a correct im-
plementation of PSPECl(SPEC\). These properties have
been studied for different kinds of implementation
concepts in the literature and summarised in Refs 27 and
29. Recently it has been shown that the fact that these
properties are satisfied depends mainly on the choice of
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the implementation (i.e. programming) language chosen
rather than on the specification formalism used (e.g. see
Ref. 27).

5. TOWARDS FOUNDATIONS OF SYSTEM
SPECIFICATIONS

In this section we discuss aspects and directions of
research for the foundations of system specification in
general. Such foundations are meant to provide math-
ematical techniques for formal specification and reason-
ing and a mathematical framework for their development
and study.

5.1 General needs for the formal specifications of
systems

Requirements for software and the main conceptual
stages and steps in the software development process, as
discussed in part one of this introduction, show the
general needs for the formal specification of systems:

• adequate specification formalisms for the various
levels of concreteness and for the different kinds of
components and aspects found in the system to be
specified;

• techniques for the modelling of requirements, design
and implementation with formal specifications;

• techniques for integration and coordination of specifi-
cations written in different formalisms;

• tools for creation, handling, transformation and
prototypical execution of formal specifications;

• techniques for reasoning about specifications and for
verification of design and implementation.

Future research on the foundations of system specifi-
cation has to focus on all these aspects. The theory of
specification of abstract data types has laid the ground
for this research and has led to guidelines and concepts
that are still relevant. Although the understanding of
data types about twenty years ago had a rather narrow
basis, its general concepts have proved suitable even in a
world of systems with heterogeneous and distributed
components, with reliance on knowledge and com-
munication and with the need to tackle with openness,
multimediality and uncertainty. It is clear, however, that
much is left to be done for a theory that provides
foundations for system specification. The research for
adequate specification formalisms and the development
of techniques for integration and coordination of
specifications written in different formalisms will here
play a major role. This was early observed, and there are
already various concepts and results that belong to these
topics.

5.2 Increasing expressiveness of specifications

Equational specifications in their purest form soon show
limitations in both expressive power and expressiveness.
Therefore extensions have been studied that fall into one
or more of the following categories.

More general axioms. Axioms including predicates,
negation or disjunction as well as universal and existential
quantification have been proposed to enhance the
expressive power of specifications. But it was shown in
Ref. 25 that universal Horn-formulas form, in a certain

sense, the most general type of axiom which admits
initial semantics. This result as well as the paradigm of
logic programming, which is traditionally based on
definite Horn-clauses, however, has more or less ended
this discussion.

Semantic variants. What is intuitively seen as a data
type may not necessarily be modelled by a simple algebra
in an adequate way. In order to find an elegant way for
error handling, non-termination, recursiveness and pro-
gramming with functionals, various semantic con-
structions have been proposed, usually combined with
enriched forms of specification, which are appropriate to
handle these phenomena. Among those are partial
algebras, order-sorted algebras, continuous algebras,
higher-order algebras and others. No unified semantic,
however, has been worked out, which could cope with
the many different cases and choices and avoid or at least
control the semantic anomalies which have appeared in
several of these concepts.

More elaborate specifications. Signatures and axioms
alone cannot well enough specify abstract data types
where abstraction is more sophisticated than in the cases
of initial and loose semantics. For the specification of
abstract data types that are restricted, that express
behaviours, or that have components with fixed or initial
interpretation and other components that are loose, for
example, appropriate additional information is being
added to specifications, which controls the semantic
construction in the intended way.

More general sorting. Sorting in algebraic specifications
has the simplest form possible. More adequate descrip-
tions, support in the process of modelling, better help for
avoiding redundancy, and increased expressiveness can
be obtained by more general and more powerful forms of
sorting. This observation has led to the inclusion of
concepts like subsorting, dependent types, higher-order
types or polymorphic types into the specification for-
malism. But, similar to the semantic variants, no uniform
approach has been worked out which is fully integrated
with the rest of the theory of specifications of abstract
data types.

Research and experience from case studies and
applications hinted early on at the need for more abstract
concepts. With the development of a framework for
'logic independent' formulation of specification con-
structs and specification languages an important step
towards integration and coordination of specifications
written in different formalisms has been made.

5.3 Abstraction using specification logics

Higher-level specification constructs can be expressed
and semantically founded independent of the basic
formalism used for specifications and semantic con-
structs. In the early 1980s, motivated from the semantics
of the specification language CLEAR, the concept of
'institution' was developed.18 It provides a categorical
framework for the relation between signatures, axioms
and structures (e.g. algebras). Independently, similar
abstraction, however in model-theoretic terms, was used
to characterise specification logics allowing for initial
semantics.24 The results in this framework were later
reformulated and generalised in the categorical frame-
work of institutions. Recent work on specification
techniques,1115 is based on the notion of 'specification

474 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/468/402374 by guest on 11 April 2024



INTRODUCTION TO ALGEBRAIC SPECIFICATION

logic', which is equivalent to indexed and to fibred
categories. Here a specification logic is a category of
abstract specifications ASPEC together with a functor
Cat into the quasi-category CATCAT of all categories,
which is contravariant in ASPEC

Cat: ASPECop -> CATCAT.

It maps every specification SPEC to a category of models
Cat(SPEC) and every specification morphism / : SPECX
-> SPEC! to the forgetful functor Cat(J): Cat(SPEC2) -+
Cat(SPECl). If Cat(f) has a left adjoint, free con-
struction is possible (of which initial semantics is a
special case). The work in Ref. 11 shows that all of the
structural theory of algebraic specifications can be
expressed within this framework of specification logic,
where the main lemmas for specifications and algebras in
3.1 and for parameterised specifications and functors in
3.4 are taken as axioms in a specification logic. A
framework that builds on institutions but also captures
the more logical aspects of deduction is given in Ref. 22
and is called 'general logics'.

Abstraction in these frameworks takes place in two
respects. First, they treat the notions of signature, axiom,
specification, satisfaction, entailment, structure and
others as abstract notions. Second, they define these
abstract notions in terms of category theory. Category
theory provides a 'functional' approach based on an
axiomatic foundation of the notion of function, in
categorical terms called 'morphism', with axioms just
expressing the monoid structure of function composition
(associativity and identity). The variety of formalisms to
be captured by these frameworks is therefore very large.
Specification constructs and specification languages
based on one of these frameworks thus have a universal
nature and wide range of applicability. Integration and
coordination of specifications, written in different for-
malisms, can be supported by specification constructs
and languages which are formalism-independent.

Another way to provide support is to reflect the
different formalisms in a uniform calculus of declarations
and a uniform notion of structure, powerful enough to
capture the many different features. Such an approach is
presently under development (see Ref. 26). It combines
the techniques underlying type-theoretic calculi with the
notions underlying models of set theories. As a result, all
the known type and specification disciplines can be
'rewritten' in a uniform way, and new disciplines can be
designed which allow even for self-application and self-
reference.

5.4 Specifications and semantic constructions in a
uniform framework

An equational specification, for example, contains
various kinds of information. Among those are

sort s,...
op:s\ ->s
t\ =ll

All this information may be seen as a type proposition of
the form e: E for expressions e and E. We thus obtain in
rewritten form

.y: sort
op:s\ ->s
(/I = t2):true

An interpretation will have to associate with sort an
object that is a set that contains the object associated
with 5 as an element. It will interpret si -*-s as an object
that is a function space that contains the object associated
with op, which is a function, as an element. It will
associate with true an object that is a singleton set with
element Tand with (M = ?2) the object T(for 'true'). A
model is therefore an e-structure (M, e) in which M is a
set of objects and £ is a binary relation such that all the
denotational constraints - 'the object associated with s\
->• s is a function space of the form' and the like — are
true. These denotational constraints can be expressed in
6-logic which is first-order logic with a single binary
predicate symbol (just like the logic used for axiomatic
set theory).

The revision that is done here has two aspects: it reads
all information given in a specification as a type
proposition with the colon':' to be interpreted as
membership; and it views sets, pairs, functions, etc. as
objects that are not, but that have an extension which
makes them a set, a pair or a function in the same way
as these notions have a set-theoretic foundation (for
example, a function is a set of pairs and a pair is a set of
the form {{a}, {a, b}}).

Based on the notion of e-structure, a new set theory
can be established that is a refined form of P. Aczel's
theory of non-well-founded sets.1 It allows us to model
self-application and gives new models for the A-calculus,
and to model semantic paradoxes, and therefore provides
an appropriate basis for truth theories and the study of
modalities. For foundations of system specification-type
propositions and e-structures as their models provide a
most interesting basis for integration and coordination
by uniformity and expressive power. In a uniform
manner, [declaration] or [type] disciplines can be defined:

A discipline D = (Expr, C,DCL) consists of

• Expr, a set of entities, called expressions;

• C:Expr^€-Forms(Expr), a mapping from Expr to
the set of e-formulas over the set Expr, called
denotational constraints;

• DCL, a class of sets of type propositions e:E with
expressions e and E, called the class of admissible
declarations.

Semantics to disciplines is given by interpretation of
declarations in e-structures as follows.

For an admissible declaration let d in DCL Expr(d)
denote the expressions occurring in d, and (M, e) be an e-
structure, then a function [ ]: Expr(d) -»• M with

• ((M,e),O)t=C(e) for all eeExpr(d)

• [[ejepri fore: Em d defines an interpretation and
(M, e) a model for d with object interpretation [J.

A revision, as discussed in the example above, now
allows us to read traditional declarations in their type-
propositional form and thereby to view a particular
specification technique as a discipline in the sense defined.
In this way some of the limitations and deficiencies of
classical specifications are avoided which concern ex-
pressive power and formal complexity of both syntax
and semantics.
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6. CONCLUSION
In this part 2 of an introduction to algebraic specification
we have presented some basic elements of the theory of
algebraic specifications corresponding to the formal
methods for software specification and development as
introduced in part 1 of this paper on an informal level.14

We have started with the classical view of algebraic
specifications in the sense of equational specifications
defining classes of algebras which are well known in the
mathematical field of universal algebra. Of special
importance for the specification of abstract data types is
the notion of initial algebras, defining the initial semantics
of algebraic specifications. Initiality is one important
concept from category theory which plays a fundamental
role in the theory of algebraic specifications. Other
examples of essential categorical concepts are pushouts
and free constructions, which are used in Section 3 for
horizontal structuring of algebraic specifications, and
categories and functors in general, which are used in
Section 5 to define institutions, specification logics and
general logics. These notions have been shown to be
suitable to generalise and extend algebraic specifications
in the classical sense towards a much more general
theory suitable for a wide range of practical applications.

In fact, there is now a solid theoretical basis for
algebraic specifications and also some very interesting
and efficient software support for writing and evaluing

formal specifications (see Section 5 in part I).14 But we
are aware that this is only a first step towards industrial
software development using algebraic specification tech-
niques. This task needs further cooperation between
academics and industry, as has started already in several
ESPRIT projects.

On the other hand, algebraic specifications have
provided a significant contribution to the much broader
area of foundations of system specifications already. In
the last section we have discussed further research topics
for this most promising field within computer science.
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Journal Review

Informatization in the Public Sector,
Quarterly, Elsevier, ISSN 0925-5052

The editors, Ignace Snellen from Erasmus
University, Rotterdam, and John L. King
from the University of California, offer this
new journal, whose first issue appeared in
1991, as a forum to focus attention on the
effects of adopting Information Technology in
the public sector. They describe the long
history of the use of automation in all
functions of public administration as being
unknown and unacknowledged. The particu-
lar effect on which they wish to concentrate is
inevitably that of organisational change; not
only on the change that has happened but on
the change, even revolution, which they say is
looming even larger in the future. Their use of
the term ' Informatization' covers not only the
technology but also the opinions held by
students of information technology.

The central field on which they intend to
focus involves the possible structures of public
administration and the roles of citizens as
individuals and customers of services. They
offer a very wide range of issues for debate,
ranging from applications of emerging tech-
nologies to changing power relations between
as well as inside the public and private sectors,
including themes concerning experiences in
developing information systems. The latter
are well covered in existing international
journals, some of which are well established.

The editors come from the Netherlands and
the USA; their Editorial Board covers Europe,
North America and Japan. Academic fields

range from politics and public sector studies
to information technology. There appear to be
few if any representatives from the practitioner
sector.

The section ' Information for authors' states
that the journal's intention is to publish 'work
of high quality of practical and strategic
relevance to practitioners' (page 87). There is
detailed advice on what and how to contribute
and on the refereeing process (the conven-
tional, long-established one). It is not cleai
whether the authors are seeking for contri-
butions in the form of papers from prac-
titioners.

It should be observed that every contri-
bution to this issue comes from an academic.
If the authors wish for a high level of interest
from practitioners they must seriously ask
themselves how practitioners can participate
in making the journal a success. Is it to be only
by reading it and applying the lessons from
the research? or by sponsoring or supporting
research? or could it be by making contri-
butions themselves? The long-drawn-out pro-
cess of refereeing and waiting, sometimes
years, for publication is a feature of research
publishing which, while intended to ensure a
high quality of paper, militates against contri-
butions from practitioners. With modern
methods of electronic information processing,
in whose effects in the public sector the editors
are interested, it is to be hoped that new ways
of communicating more rapidly between aca-
demic researchers and practitioners could be
found. It is not only the journal publishers
who are dragging their feet here, but the whole

academic community, which has not yet come
up with new methods of obtaining a sufficient
number of contributions of relevant quality
from practitioners, especially in journals con-
cerned with innovation and with new tech-
nologies which develop very quickly.

Papers in the first issue address themes of
information technology in the areas of social
security in Sweden, experiences in US mu-
nicipal information systems, social admini-
stration in Europe and a revisit to Nolan's
stages theory. There is a review of the use of
expert systems in social administration and
some items of news, entirely concerned with
new university programmes in this field.

A review of a new journal can hope to do
little more than briefly describe the editors'
intentions and evaluate the issue in the context
of the field it is entering. This offering will
overlap the fields of existing journals. How-
ever, the editors are bringing together some
well-defined fields to create a new if immense
area. Their readership is likely to be in-
ternational, so they may well find enough
readers to stay alive even in the current
economic climate. A possible subject for
debate might be whether their offering would
be ecologically respectable if it had been
presented electronically. This new journal,
concentrating on the effect of information
technology on informing the public sector,
should be warmly welcomed.
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CIKM-92, First International Conference on
Information and Knowledge Management,
Radisson Hotel, Baltimore, Maryland, USA
Sponsored by ISMM in cooperation with
AAAI, SIGART, SIGIR, IEEE

The conference provides an international
forum for presentation and discussion of
research on information and knowledge man-
agement, as well as recent advances on data
and knowledge bases.

The focus of the conference includes the
following: application of knowledge represen-
tation techniques to semantic data modelling;
development and management of hetero-
geneous knowledge bases; automatic acqui-
sition of data and knowledge bases especially
from raw text; object-oriented DBMS; opti-
misation techniques; transaction manage-
ment; high-performance OLTP systems; se-
curity techniques; performance evaluation;
hypermedia; unconventional applications;
parallel database systems; physical and logical
database design; data and knowledge sharing;

interchange and inter-operability; cooperation
in heterogeneous systems; domain modelling
and ontology-building; knowledge discovery
in databases; information storage and retrieval
and interface technology.

For further information contact:
Dr Yelena Yesha, Computer Science De-
partment, University of Maryland Baltimore
County, 5401 Wilkens Avenue, Baltimore,
Maryland 21228-5398. Tel: +1 410-455-3000.
Fax: +1410 455-3969. Email: cikm(o,cs.
umbc.edu.
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