
Short Notes

A Parallel Solution to the Approximate String
Matching Problem

The approximate string matching problem
(ASMP) consists of finding all the occurrences
of a string of characters X of length m in
another string Y of length n,m<£n, where some
errors are allowed in these occurrences. A
classical sequential algorithm based on dynamic
programming solves the problem in time of
O(mri). A parallelisation scheme for this al-
gorithm is proposed, which applies to a very
general set of errors, and allows to solve ASMP
in time T with N processors, with AT of O(mn),
thereby achieving optimal speedup. The scheme
is suitable for VLSI implementation on a
bounded degree network.

Received October 1988

1. Introduction
The problem of approximate string matching
consists of finding all the occurrences of a
string X = xl... xm, called the pattern, in
another string Y = y1...yn, called the text,
n > m, where each occurrence may be affected
by a certain number of errors (see, for example
refs 5, 9, 13).

The elements (characters) of A" and /belong
to a fixed alphabet Z. Various errors have
been considered in the literature, such as
mismatches of characters between X and Y,
missing characters, extra characters or trans-
posed characters in X and y.1 0 1 3 1 5 Other
studies have treated the presence of don't cares,
that is special characters matching any other
character.111 The following set of errors is
very general, and contains all cases considered
in the literature. (In particular, errors and
don't cares will be treated together.)

el. Mismatch between xt and y}. We define
a function w, :£ 2 ^ZJ , where w^x^y,) is
the cost of mismatch, with w^x^yj) = 0 for
xt = y, (match).

Note that el includes the don't care con-
ditions in a general form. In fact, if wx(x,
y) = 0 for x =)= y, then x (or y) is a don't care
character for y (or x).

e2. Extra character in Y (or missing charac-
ter in X). We define a function >v2:£->Z+,
where w2(yt) is the cost of an occurrence of yt
in Y without a corresponding character in X.

e3. Extra character in X (or missing charac-
ter in Y). We define a function w3:S-s-Z+,
where w3(x,) is the cost of an occurrence of x(
in X without a corresponding character in Y.

e4. Transposition of two consecutive
characters. This error occurs for two index
values i,j such that xf_t = ys, x, = y,_v x,_t #
.*,. We define a function iv4:£2->Z+, where
w4(xl_1,xt) is the cost of transposition.

The approximate string matching problem
(ASMP) under errors el to e4 is then one of
finding all the occurrences of Xin Y, such that
the sum of costs of errors in each occurrence
does not exceed a given value fceZJ. In
particular we say that X occurs in position h if
an occurrence of X in Y ends in yh.

ASPM has been solved under various
subsets and/or restrictions of the errors el to
e4, with algorithms of different complexities.
In particular, 'fast' algorithms have been
devised for particular subsets of errors,3-9

requiring O(kn) sequential time, and O(k + log

m) parallel time on a PRAM model. However,
the only sequential algorithm valid for general
choices of errors, and for don't care con-
ditions, requires time of O(mn) (see the next
section), while no interesting parallel algor-
ithm has been devised for the general case.

In this paper we consider ASPM under
errors el to e4, and propose a parallelisation
scheme for the O(mri) sequential algorithm,
suitable for VLSI implementation on a
bounded degree network. For any number TV
of processors ranging from 1 to «, the required
processing time T is such that NTeOimn),
thus achieving optimal speedup.

2. The parallelisation scheme

As already stated, we treat ASMP under
errors el to e4. Following a classical approach,
let us define the m x n matrix D, where, for all
i, j , D[i,j] is the minimum value of the sum of
errors between x1,...,x( and any subsequence
of Y ending in yy D is bordered by a row 0,
with D{0,j] = 0 for 0 <y =£ n, and a column 0
with D[i,0] = w<3, where w'3 = £„_,,w3(xk) for
1 =S i; ̂  m. Row 0 corresponds to an empty
pattern X = 0 , where the total cost of errors
is zero because X can be recognised in any
position of Y. Column 0 corresponds to an
empty text Y = 0 , where w3 is the total error
induced by the extra characters xv..., x, of X.

The sequential computation of D for i > 0,
j > 0, is based on the dynamic programming
relation:

D[i,j] = min (D[i- \,j- 1] + w^y,),

w3(x(),

if ('

then D[i-2,j-2] + w4(x,_1,xl)). (1)

The application of relation (1) iterated for mn
times, starting from the border values, and
proceeding for increasing values of i and j ,
leads to the computation of the whole matrix
D. If we have D[i,j] > k for some i,ja default
value oo is assigned to D[i,j]. The solution of

D'

ASMP is given by the values of the last row of
D for which D[m,j] ^ k.

The purpose of this work is to study the
parallel computation of D, when several
processors are available. A non trivial use of
such processors is based on the following
Theorem 1, which applies to ASMP with
errors el to e4 (or any subset or restrictions of
such errors). The theorem is an extension of a
result of ref. 4.

Referring to errors e2 and e3, let w2m = min
(w2(y):yel.), and w3M = max(tv3(x):xeI).

Theorem I. D[i,j] can be computed in-
dependently of the values D[i,j'], D[i—\,
j'-\],...,D[\,j'-i+\\ (wherever defined),
where:

j— [k/w2m\— 1 otherwise.

Proof. For any pair i, j , denote by the
integer value d=j—i the diagonal of D
containing all the entries D[i,j] with the same
values ofj—i. Consider the diagonal

where

d=j*-i,

w2m] for / ̂  k/w3

1—1 otherwise.
(fl)

It is sufficient to show that D[i,j] can be
generated through a computational path (i.e.
a sequence of values in D) which does not
include any entry D[r,s] belonging to d, with
s — r = d,r^ i, s < j . In fact, if D[i,j] depended
on an element D[i',jr\ lying on the left of d,
then the computational path from D[i',j'] to
D[i,j] should traverse d in a position i", j " ,
hence D[i,j] would also depend on D[i",j"].
We consider two cases.

(1) / ̂  k/w3M. We have from (a):

An optimal path leading from D[r, s] to D[i,j]
would include exactly i—r diagonal steps with
wi(x,y) = 0 (matchings or don't cares), and

j—s — (i—r) horizontal steps with n>2(y) =
w2m, yielding a limit value D[i,j] =
(j — s — i + r)w2
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Figure 1. Propagation of the values of a diagonal d, in a block D'.
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On the other hand D[i,j] can be computed
from D[0J] through a vertical path, that is
D[i,j] < iw3v. Combining these results, we
conclude that D[i,j] must be computed from
D[r,s] only if (J—s — i+r) w2m < iw3!ll, that is
j—iw3SI/w2m — i<s—r = d, a contradiction
with (b).

(2) i > k/w3il. We have from (a):

d=j-[k/wlml-l-i. (c)

The limit value D[i,j]^(j—s—i+r)wtm is
computed from D[r, s] as in Case 1. Combining
this result with (c) and recalling d = r—s, we
have: D[i,j] > Q/t/ivImJ +1) w2m > k, hence
the default value co should be given to D[i,j].
On the other hand, a vertical path from £>[0,
j] yields a value D[i,j] ^ w,M. This value
could be ;?&, thus beating the one deriving
from D[r,s], or >&, thus generating the same
default value co. •

For example, consider the matrix D shown
in Fig. 1, with m = 8. Assume that k = 10,
w*m = 2> WIM = 3. Let A = m + [k/w2j, and
consider an m x h submatrix D', called a block
of D. By Theorem 1, the entries on the
diagonal d (block framed squares), as well as
those to the left of d, do not influence the
computation of the entries in the grey zone.
The numerical values reported in D' are the
minimal values which can be originated from
d (in fact, when all values in d are zero).

The main consequence of Theorem 1 is that
one could apply the dynamic programming
approach to compute D', bordered with an
uppermost row and a leftmost column of
zeroes, to obtain the correct values for D in
the grey zone. If this computation proceeds on
D to the right of D', all correct values are
found. Therefore, one could perform a com-
putation of D by calculating several blocks D'
in parallel, and proceeding to the right until
the grey zones have covered the whole matrix.
In general, such an approach would be more
efficient for small values of h, that is when the
bottom left white triangles in D' are small. A
common hypothesis8' "•14 is that k < m (ob-
viously, this hypothesis must be verified if all
errors have cost 1), leading to the constraint:

H>3

h < 2m. (2)
Let N be the number of processors, T be the

processing time, and R be the number of
successive times in which relation (1) is
computed in one or more parallel instances. In
our analysis we momentarily adopt a PRAM
model, where all the processors have access to
a common memory, and may read the same
data concurrently. (Concurrently write in the
same memory location is instead forbidden.)
Assuming that the border values of D, the text
and the pattern, have been preloaded in
memory, and that a computation of relation
(1) can be performed in constant time, we
have in all cases Te O(R). The use of a more
realistic computational model, based on a
bounded degree network, will be discussed in
the next section.

We consider several cases for increasing
values of N.

Case J. N = I. This is the sequential case
already discussed. We have:

N=l, R = mn, TeO(mn); (3.1)

NR = mn, NTeO(mn). (3.2)

Case 2. N = m. As before D is bordered
with row 0 containing all zeroes and column 0
containing wl

3,...,iv™. Each processor P,, 1 <
i :£ m, is used to compute row i of D from left
to right, starting at instant i. After step s, the

Figure 2. Parallel computation of D with
m processors (dots).

values in the grey zone of Fig. 2 have been
computed. The values one position to the
right of segment a can be computed, at the
next step, as a function of the values on a. We
have:

N = m, R = n + m, TeO(n); (4.1)

NTeO(mn). (4.2)

Case 3. N = cm, with c integer, 2 $ c <
n/(2h). Matrix D is subdivided in c consecutive
submatrices Da,...,De_1, of m rows and n/c
columns, with Df starting at column 1 +jn/c,
0^j^c-\ (Fig. 3a). £>(,,...,£>,_, are
bordered by a row 0 of zeroes, and a column
0 containing the correct border conditions
w\,..., w™ for Do, and all zeroes for Dl,...,
Dc_v We assign m processors P[,...,P'm to
each submatrix Dy Each processor P\ com-
putes the values on the row i of D}, from left
to right, starting at instant i. After n/c steps
the values on segment as have been computed
(Fig. 3 b), that is the elements in the grey zones
of Fig. 3 a have the correct values by Theorem
1. The computation proceeds for other m + h
steps, to cover the remaining white zones
bordered by the pairs of segments ajt b)+i.

Since 2 ̂  c $ n/{2h) we have:

N = cm <n/2, R = n/c + m + h < 2n/c,

TeO(n/c). (5.1)

(a)

Vt-3

(b)

Noting that NR = {n/c + m + h)mc =
nm + cm2+cmh, we have:

mn + 4m2 < NR < l/lmn + nm'Klh) < 2mn,

NTeO(mn). (5.2)

Case 4. N = mn/(2h) (for simplicity assume
that n/(2h) is integer). As for Case 3, except
that the submatrices Do,..., Dn/l2ll) are
composed of exactly two blocks. We have:

N = mn/(2/i) < n/2, R = 3h + m,

TeO{h); (6.1)

NR = 2/2mn + m2n/(2h) < 2mn,

NTeO(mn). (6.2)

Under constraint (2), we have the following
refinement of relation (6.1):

R < 1m, Te O(m). (6.10
Case 5. N = mn/h. As for Case 4, with the

submatrices Dt composed of one block. We
have:

N=mn/h<n, R = 2h + m, TeO(h); (7.1)

NR = 2mn+m2n/h < 3mn,

NTeO(mn). (7.2)

In particular, under constraint (2) we have:

R < 5m, Te O(m). (7.1')

Note that, in all cases we have obtained
./VTe 0(mn) as for the sequential case. This
result is generally referred to as achieving
optimal parallel speedup.

We do not increase the number of processors
over the one considered in Case 5 (essentially,
we do not consider any value N > n), and
confine our attention to values of N increasing
as multiples of m. A different case of interest,
however, arises when a fixed number of
processors N < m is available. In this case the
following naive method can be established.

Case 6. 1 < N < m. Matrix D is subdivided
in N submatrices D0,...,DN_l of m rows,

nlc

Figure 3. (a) Subdivision of D in c submatrices. (fi) Parallel computation of Dj by the
processors (dots) P',,...,/*,.
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where, for 0 sjy s£ N—2, D} starts at columns
\+jn/N and ends at column (J+l)n/N+h
(i.e. D} and Dl+1 overlap on h columns); and
Z>v_j starts at column l+(N—\)n/N and
ends at column n. DO,...,DX_1 are bordered
as in Case 3. One processor is assigned to each
submatrix, and these are computed in parallel
with the sequential algorithm of Case 1, thus
requiring (n/N+h)m steps. For fixed N we
still have

NTeO(mn). (8.1)

In the next section we shall consider the
implementation of our parallel algorithms on
feasible computing structures. Cases 2-5 will
lead to significant considerations, while no
comments seems to be necessary for Case 6.

3. Working on a bounded degree network

The parallel scheme of the previous section
has been devised for the PRAM model. As
well known, this model is technologically
unfeasible unless simulated on a bounded
degree network, with a multiplicative slow-
down of log N for probabilistic simulation,6'12

and at least log2 Af/log log N for deterministic
simulation.2-716 Moreover, in view of a VLSI
implementation we should refer to elementary
processors of fixed size. We shall see now that
the parallel scheme described for Cases 2-5
can be directly embedded on a bounded degree
network, thereby avoiding the simulation
slowdown; and that, under proper conditions,
the required processors have fixed size.

First consider Case 2. The interconnection
network simply consists of one link from each
processor P( to the subsequent processor Pt+1,
1 ^ i $ m— 1. The algorithm starts at instant
0, when processor Pt receives the pattern
character x1 from an input channel, and
computes the border value w\ = H>3(J:1) (see
below on how function w3 is computed). Then,
at each instant /', 1 ̂  i < m— 1, processor Pl+l

receives x(+l from outside and w'3 from Pt, and
computes w3

+1 = w'3 + w3(xl+1). The text
characters yl,...,yn are communicated to
processor Pt at instants 1,..., n, and the output
values (in the last row of D) are output by
processor Pm.

The computation of all the elements D[i,j],
with i+j = s, takes place at instant s (see Fig.
2). To compute D[i,j], processor Pt makes use
of the values D[i-\J- 1], D[i-l,j], D[i,j- 1]
and D[i—2,j—2], and must know the
characters x(, yjy x(_j and yt_t [see relation (1)].
D[i- l,y— 1] and D[i-\,j] are passed to Pt by
/*,_!, as the values computed by Pl_1 in the
previous two steps and stored in this processor
up to instant s. D[i,j— 1] is known to Pf itself,
as the value locally computed in the previous
step. D[i—\J—2] was transferred from P(_t to
Pl_1 at instant s — 2, for the computation of
D[i—1,7— 1], and it is stored in Pl_1 up to
instant 5, to be communicated to Pt. As far as
characters are concerned, .x, is known to Pt,
and jr(_, is passed to Pt by Pf_v The text
characters are input in Pt and passed down,
step by step, from one processor to the next.
Each processor stores the last two characters
received, such that, when the computation of
D[i,j] is to be performed, yl_1 and yf are
known to Pt. In total, each processor needs a
fixed number registers to store data that will
be later used.

Cases 3, 4 and 5 are quite similar to Case 2.
The processors assigned to each submartrix Dt

work independently of the ones assigned to
the other submatrices. Therefore, the proces-
sors of each Df are connected, and operate, as
the processors of Case 2, with the only
difference that the submatrices Dt,j > 1, have
default border conditions.

Note that the text must now be divided in
substrings, to be communicated in parallel to
the different processors assigned to the first
rows of all Dt. The substrings overlap partially,
but no character must be sent to more than
two processors. The situation is more serious
for the pattern, where each character xt must
be initially sent to the N/m processors working
on the row of i of all submatrices Dr On a
bounded degree network, this implies an
additive initial delay of \og(N/m) using a
broadcasting tree for each row of D. The
maximum value of this delay is \og(n/h) for
Case 5. If the string matching problem must
be solved for different instances of the pattern,
the broadcasting delay will affect only the first
instance, while the successive patterns will be
pipelined through the broadcasting tree.

The main problem still to discuss is the
computation of the cost functions w,, u>2, iv,
and H>4 specified in relation (1). In fact in our
bounded degree model each processor must
compute these functions locally. Some sim-
plifying assumptions are usually made in the
literature (see, for example ref. 5), namely: (1)
iv, = 0 for match (or don't care with a fixed
character), and wt = c, with c fixed constant,
for mismatch. (2) tv2, w3 and wt are fixed
constants. Under assumptions (l)and (2) the
processors can compute the cost functions in
constant time and area. More general func-
tions can be typically computed in constant
time by table lookup, but the tables must
reside into the processors, and may require a
large area if the alphabet is large. In general
time and area requirements must be deter-
mined case by case.

4. Concluding remarks

In this note we have shown how the ap-
proximate string matching problem (ASMP)
can be solved in parallel on a bounded degree
network of elementary processors. The pro-
posed parallelisation scheme is very simple. It
is based on a standard sequential method of
dynamic programming, and attains optimal
speedup. Faster algorithms have been pro-
posed in the literature,9 however, these
algorithms have been defined for the idealistic
PRAM model, and apply only to restricted
classes of errors. Our scheme is instead suitable
for VLSI implementation, and takes into
account a very general set of errors, for which
no 'fast' algorithm is known.

A different approach to ASMP involves
context dependency. In this case the cost of an
error depends on the substrings surrounding
the characters under considerations. Particular
instances of these errors occur in applications
of text editing, pattern matching and speech
recognition. (For a general review of context
dependent errors and related algorithms see
ref. 3.) The techniques proposed here could
probably be extended to the parallel solution
of some instances of the context dependent
problem.
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