
Integration of Information Systems Using an Object-Oriented
Approach

B. CZEJDO1 AND M. C. TAYLOR2

With ever-increasing amounts of information being stored on computers, there is a growing demand for systems that
will support convenient access to information that is distributed over multiple information systems. In this paper we
describe a system called KOPERNIK*, which uses an object-oriented approach to define partly integrated views of a
collection of autonomous information bases. These views, as well as multi-information-base queries, are described using
a language-independent meta-model. We provide a classification of incompatibilities between autonomous information
systems, in order to define multi-information-base classes and messages and the subclass I superclass hierarchy.
KOPERNIK* uses the meta-model to simplify the decomposition of queries into subqueries for individual information
systems. We illustrate the processing of subqueries by relational systems and by information retrieval systems.

Received November 1990, revised July 1991

1. INTRODUCTION

The integration of heterogeneous information systems is
necessary to provide convenient access to data that are
distributed across multiple pre-existing systems. The
importance of this integration is widely recognised, since
many organisations possess multiple information bases
which have been designed independently, yet which
contain related data.11 To perform this integration, it is
necessary to overcome many obstacles, arising in
particular through the use of different data models for
each of the information systems; different design
decisions being made for each information system; and
the possibility of conflicting values for related data in
different information bases.

To alleviate the problems of heterogeneity, each node
is generally required to support an export schema in
some common data model. One approach is then to
define a global schema, essentially as a union of all the
export schemas. Users are then provided with an
integrated, location-transparent view of the combined
information bases.36'7 Some other researchers, however,
have taken the view that the provision of a global schema
is not feasible in general, particularly when there are
many information bases being added or removed from
the combined system,15 or when there are wide differences
in the kind of information stored at different nodes.11 An
alternative approach is to provide only partial inte-
gration, so that the global users do not have a fully
location-transparent view.9

Most of the previous work in this area has been to
integrate pre-existing databases into what is called a
multi-database system. Many of these systems have used
the relational model as the common model for denning
export schemas.3-71518-20 The relational model has been
advocated for distributed systems because of the ease of
decomposing and recomposing relations, and because of
the existence of high-level set-oriented operations which
avoid the need for navigation via inter-nodal pointers.4

Another advantage of using the relational model for a
multi-database system lies in the fact that the mappings

1 Department of Mathematical Sciences, Loyola University, New
Orleans, LA 70118.

2 Independent Consultant, 9449 Briar Forest Drive, Houston, TX
77063 (Previously at University of Houston, Houston, TX).

for defining the integration can be expressed in the query
language, thereby rendering query decomposition quite
straightforward.818 On the other hand, the relational
model does not possess the necessary semantics for
defining all the integration mappings that might be
desired for integrating information bases such as data-
bases, information retrieval and file systems. Therefore
research in using semantic data models such as the
functional model,614 E-R model17 or object-oriented
models1'211 is much more applicable for integration of
information systems.

The notion of' object' is much more flexible than that
of 'record' or 'tuple', allowing a one-to-one corre-
spondence between real world objects and database
objects. Therefore, by using an object-oriented model for
defining the integration, we can look beyond the
conventional approach of integrating relational, hier-
archical and network databases, and consider the
integration of all kinds of information bases.1-211

Further, by directly supporting the data abstractions
such as generalisation and aggregation, the need for null
values can be avoided.

' One of the strengths of the relational model, however,
is the support for high-level, set-oriented languages for
data manipulation. For object-oriented languages to
offer advances over the relational model, it is important
that this idea of set-oriented querying be incorporated
into object-oriented models also. To this end, we use an
approach that is somewhat different from previous
proposals for object-oriented data models, in the sense
that the instances of our classes are sets of objects rather
than single objects. This means that operations can be
applied to sets of objects at once (thus avoiding the need
to sequentialise the processing through explicit loops)
and the result of an operation can also be a set of objects.
A further advantage of our approach is that it allows
very straightforward development of interfaces to nodes
which are relational database systems. The translation
between our model and the relational model is described
in detail in Ref. 5.

In object-oriented databases, each object is identified
by a unique and permanent object identity. This allows
the state of an object to include references to other
objects through their object identities. In this way, the
problem of maintaining referential integrity is alleviated.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 501

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

Support for object identity in a distributed environment
can be achieved by appending a node identifier to the
local object identity, as is done in ORION2.12 But in a
heterogeneous environment the local object identity itself
does not generally exist. Our approach therefore is to use
operational identifiers: the global identifier is then
composed of site, class and operational identifier.

Our model is suitable for integrating all kinds of
information bases11 into what we shall call a multi-
infobase. In our approach, integration mappings and
multi-infobase application programs are expressed in a
uniform language (in contrast to the relational model,
for example, where application programs are typically
composed of s^t-oriented DML commands embedded in
a record-oriented host language). The semantics of the
model is described in a language-independent meta-
model. Varying degrees of integration can be supported,
ranging from a completely integrated global schema to a
completely non-integrated view in which users access
each export schema explicitly. The model also supports
the concept of 'virtual objects', for which no physical
mapping to the underlying database is required.

The structure of the paper is as follows. Section 2
introduces the architecture of the KOPERNIK* system,
that integrates heterogeneous information systems. In
Section 3 we describe the object-oriented model. The
next two sections discuss integration by means of multi-
infobase messages (in Section 4) and multi-infobase
classes (in Section 5). Section 6 outlines the decompo-
sition and translation of multi-infobase queries. The
translation is illustrated for SQL relational systems and
DIALOG information retrieval systems. Some con-
cluding remarks are given in Section 7.

2. SYSTEMS ARCHITECTURE

The KOPERNIK* system presented in this paper allows
the integration of existing information systems which
may be heterogeneous. This is achieved by using an
object-oriented paradigm for defining integration and as
a multi-infobase programming language. The multi-
infobase operations can be represented by messages and
incorporated into an object-oriented system, preserving
its syntactic and semantic uniformity. The architecture of
the KOPERNIK* system is shown in Fig. 1. The user
interface allows the user to specify multi-infobase queries,
and to construct application programs. The user views
the multi-infobase as a collection of objects, and does not
need to be aware of the internal differences between the
various information bases. These differences are handled
within the integration module, which decomposes each
multi-infobase application program into subqueries for
individual information bases. Each node must be capable
of translating its subqueries from the object-oriented
language into a language that can be executed by its local
system. However, to allow for the possibility that not all
parts of a query are translatable, our architecture also
includes an object-oriented programming system (OOPS)
that can also participate in the processing of queries. The
integration module identifies those parts of a query that
need to be directed to the OOPS. In order to perform the
decomposition, it accesses the object-oriented schemas
for each member system, and the Global Object-Oriented
Schema, which contain information about all messages
and classes. The integration module coordinates the

User

(Global
object-oriented

schema
\ J

M

mo

IB
ration
dule

Infosystem 1

Infosystem 2

Infosystem n

Auxiliary
DBMS

OOPS

Figure 1. The architecture of the Kopernik* system.

execution of each application program, by passing
intermediate results from the local information systems
to the OOPS and vice versa. There is also an auxiliary
database, under the control of the multi-infobase system,
which is present at some sites. The auxiliary database is
similar to that used in MULTIBASE,14 and to the
subsidiary database of PRECI*,8 and in our case is used
for storing information on multi-infobase classes and
multi-infobase messages (see later).

3. MODEL DESCRIPTION

The basic concepts of our data model are generally
similar to those of other object-oriented information
systems,13 but significantly different in the sense that
messages are usually sent to instances of classes that are
sets of objects. These concepts are shortly described as
follows:
• objects, which are the most elementary components of

the conceptual view of the modelled world;
• object type, which in the usual way allows objects to

be classified;
• object sets, which contain objects of the same type;
• class, which contains sets of objects of some type:
• class instance, any set of objects of a given type;
• messages, that are sent to a class instance to perform

some action that usually results in an instance of
another class;

• receiver, for a given message, which is the class
instance to which the message is sent.

Our object-oriented model consists of classes with
associated messages. Messages are usually sent to a set of
objects constituting an instance of a class (which can be
sometimes a one-element set or the empty set). One class
may be a subclass of another, in which case it inherits all
the messages associated with the super-class.

Among the messages defined for our model there are
special ones which we call infobase messages. These are
defined on the underlying information base, and cannot
be modified by users. Our approach allows for
representing all types of relationship by messages. These
are usually sent to a single object, though there are also

502 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

binary messages that allow operations on more than one
class, e.g. union and intersection. Additionally, it is
possible to send aggregate messages (COUNT, SUM,
AVERAGE, etc.) to certain classes. We allow messages
with arguments, for example for simple selections. Users
may also define their own messages for a given class.

In this section we shall first present the schema
definition and query specification techniques for local
information bases. A Smalltalk implementation of these
aspects of the model is described in Ref. 5. The main
contributions of this paper are the extensions to the
language, which allow us to define new messages and
classes at the multi-info base level. These extensions will
be described in detail in Sections 4 and 5.

3.1 Schema definition

As an example, we shall consider a multi-infobase system
for a university, involving two nodes. One node contains
the information system for the central administration,
and the other node holds the information system for the
Computer Science department. As a first step towards
integration, each node provides an object-oriented
schema as shown in Figs 2 and 3. In the schemas, and
throughout this paper, class names are shown all in
upper-case and message names are all in lower-case.

The ADM node is designed for the use of the University
administration, and it holds information of a general

nature regarding the university as a whole. The other
node, CS, is designed specifically for the use of the
Computer Science department, and it holds information
relevant to that department.

The schemas shown in Figs 2 and 3 can be specified by
a meta-schema. The meta-schema contains meta-objects
such as information classes, information class names,
information messages and information message names.
It also contains meta-messages such as has_name,
is_name_of, has_receiver, and is_receiver_of. The meta-
model is shown in Fig. 4. For example, the class
PERSON in Fig. 2, corresponds to an object with
identifier Cl in the meta-class INFO-CLASS, to an
object 'PERSON' of the meta-class CLASS-NAME,
and to an object 'ADM' in the meta-class SITE.

The meta-class MULTI-INFOBASE (not shown in
Fig. 4) is an aggregation of all meta-classes and therefore
contains all information about the multi-infobase
schema. This meta-class has only one instance.

In the meta-model, some messages belong to the
subclass SUBCLASS/SUPERCLASS-MESSAGE.
They determine the subclass/superclass hierarchy for
their receiver and result classes. A subclass automatically
inherits the messages of its superclass, in the usual way
for object-oriented systems. For example, in the ADM
schema, the class EMPLOYEE inherits the messages of
the class PERSON, and FACULTY inherits the messages
of EMPLOYEE (and therefore of PERSON also).

Employee) employs (Depart-
* * mental

is_rank_of

Figure 2. Object-oriented schema for ADM infobase.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 503

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

Figure 3. Object-oriented schema for CS infobase.

Class_

has_name
i, is_name_of

is_name_of has_name

has_receiver

is_result_of
results_in

is_receiver_of

fSubclass/>
superclass
message

Figure 4. Basic meta-schema.

Inheritance of the message ' has_name' by EMPLOYEE,
for example, provides a direct link between the NAME
and EMPLOYEE classes, thereby simplifying query
formulation.

For each database message having receiver class A and
result class B, there is an inverse message with receiver
class B and result class A. This redundancy is only
necessary at the view level, however, and the two
messages can be easily defined from the same underlying
stored data. Hence the system maintains consistency of
inverse messages automatically.5

3.2 Query language

The user interface module of the multi-infobase system
accepts expressions in an object-oriented query language.
Queries can be defined as meta-objects in the extended

meta-schema, as shown in Fig. 5. Each query has an
initial receiver, optionally followed by a sequence of
messages. The sequence can consist of one or more
information messages. This is represented recursively by
a meta-message 'has_tail'.

The most elementary query would consist of a class
name, denoting the extension of that class. A typical
query consists of a class, followed by a sequence of
messages. Some of these messages may be defined in the
underlying information base. For example,

Query 1, 'Give the names of all instructors' can be
represented by the following meta-data:

Ql, meta-object corresponding to the query 1.
INSTRUCTOR, a meta-object in the meta-class INFO-
CLASS-NAME.
SI, a meta-object in the meta-class SEQUENCE.
Ml, a meta-object in the meta-class MESSAGE-SENT
has_name. a meta-object in the meta-class MESSAGE-
NAME
C2, a meta-object in the meta-class INFO-CLASS
Dl, a meta-object in the meta-class INFO-MESSAGE
{Ql} has_receiver {C2}
{Ql} has_sequence {SI}
{C2} has_name {'INSTRUCTOR'}
{SI} has_first_message {Ml}
{Ml} invokes {Dl}
{Dl} has_name {'has_name'}

The above meta-data can be translated into a symbolic
form similar to Smalltalk. For example, INSTRUCTOR
has_name.

In addition to simple info-messages, we can have
messages with arguments such as selection messages,
binary messages and simple derived messages (Fig. 6). A
simple selection message has a name (EQ, LT, GT, NE,
etc.) and it requires an argument that is a constant set.
GT and LT require one-element sets as the argument,

504 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

Figure 5. Extended meta-schema for simple queries.

has_receiver

Figure 6. Extended meta-schema for queries.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 505

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

and EQ and NE can accept any set as argument. An
example of a valid query containing a simple selection
message is

Query 2, 'Give the rank of the instructor named
"Bloggs"'.
The meta-data for query 2 can be described similarly to
query 1. The first message, EQ, is sent to the class
NAME. This message requires an argument which in this
case is a one-element set containing 'Bloggs'. The result
of this operation is an instance of the class NAME that
is receiver of the next message 'is_name_of. The last
message in the above query is 'has_rank', which is sent
to the result of the message' is_name_of'. The application
of the message ' has_rank' produces the requested set of
ranks for the instructors named ' Bloggs'. Query 2 can be
represented symbolically as (Name EQ: #(Bloggs))
is_name_of has rank.

We allow the usual set operations, i.e. UNION,
INTERSECT and DIFFERENCE. In the meta-model
they are included in the meta-class BINARY-MESS-
AGE. Each object in the meta-class BINARY-MESS-
AGE has a query as an additional argument.

For example, a valid query with a binary message is
Query 3, 'Give the instructors who are full professors
and who teach CS1410'.
The meta-data for query 3 can also be described similarly
to query 1. Query 3 can be represented symbolically as
((Course_no EQ: #(CS1410)) is_id_of is_taught_by)
INTERSECT ((Rank EQ: #(Full_Professor)) is_rank_of).

The result of any query is a set of objects. A query can
thus be viewed as a compound message to compute such
objects. To facilitate the expression of subsequent
queries , it is often convenient to create a new message
corresponding to the query. Such a message is called a
simple derived message and is a meta-object in the meta-
class SIMPLE-DERIVED-MESSAGE. According to
the above, each object in the meta-class SIMPLE-
DERIVED-MESSAGE has a corresponding query
which is reflected in the meta-message 'has_query'.

The task of creating a new message corresponding to
the query is performed by the message ' simple_defini-
tion_message', which is sent to the instance of class
MULTI-INFOBASE that contains information about
classes and messages. When the operator
simple_definition_message is invoked, an insertion is
performed for the meta-class SIMPLE-DERIVED-
MESSAGE. This insertion requires propagation to the
meta-class INFO-MESSAGE, and then to the meta-
class MESSAGE-NAME. There should also be propa-
gation to the meta-class QUERY. Propagation to the
meta-class SEQUENCE is optional. Propagation
through the message is_a is automatic, but others require
providing appropriate values for meta-classes such as
MESSAGE-NAME, corresponding to arguments in the
symbolic representation.

4. MULTI-INFOBASE MESSAGE FOR
DEFINING INTEGRATION

In order to define queries which involve data from more
than one information base, we need to specify some
logical links between the different information bases.
One way of doing this is by defining messages whose
receiver class and result class belong to different
information bases. Such messages are called multi-

infobase messages. These multi-infobase messages are
given in Fig. 7 and will be described in this section.

Multi-infobase messages are defined in the Global
Object-Oriented Schema. The methods which implement
them can be represented either by methods under the
control of the OOPS, or by auxiliary data under the
control of the auxiliary database. Users may include
multi-infobase messages in queries, just like any other
messages. The integration module, by accessing the
Global Object-Oriented Schema, is able to identify the
multi-infobase messages in a query and thus to direct
them to the OOPS or the auxiliary DBMS as appropriate.

There are several kinds of situation that can arise when
we attempt to link classes from different databases.
These are: (i) classes are of compatible format; (ii)
classes are of incompatible format, but there exists an
isomorphism between them; (iii) classes are of incom-
patible format, they are not isomorphic, but there exists
a bijection between them; (iv) classes are of incompatible
format, and there is no bijection between them.

4.1 Linking classes of compatible format

In the first situation, we define a message that would
allow us to identify the correspondence between objects
of compatible format. Such a message would typically
have a name 'corresponds_to', and belongs to the
meta-class CORRESPONDENCE-MESSAGE. To
define it, we use the definition message
' define_correspondence_message' which belongs to a
meta-class CORRESPONDENCE-DEFINITION-
MESSAGE. When the operator ' define_correspon-
dence_message' is invoked, an insertion is performed for
the meta-class CORRESPONDENCE-MESSAGE. The
insertion requires propagation to the meta-class INFO-
MESSAGE and then to the meta-class MESSAGE-
NAME. The meta-messages ' has-receiver' and 'has-
result' are also updated. For example, let us consider the
classes OFFICE* in ADM and CS information bases
that are of compatible format. The message linking these
classes causes insertion into the meta-class
CORRESPONDENCE-MESSAGE, which requires
values to be inserted into several meta-classes. We
provide the message name and the result and receiver
INFO-CLASSes which are CS. OFFICE* and
ADM. OFFICE*.

4.2 Linking isomorphic classes
Let us next consider the situation where the two classes
have incompatible formats, but they are isomorphic. This
isomorphism can be defined either procedurally or
through an auxiliary relation. First we consider pro-
cedural definitions that would allow integration of
infobase classes using methods in OOPS. For example,
let us consider the classes SSN in the ADM and CS
information bases. Let us assume that social security
numbers in ADM. SSN are represented as strings of
digits with two hyphens, and those in CS.SSN are
represented as strings of digits only. There is an obvious
isomorphism between these classes, which can be
represented by a method which removes or inserts
hyphens.

The classes supported in OOPS constitute superclasses
for corresponding infobase classes. For example, the

506 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

has_receiver

Simple
has_first_message [derived CorresporA / Subclass/

dence 1 I superclass

has_query 2

Figure 7. Extended meta-schema for integration messages.

Figure 8. Subclass/superclass hierarchy for MIB classes.

class OOPS.ADM_SSN in OOPS is a superclass of the
class ADM. SSN, because instances of class
OOPS.ADM_SSN in OOPS are sets of strings from the
domain of social security numbers. By the same token,
the class OOPS.CS_SSN in OOPS is a superclass of
CS. SSN (Fig. 8). Once these superclasses are created, it
is necessary to specify the subclass messages.

The inverse message ' adm. ssn_spec' is automatically
defined for the superclass. Similarly, the

subclass/superclass hierarchy for CS.SSN and
OOPS.CS.SSN can be denned together with the cor-
responding messages as shown in Fig. 8.

The OOPS allows us to convert instances of one
superclass into another. Fig. 8 shows the messages
converts_to_cs and converts_to_adm that are defined in
OOPS and allow us to convert one format of social
security numbers into another.

Based on the messages defined above, we can specify

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 507

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

messages showing the correspondence between classes of
different information bases. These messages are instances
of the meta-class CORRESPONDENCE-MESSAGE
(Fig. 7). As an example, the correspondence between
ADM. SSN and CS. SSN can be given by the messages
corresponds_to_cs and corresponds_to_adm. Each can
be defined as the composition of three existing messages,
e.g., corresponds_to_cs is the composition of is_a,
converts_to_cs and ssn_spec.

It is important to notice that the messages such as
corresponds_to_cs are performing not only conversion
but also selection. This happens because the message
cs.ssn_spec is used to restrict the resulting set to social
security numbers existing in CS. SSN.

The process of defining messages such as
corresponds_to_cs should preferably be performed by
the system administrator during the pre-integration
phase. Once these messages are available, a casual user
can easily pose some multi-infobase queries. However, as
shown above, the uniform approach to integration and
query specification allows the user to participate actively
in the integration of information bases.

Sometimes it is not possible to define the isomorphism
procedurally: in that case it is necessary to use an
auxiliary relation to represent this isomorphism.

If we know that one class is a subclass of the other, we
should like to capture this information by creating an
explicit subclass/superclass hierarchy. To do this, we
use another meta-message, define_corresponding_
subclass_message, which is an instance of the
meta-class CORRESPONDENCE-SUPERCLASS-
MESSAGE (Fig. 7). A query is provided to define the
correspondence.

4.3 Linking classes in one-to-one correspondence

In the third situation, when classes of different in-
formation bases have incompatible format but there
exists a bijection between them, we can define the
integration in a similar way to the second situation. The
difference between these situations occurs during query
optimisation, when the known isomorphism can be used
to generate more efficient execution strategies, for
example by moving selection messages in query
expressions.

The classes ADM. RANK and CS. RANK provide a
good example of this situation. Ranks in ADM. RANK
are given in numeric form, whereas ranks in CS. RANK
are strings. There is no isomorphism, but there is a strict
one-to-one correspondence between these classes (e.g. 1
corresponds to 'Full Professor'). The link between these
two classes can be established by defining a message
'corresponds_to_cs', possibly in the auxiliary database.
The subclass/superclass hierarchy can be treated simi-
larly if requested.

4.4 Linking classes that are not in one-to-one
correspondence

In the fourth situation, there is no bijection between the
classes but we can establish a one-to-many or many-to-
many relationship type between them. This situation is
often difficult to handle because the semantics of this
relationship can be defined in a variety of ways. Typically
this situation would involve classes that contain similar

objects that differ in the precision of their representation.
Because of that, an object from one class can be mapped
to several similar objects from the other class. For
example, names in ADM. NAME include first and last
names, whereas those in CS.NAME include only last
name. It is obvious that 'Smith' from CS.NAME can
correspond to several names in ADM. NAME. Addition-
ally, 'John Smith' in ADM. NAME is not necessarily the
same as 'Smith' in CS.NAME. If the aim is to specify
links between similar names, we can proceed as in
situation (ii). However, if the aim is to relate names of the
same people, the link should be made between social
security numbers.

4.5 Multi-infobase query example

Having defined these multi-infobase messages, it becomes
possible to specify multi-infobase queries. A user can
include multi-infobase messages in queries, in exactly the
same way as infobase messages. Indeed, a user need not
even be aware of the distribution of data across the
different information bases. For example, a user might
specify the following query to find the addresses of all
instructors who teach CS1410 (Fig. 9).

Multi-infobase Query 1

(Course_no EQ: #(CS1410)) is_id_of is_taught_by
has_ssn
corresponds_to_adm
is_ssn_of has_address

The same query can be specified differently by defining
additional messages connecting the PERSON class of the
ADM node with the INSTRUCTOR class of the CS
node. To do this, we define a message
'corresponds_to_person', whose receiver class is
CS. INSTRUCTOR and whose result class is
ADM.PERSON. Fig. 9 illustrates the creation of this
message. Now we can define the query as follows:

(Course_no EQ: #(CS1410)) is_id_of is_taught_by
corresponds_to_person has_address

If queries requiring the link between
CS.INSTRUCTOR and ADM.ADDRESS are sub-
mitted frequently, it may be helpful to define an
additional multi-infobase message between these classes.
This message might be defined more concisely by means
of the message 'corresponds_to_person' defined above.

5. MULTI-INFOBASE CLASSES FOR
DEFINING INTEGRATION

New classes may be constructed at the multi-infobase
level, using the local classes. One technique is to define a
multi-infobase class as a generalisation of some specified
classes in the local information bases, as is done in
MULTIBASE.6 We support this kind of class definition,
but also allow some other ways of defining multi-
infobase classes. In the example shown in Figs 2 and 3,
there were some classes which were very similar in the
two information bases. In such cases, we can define a
multi-infobase class as a generalisation of the two or
more similar classes. We can identify four situations,
corresponding to those listed in Section 4.

In the first situation, we define a superclass for two

508 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

ADM
CS

corresponds_to_adm

Figure 9. Graphical representation of multi-infobase query 1.

converts_to_adm

ssn_spec ~"^ssn_spec

corresponds_to_cs

Figure 10. Subclass/superclass hierarchy for SSN classes.

subclasses of compatible format. This is a trivial case
requiring a union operation to create the superclass. To
define such a superclass, we use a meta-message ' define_
superclass'.

In the second situation, we need to create a superclass
for two or more subclasses of incompatible format, but
with an isomorphism between them. This process requires
us to translate instances from subclasses into a common
format. The first phase of this process is similar to that
discussed in section 4, and involves creating superclasses
in OOPS with the appropriate messages defining the
conversion. In the second phase, the multi-infobase
superclass is created using a meta-message

'create_corresponding_superclass'. This is an insertion
into the meta-class CORRESPONDING-SUBCLASS-
MESSAGE. The messages describing the subclass/
superclass hierarchy are created automatically.

As an example, let us consider two subclasses
ADM.SSN and CS.SSN. In order to create a multi-
infobase superclass, we first define the OOPS classes
OOPS.ADM_SSN and OOPS.CS-SSN as in Section 4.
Here we shall assume that the multi-infobase superclass
will have the same format as OOPS. ADM_SSN. But it
would also be possible to specify a third format if
preferred. The result is shown in Fig. 10.

In the third situation, when there is a bijection between

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 509

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

classes of incompatible formats the multi-infobase
superclass is created similarly. If the conversion is
handled by the auxiliary database, it is necessary to
include in the relation defining the conversion all existing
objects from either class. This is a significant difference
from the approach described in Section 4, where the
conversion might be defined only for some of the objects.

We can define a multi-infobase class for the fourth
situation, using two approaches. In the first approach we
convert objects of the subclasses into a common
representation in such a way that for each element of a
subclass we have a unique representation in the super-
class. Because this approach allows the possibility that a
single object in the superclass can have several cor-
responding objects in a subclass, we call the superclass
'imprecise'. This approach results in losing some
information in the integrated schema.

For example, we can define a generalisation of the
class ADM.NAME and the class CS.NAME, choosing
for MIB.NAME a format including only the last name.
As a result, we might have several names in
ADM.NAME corresponding to a single object in the
imprecise superclass MIB.NAME.

The second approach is to include all subclass objects
in the superclass. In this approach we preserve all
information in the integrated schema. However, generally
we can then get a many-to-many relationship between
the imprecise superclass and the subclasses. The user can
specify objects in the superclass precisely, but the system
would convert them into a less precise form, resulting in
imprecise answers. Typically, redundant answers may
also be returned, therefore operations such as counting
would not give accurate answers.

Additional generalisation classes can be created, based
on already-existing links between classes that allow us to
determine the correspondence between objects in the
subclasses, but do not allow for full conversion to a
common format. In this situation we can define a
superclass that contains all objects from the subclasses,
but cannot be materialised. We shall call this superclass
' virtual', because we cannot refer directly to its instances.
To define a virtual superclass, we use a meta-message
' define_virtuaLsuperclass'. The concept of virtual class
for multi-databases is different from its counterpart in
centralised databases. By the idea of virtual as found in
KOPERNIK5 and EIFFEL,16 all previous classes are
virtual. However, we mean by virtual only the special
classes that cannot be referred to directly. Virtual classes
are used only as intermediate classes in query specifi-
cation: they cannot be the initial receiver or the final
result. For example, let us consider the classes ADM.
FACULTY and CS.INSTRUCTOR, with the link
between them defined by the link through social security
numbers. The resulting class MIB.INSTRUCTOR will
be virtual because we have no satisfactory way of
generating object identities for the superclass. This
superclass is still very useful, because it is a component of
the integrated schema, and can appear in queries.

In order to be able to include these classes usefully in
query expressions, we need also to define messages for
the multi-infobase classes. For example, we might define
a message has_ssn for the multi-infobase class IN-
STRUCTOR, resulting in the multi-infobase class SSN.
This message can be defined as shown in Fig. 11.
Similarly other messages for multi-infobase classes, such

Figure 11. MIB classes and messages.

as is_ssn_of, is_name_of and has_name, can be
defined.

Some messages for multi-infobase classes have no
counterpart for local infobase classes. This is typically
because information is known implicitly at the local
information base level, but needs to be made explicit at
the multi-infobase level. For example, the department of
any instructor represented in the CS information base is
known implicitly to be 'Computer Science'. But at the
multi-infobase level we need to specify the department of
each instructor. Hence we might define a message
'has_dept' for the local infobase class CS.INSTRUC-
TOR, and then use that definition to specify a similar
message for the corresponding multi-infobase class. Fig.
12 illustrates the definition of these messages.

Using the above-described multi-infobase schema,
multi-infobase queries can be specified easily. For
example, let us consider a query to find the name of the
instructor with social security number '123456789'. It
can be specified symbolically as follows.

Multi-infobase Query 2

MIB.SSN (EQ: #(123456789)) is_ssn_of has_name

By the definition of multi-infobase classes and
associated messages, users can be provided with a totally
or partly integrated view of the multi-infobase. This
flexible approach allows users to treat local infobase
classes and multi-infobase classes in exactly the same
way, so that a query expression may involve both kinds
of class. All the mappings are handled automatically by
the multi-infobase software.

6. DECOMPOSITION AND TRANSLATION

Multi-infobase requests are decomposed into object-
oriented subqueries addressed to individual information
bases. Decomposition is straightforward using the meta-
model, because all semantic information is available.
Each subquery is sent to the appropriate site for

510 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

ADM MIB

J V

Figure 12. Additional MIB messages.

execution, where it is translated into a locally supported
language. Intermediate results are then directed from the
processing sites to a designated final result site. Any final
processing which could not be done by the local systems
is performed by the OOPS at the final result site. Ideally
each site would have a copy of the OOPS, thereby
allowing any site to be chosen to compute the final result.
However, our architecture only requires that at least one
site should possess this capability.

As an example, let us consider the decomposition of
multi-infobase queries 1 and 2, introduced in Sections 4
and 5. Query 1 involves the multi-infobase message
'corresponds_to_adm'. Therefore, the subquery pre-
ceding 'corresponds_to_adm' is executed entirely by the
CS info base. The operation 'corresponds_to_adm' itself
should be performed by the OOPS, and the result of that
is sent to the ADM infobase for further processing.

For query 2, which involves multi-infobase classes, the
decomposition could be based on a substitution of
complex multi-infobase messages such as is_ssn_of (for
MIB.SSN) by either messages available in the local
infobases or simple multi-infobase messages such as
adm_spec. In general this substitution process can
produce very long and complex subqueries. However, a
straightforward optimisation procedure can be applied
to eliminate redundant messages and identity messages.
After this optimisation we generate the following
subqueries.

Subquery 1 (for OOPS)

MIB.Ssn EQ: #(123456789) cs_spec--> Tempi

Subquery 2 (for CS)

Tempi is_ssn_of has_name--> Temp2

Subquery 3 (for ADM)

ADM.Ssn EQ: #(123456789)
— > Temp3

is_ssn_of has_name

Subquery 4 (for auxiliary database)

Temp2 is_mib UNION Temp3

Each of these subqueries is translated into an ap-
propriate language at the receiving node (see below). The
answers are then sent to the final result node, which has
the task of combining the results into a single coherent
response. Each response, regardless of the underlying
data model at the executing node, will be returned in a
uniform format that can be readily interpreted by the
OOPS. The OOPS is able to integrate the responses and
produce a single answer to the query. The user is always
presented with the response in a format compatible with
the view addressed by the query. Hence, if the query
addresses an integrated global schema, the user must be
given an integrated response.

Let us first assume that SQL is the language of the
receiving nodes. To translate requests into a relational
language, it is necessary to define a mapping of the
object-oriented schema to a relational schema. Here we
are using a simple mapping of the object-oriented schema
into binary relations, where each relation corresponds to
a message. To allow for the same message name being
used by different messages (with different receivers) we
concatenate the receiver name with the message name to
form a relation name, with a hyphen between. The
attribute names are the receiver class and the result class.
For example, some relations for the ADM object-
oriented schema shown in Fig. 2 are listed below.
PERSON-HAS_NAME (person, name)
PERSON-HAS_SSN (person, ssn)
EMPLOYEE-HAS_DEPT (employee, dept)
SALARY-IS_SALARY_OF (salary, employee)

The relations should not be considered as stored
relations, but rather as views defined on a database
designed in a standard way. The same applies to views
corresponding to classes, e.g.

PERSON (person)
DEPT (dept)

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 511

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

B. CZEJDO AND M. C. TAYLOR

Based on this mapping, we can define the translation of
object-oriented requests into relational expressions. In
Ref. 5 we express the translation rules using a meta-
schema and an object-oriented approach. Using these
translation rules, the subqueries 2 and 3 above can be
translated as follows.

This query can be expressed in the KOPERNIK*
language as JN EQ :#(Computer Journal) is journaLof
has.author corresponds_to_cs is_name_of works_for

This query involves a multi-infobase message, so it
should be decomposed into subqueries for the individual
information systems. For example,

Subquery 2

SELECT INSTRUCTOR-HAS_NAME.name
FROM TEMPI, SSN-IS_SSN_OF, INSTRUCTOR-
HAS_NAME
WHERE TEMPI .ssn = SSN-IS_SSN_OF. ssn
AND SSN-IS_SSN_OF.instructor = INSTRUCTOR-
HAS-NAME. instructor

Subquery 1 (for LIBRARY)

JN EQ:#(Computer Journal) is_journal_of has_author
~>T1

Subquery 2 (for OOPS)

Tl converts.to_cs — > T2

subquery 3

SELECT PERSON-HAS_NAME.name
FROM SSN, SSN-IS_SSN_OF, PERSON-HAS_
NAME
WHERE SSN = ' 123456789'
AND SSN.ssn = SSN-IS_SSN_OF.ssn
AND SSN-IS_SSN_OF.person = PERSON-
HAS_NAME. person

Let us next assume that one of the receiving nodes is
a DIALOG system,19 storing information about the
Computer Science library. The schema for this in-
formation base is shown in Fig. 13. Let us also assume
that a multi-infobase message ' corresponds_to_cs' (simi-
lar to the 'corresponds_to_cs' denned for ADM .SSN in
Section 4) is already defined for the class LIBRARY. AU,
resulting in CS.NAME. To simplify the discussion, we
assumed that in the Computer Science department all
people have different names. An example of a query for
such a multi-infobase is

is_author_of
has_journal_name

Figure 13. Object-oriented schema for library infobase.

Multi-infobase Query 3

' Find the companies of those external instructors who
have published in The Computer Journal'.

Subquery 3 (for CS)

T2 is_name_of works_for

Note that during the decomposition, in subquery 2,
'corresponds_to_cs' was replaced by ' converts_to_cs'
according to the scheme shown in Fig. 8. To translate
object-oriented requests into DIALOG, we assumed
(typical for DIALOG) field identifications AU, JN and
PY. Based on this, subquery 1 will be expressed as

SELECT JN = ' Computer Journal'

where we assumed that a front-end to the DIALOG
system would extract the author names. Subquery 3
would be translated in the same way as the subqueries for
multi-infobase query 2.

7. CONCLUSION

In this paper we have presented an approach to
information system integration based on an object-
oriented model. The integration process and multi-
infobase applications are described using a meta-model.
Varying degrees of integration are supported in our
approach.

We propose an architecture of a system in which
object-oriented multi-infobase requests are decomposed
into subqueries addressed to individual information
bases. Each subquery is sent to the appropriate site for
execution, where it is translated into a locally supported
data manipulation language.

We provide a classification of incompatibilities be-
tween autonomous information bases, in order to define
multi-infobase classes and messages and the subclass/
superclass hierarchy. We introduce the concepts of
virtual and imprecise multi-infobase classes. It seems
that the object-oriented approach to integration of
information bases not only provides the solutions used in
relational systems, but also captures much better the
semantics of the multi-infobase.

REFERENCES

1. E. Bertino et al., Integration of heterogeneous database
applications through an object-oriented interface. Infor-
mation Systems 14 (5) (1989).

2. E. Bertino et al., Integration of heterogeneous data

repositories using object-oriented views. Proceedings of the
First International Workshop on Interoperability in Multi-
database Systems, Kyoto, April 1991.

3. Y. Breitbart and L. R. Tieman ADDS - heterogeneous

512 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

AN OBJECT-ORIENTED APPROACH TO INTEGRATION OF INFORMATION SYSTEMS

distributed database system. In Distributed Data Sharing
Systems, edited F. Schreiber and W. Litwin. North-
Holland, Amsterdam (1985).

4. E. F. Codd, Relational database: a practical foundation
for productivity. CACM 25 (2) (1982).

5. B. Czejdo and M. C. Taylor, Integration of object-oriented
programming languages and database systems in
KOPERNIK, Data and Knowledge Engineering (to appear).

6. U. Dayal and H.-Y. Hwang, View definition and
generalization for database integration in a Multidatabase
system. IEEE-TSE 10 (6) (1984).

7. S. M. Deen, R. R. Amin and M. C. Taylor, Data in-
tegration in distributed databases. IEEE-TSE 13 (7) (1987).

8. S. M. Deen, R. R. Amin and M. C. Taylor, Query
decomposition in PRECI*. In Distributed Data Sharing
Systems, edited F. Schreiber and W. Litwin. North-
Holland, Amsterdam (1985).

9. D. Embley, B. Czejdo and M. Rusinkiewicz, An approach
to schema integration and query formulation in federated
database systems. In Proceedings, IEEE International
Conference on Data Engineering (1987).

10. D. K. Hsiao and M. N. Kamel, Heterogeneous databases:
proliferations, issues and solutions. IEEE-TKDE 1 (1)
(1989).

11. M. Kaul, K. Drosten and E. J. Neuhold, View System:

integrating heterogeneous information bases by object-
oriented views. In Proceedings, IEEE International Con-
ference on Data Engineering (1989).

12. W. Kim et al., The architecture of the ORION next-
generation database system. IEEE-TKDE 2 (1) 1990).

13. W. Kim, Object-oriented databases: definition and research
direction. IEEE-TKDE 2 (3) (1990).

14. T. Landers and R. Rosenberg, An overview of Multibase.
Distributed Databases, edited H. J. Schneider. North-
Holland, Amsterdam (1982).

15. W. Litwin and A. Abdellatif, Multidatabase inter-
operability. IEEE Computer 19 (12) (1986).

16. B. Meyer, Object-oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ (1988).

17. S. Navathe, R. Elmasri and J. Larson, Integrating user
views in database design. IEEE Computer 19 (1) (1986).

18. M. Rusinkiewicz and B. Czejdo, An approach to query
processing in federated database systems. In Proceedings,
Hawaii International Conference on Systems Sciences
(1987).

19. G. Salton and M. J. McGill, Introduction to Modern
Information Retrieval. McGraw-Hill, New York (1983).

20. M. Templeton et al., Mermaid - a front-end to distributed
heterogeneous databases. Proceedings of IEEE (May
1987).

Announcements

8-13 AUGUST 1993

HCI International '93, 5th International Con-
ference on Human—Computer Interaction
jointly with 9th Symposium on Human Inter-
face (Japan), Orlando, Florida, U.S.A.

You are cordially invited to participate in
HCI International '93. The conference has
four distinguished Boards consisting of 94
leading international scientists and engineers
representing 28 nations. Submissions of papers
are welcome until 15 November 1992 and for
posters until 15 May 1993. The conference
objective is to provide an international forum
for the dissemination and exchange of sci-
entific information on generic and applied
areas of HCI. This will be accomplished
through the following five modes of com-
munication : plenary and parallel presentations,
poster sessions, tutorials and meetings of special
interest groups. Topics which will be covered
in the conference include, but are not limited
to, those listed below.

Human-computer interaction
• Trends in information technology
• Systems engineering
• Intelligent systems

Work with visual display terminals
• Hardware ergonomics
• Workplace/work environment
• Stress and strain

Management of information
• Information management
• Work structuring
• Qualification and training

Human interface
• Concept, theory and experiences
• Crossing the border
• Innovative life, security and justice

To receive a copy of the four-page Call for
Participation please contact the General Con-
ference Chair, Gavriel Salvendy, HCI In-
ternational '93, 1287 Grissom Hall, Purdue

University, West Lafayette, IN 47907-1287
USA; Tel: 317-494-5426; fax: 317-494-0874:
or electronic mail: salvendy @ecn.
purdue.edu.

13-15 SEPTEMBER 1993

5th International Conference CAIP '93, Com-
puter Analysis of Images and Patterns,
Budapest, Hungary, sponsored by IAPR, the
International Association for Pattern Rec-
ognition
CAIP is a traditional central European con-
ference devoted to all aspects of image
processing and analysis, computer vision and
pattern recognition. Its main goal is to
promote scientific cooperation and contribute
to free exchange of ideas, knowledge and
experience between eastern and western
Europe. Papers devoted to new trends in
image analysis, including theory, algorithms
and applications, are especially welcome at
CAIP '93. Topics of interest include, but are
not limited to the following:
• theory of computer vision and image

analysis;
• theoretical and experimental evaluation of

algorithms;
• comparative studies of different ap-

proaches ;
• hierarchical and model-based methods;
• new fast and reliable algorithms;
• successful applications in real environ-

ments;
• novel application areas.

The scientific programme will include reg-
ular contributions as well as invited talks
given by key speakers sponsored by IAPR. All
accepted papers will be published in the
Conference Proceedings. The official language
of the conference is English.

Submission of papers

Prospective authors should submit 3 copies of
full-length draft papers (max. 10 A4-size

pages) to:
D. Chetverikov, Computer and Automation
Institute, Budapest, P.O. Box 63, H-1518
Hungary. Fax: +36.1.1667503. E-mail:
h 1180cse@ella. hu (no electronic submissions,
please).

Deadlines

Submission of draft papers: 15 January 1993.
Notification of acceptance: 15 April 1993.
Camera-ready papers: 15 July 1993.

13-16 DECEMBER 1992

ICSC '92: Second International Computer
Science Conference Data and Knowledge En-
gineering: Theory and Applications, Hong
Kong
Sponsored by the IEEE Hong Kong Section,
Computer Chapter, in cooperation with the
ACM, Hong Kong Chapter

ICSC '92 is the second international con-
ference on computer science to be held in
Hong Kong. Its purpose is to provide a forum
for scientific interchange among computer
scientists and engineers from all over the
world, especially from the Asia-Pacific region.
This conference will focus on a broad spectrum
of research topics related to the theory
and applications of data and knowledge en-
gineering.

Tutorials

Tutorial sessions will be held during the
conference.

Inquiries

Please send inquiries to the General Chairman
of the Organising Committee:
Dr Ernest Lam, Department of Computing
Studies, Hong Kong Baptist College, 224
Waterloo Road, Kowloon, Hong Kong. E-
mail: ernest@bc750.hkbc.hk. Fax: 852 338-
8014.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 513
CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/501/402479 by guest on 11 April 2024

