
S H O R T N O T E S

There is a widespread feeling that the
diversity of the students' background, es-
pecially their programming experience, causes
problems. There is still no consensus about
what to do about the problems but it does
seem to be the case that the more radical the

approach to teaching programming the less
the background of the students is an issue.

DAVID FURBER
Department of Computing,
King's College London,
Strand,
London WC2R 2LS

Reference
1. R. Bornat, Programming from First Prin-

ciples. Prentice-Hall, Englewood Cliffs,
NJ, USA (1987).

A Short Note on Doubly-Linked List Re-
organizing Heuristicst

The class of memoryless heuristics for main-
taining a Doubly-Linked List in an approxi-
mately optimal order is studied. Two mappings
that relate Singly-Linked List and Doubly-
Linked List heuristics are defined, and theorems
involving these mappings are presented. A new
heuristic referred to as the Swap heuristic for
the Doubly-Linked List is introduced, and its
asymptotic distribution has been derived.

Received January 1991

I. Introduction

In the development of self-organizing list
structures, a problem that has been extensively
studied involves the Singly-Linked List (SLL)
or sequential list. McCabe9 was probably the
first to consider the reorganization of data
using self-organizing strategies, and in his
pioneering work he introduced two schemes
called the Move-To-Front and Transposition
heuristics. These heuristic have been inten-
sively analysed by many authors including
Hendricks,5 Bitner,2 Knuth7 and Rivest,12

to name a few. Also, heuristics which use
additional amounts of memory apart from the
memory used by the list structure itself have
been reported in the literature. We refer the
reader to the following papers: McCabe,9 Kan
el al..6 Burville el al.,3 Oommen el al.1'-11 The
literature on adaptive SLL organization is
extensive and a detailed survey on this topic is
found in Ref. 4.

The Move-to-Front heuristic operates on
the principle that when the accessed record is
found it is moved to the front of the list. On
the other hand, the Transposition heuristic
exchanges the accessed record with the im-
mediately preceding record; nothing is done if
the accessed record is at the front of the list.
Since these two schemes are fundamental to
the study of self-organizing structures they
will serve as benchmarks, in this paper.

Although the theory of self-organizing SLLs
is well developed, very little work has been
done to study the adaptive restructuring of a
Doubly-Linked List (DLL). To our knowl-
edge, the only other researchers who have
worked in this area are Matthews et al.*

We shall first formalize the problem. Con-
sider a set of /V records {/?,, R2,..., Rv) which
are held in a list in an arbitrary order n, so that
R, is in position n(i) counting from the left to
the right for \ ^ i ^ N. A search for R, can
begin at either end of the list, examining each
position in turn until R, is found. At each time
instant, a key Kt is presented at one end of the
list and the system is asked to retrieve the
associated record Rf. Observe that if the key is

t Partially supported by the Natural
Science and Engineering Research Council
of Canada.

presented at the left, the number of com-
parisons made is n(i), and if the key is presented
at the right, the number of comparisons is
N— n(i) + 1. The focus of this paper is to study
heuristics which restructure the list so as to
minimize the asymptotic expected number of
comparisons.

We assume that the record Rt is requested at
the left end and the right end of the list with a
probability s, L and s( R respectively, Each
access is stochastically independent and the
access probabilities of the records are time
invariant, with the constraint that,

A'

s •
( - 1 ( - 1

(1)

The heuristics considered in this paper fall
within the class of memoryless schemes. In
other words, no extra memory variables are
used beside the pointers used to maintain the
list itself. Thus, any heuristic for the DLL can
be defined as a set of permutations T = {T, L,
T, „}, where the permutation T, L is applied to
the list when the element at the ith position is
accessed from the left, and the permutation
r, R is applied to the list if this element is
accessed from the right.

The application of DLLs are many and are
presented by Tremblay and Sorenson.14 They
are easy to implement when compared to
more complex data structures, and are in
general more flexible than SLLs. Of course, all
applications which use a First-In-First-Out
data structure can be implemented easily using
a DLL. We hasten to add that the primary
intention of this short paper is not to stress the
applications of DLLs*, but to theoretically
analyse a variety of scenarios involving self-
organizing DLLs.

In this paper, we present two strategies by
which an algorithm for maintaining a SLL can
be extended to a DLL. These strategies
involve, what we call, undirected and directed
mappings. The characteristics of these two
mappings are discussed in the body of the
paper, and using them the results of Matthews
el al.6 are generalized. Also, using a directed
mapping a new heuristic called the Swap
heuristic for the DLL is introduced and its
asymptotic distribution is derived. This dis-
tribution is a generalization of that obtained
for the Transposition heuristic for SLLs.

The access probabilities of the records can
be represented in two distinct methods. The
first representation is defined by (1). The
representation used by Matthews et al.a is
the conditional probability representation in
which pt = stL + stR is the probability that
/?, is accessed and pIL = 1 — pIR = s,J
(s( L + sf „) is the probability that given ^?, is
accessed, it is accessed from the left. Both

* Apart from the computer science appli-
cation of DLLs, one can easily conceive of
library applications such as those discussed by
Hendricks5 in which the search for a book can
start at either end of the shelf.

these representations are equivalent and so we
shall use them interchangeably.

The equivalence of these representations in
terms of probability masses and the underlying
operations was shown in Ref. 15. Also found
in Ref. 15 are experimental results demon-
strating the superiority of the Swap heuristic
over the Move-to-End heuristic introduced in
Ref. 8.

II. Doubly-Linked List Heuristics and their
Analysis

Before discussing various heuristics, it is
necessary to define a performance measure
with which we can evaluate their efficiencies.
Let CT(s) be the expected number of com-
parisons needed for an access when the
underlying probability distribution is J = (sx L,
...,sN L,st R, ...,sx „). We say that r is more

efficient than <r if C%(s) < Cs(s) for all s. It is
not necessarily the case that one heuristic is
always more or less efficient than another,
since in general, it can be the case that C,(s) ^
Cg(s) and CJs') $ CT(s') for two distributions
s and / .

If the probability distribution s is known a
priori, we can arrange the records in such a
way that the cost is minimized. Observe that
this is trivial because it is easily seen that the
cost of a permutation n is

s
cost (n) = £ fr, L . K(i) + stR.(N-n(i)+l)]

Since the second term of the summation is
independent of n(i), the optimal order is the
permutation which arranges the list in the
decreasing order of (s, L—s, „).

We now consider the transformation of
SLL heuristics into DLL heuristics in terms of
two types of mappings - undirected and direc-
ted mappings. In an undirected mapping, the
operations done on a DLL depend only on the
position of the accessed element, not on the
direction from which the element is accessed.
In contrast, in a directed mapping, the
reorganization is based on the position of the
accessed element and the direction of access.
An example will clarify the point.

Consider the Move-To-Front heuristic fora
SLL. This heuristic leads to the Move-To-Left
rule if an undirected mapping is used to get a
DLL scheme. This rule is quite simply de-
scribed as follows: Whenever an element R, is
accessed, it is moved to the left end of the DLL
independent of the end of access. Indeed, it is
not obvious whether such a rule has any
advantages at all. In contrast, a directed
mapping transforms the SLL Move-To-Front
heuristic into a DLL scheme called the Move-
To-End heuristic (see Ref. 8), in which the
accessed element is moved to the left end of
the list if it is accessed from the left, and
moved to the right end of the list if it is
accessed from the right. We now prove the
advantages of various undirected mappings.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 533

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/533/402562 by guest on 09 April 2024



SHORT NOTES

II. 1 Undirected Mappings of Singly-Linked
List Heuristics

Let zu = {T,} be a SLL heuristic. This means
that if the record in position / is accessed, the
data is recognized according to the rule rf.
Similarly, let zD = {zIL,z{R} be a DLL heu-
ristic. An undirected mapping exists between
Tuand zD if r, L = z, = z, „.

Should such a mapping exist, Exi\n{pj\, the
expected location of record R, (counting from
the left), no longer depends on the conditional
probabilities p, L and pt R, since the permu-
tation performed will be the same regardless
of the search direction. In other words, for a
given environment s, Eru[n(Cj\ = E,o[n(i)].

Matthews et a/.8 proved that if an optimal
heuristic exists for the SLL problem, then
the undirected mapping of this heuristic is
also optimal for the DLL when p( L = p > \,
1 ^ i ^ N. Although a counterexample due
to Anderson et al.1 shows that an optimal
heuristic does not exist, Matthews et al.'s
argument is still valid when comparing two
SLL heuristics one of which is more efficient
than the other. This is the first primary result
of this paper.

Theorem I
Suppose z" and pu are SLL heuristics for
which zu is more efficient than p". Then if pf L
= p > 0.5, 1 < i < JV, the corresponding pair
of DLL heuristics, under the undirected
mapping, are such that r" is more efficient
than pD.

Proof: For any doubly linked list heuristic a
with/), L = p for; = 1.. N, the expected search
time for any query is,

= (2p-1)2/>,£„» [*

where K = {N+\)(\-p). (2)

From the search cost of SLLs and given that
zu is more efficient that pu, we know:

This implies that,

2 p,. £>• Mi)] < Z />, •

). (3)

(4)

Combining (2)-(4) and using the facts that
E,v [i(0] — Et" ["(01. w e have,

C>(s) = (2/>-1)2/>,£,«[*<
(-1

x
<(2p - 1 ) 2/>,

The above inequality holds since (2p — 1) > 0
for all p > 0.5. Hence the theorem. Also, the search cost of the MTE heuristic was

A word about the consequences of Theorem
I is not out of place. Matthews el al.8 proved
that if an optimal SLL heuristic existed, this
could be transformed to yield an optimal
doubly linked heuristic for the case when pf L
= p > 0.5 for all i. By this theorem, we have
now been able to present a hierarchy on the set
of DLL heuristics which are obtainable using
undirected mappings. The theorem ensures us
that for any environment, if zu is superior to
pu as a SLL heuristic, then the corresponding
heuristics (rD and pD respectively) obtained
using an undirected mapping will satisfy the
property that zD is superior to p" whenever
pIL = p > 0.5. Thus, although the result of
Matthews el al. is only true for the special case
if an optimal algorithm existed, it is interesting
to note the result presented above is an abstract
generalization, valid for all pairs of heuristics.

Observe too another implication of the
above results. The result implies that if the
user's access distribution satisfies the con-
straints of the theorem, then, the direction of
access of the queries can be completely
ignored. Indeed, by using only the information
contained in the sequence of accessed records
and ignoring the information about the di-
rection from which the records have been
accessed, a DLL undirected heuristic can be
used to reorganize the data, and the optimality
of this heuristic is completely dependent on
the optimality of the corresponding SLL from
which it has been derived.

Rivest12 proved that the Transposition
heuristic is more efficient than the MTF
heuristic. Using this fact in conjunction with
Theorem I, we have the following corollary:

Corollary I.I

For all DLLs, the Transposition heuristic
under the undirected mapping is more efficient
than the MTF heuristic under the undirected
mapping whenever pt L = p > \.

11.2 Directed Mappings of Singly-Linked List
Heuristics

Using the results of the previous sub-section
we know that an undirected mapping is both
powerful and useful whenever the user's query
distribution satisfies the constraints of The-
orem I. In all other cases, unfortunately, an
undirected mapping is not a very realistic way
to transform a SLL heuristic into a DLL
heuristic. This is because the permutation is
not sensitive to the direction of access, which
contains crucial information and which ought
not to be omitted from the reorganization
process. Directed mappings utilize this in-
formation. A SLL heuristic z" = {rj is denned
to possess a directed mapping on a DLL
heuristic zD = {r, L, z( „}, if

TI.L = T( = <v-(+i.« f o r i=U--,N,

where z' is the permutation identical to r
except that it is described from the right end of
the list.

Suppose the MTE heuristic, described in
the preamble of this section, is used and let b(i,
J) denote the asymptotic probability that R, is
to the left of Rf. Matthews et al. showed that:

shown to be:

+ s,

They also proved that for all distributions
the MTE heuristic has an expected search time
that is no more than twice that of the optimal
policy. These results generalize the SLL
results.

Another well studied heuristic for SLLs is
the Transposition rule. We now extend this
rule using a directed mapping to obtain a new
heuristic for the DLLs. This heuristic will be
called the Swap heuristic. With this scheme,
whenever a record Rt is found in position n(j),
if the search originates from the left of the list,
the list is arranged by swapping the positions
of records Ri and R, . This, of course, is
except when j equals uniiy and R, is at the left
end of the list, for in this case no records are
moved. Otherwise, if the search originates
from the right of the list, the list is rearranged
by swapping R, and R, , except when j
equals JV and Rt is at the right end of the list.
Again, in this case, no records are moved.

The analysis of the Swap heuristic presented
below is based on the properties of finite, time
reversible Markov chains. In this case each
state is one of the N\ possible orderings of the
set of records {Rlt R2,..., RN}, and each order-
ing (Rt Rf ... Rt ) has a unique stationary
probability P*(R, Rh... RtJ which is ob-
tained as stated below.

Theorem II

Under the Swap heuristic, the stationary
probabilities obey:

P*(RU R,t... R<t Rli+i... R,x) Jf|,,, + s,Hr K

P * ( R , R , . . . R . R . . . . R . ) s . , + s . K

Proof: We are required to derive the
stationary distribution for the Swap heuristic.
We begin by showing that the Markov chain
of the Swap heuristic is time reversible by
proving that from any state (R( ,R(,...,Rti/)
any path that returns to this state'has'the same
probability as the reverse path (see Ref. 13).
Thus, for example, when N = 3, a sequence of
transitions that returns from the state (/?,, R2,
R3) to itself are:

3 , 1 , 2 ) ( „ „ , )
>(R1,R2,R3)

The product of the transition probabilities
in the forward direction is:

This is the same as the product of the
transition probabilities in the reverse direc-
tion:

The general result proving the reversibility of
the Markov chain follows in an analogous
manner, and is omitted for the sake of brevity.

By using the properties of Markov chains13

we know that for any time reversible chain, if

534 THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/533/402562 by guest on 09 April 2024



S H O R T N O T E S

0(r) is the state occupied at time '/*, and <j>m

and <j>, are any two states with transition
probabilities

Prob [<Kt + 1) = <*„ 14(') = <U = 1m. „•

then, P*((j>m) and P*U>n), the equilibrium
probabilities of being in <j>m and <j>n respectively,
obey:

P*(*J/P*(*J = <7» m/ for all m, n.
(5)

Now the transition from (R( ,R, ,...,R,,Rt ,
...,^v)to(/?(i,7?v . . . , * w A(j, '..,R,Joccurs
whenever # , is accessed from the left or R(

is accessed from the right. Similarly, the
transit ion from (R( ,R( ,...,Rj ,Rt,...,Rt)

to (R,,R.,...,Rt,R\ ,'..,R. ) 'occurs when-
ever /?, is accessed from the right or R( is
accessed from the left. Observing that these
events are mutually exclusive and substituting
them in (5), we have:

P*(R,,R,,...,R.,R, , . . . , / ? ( )

P*(R,,/?,,...,/?, ,R,,...,Rt )
v V V ' 'HI' V ' >nJ

for all j . (6)

Hence the theorem.
A similar result exists for the Transposition

rule for the SLL.12 Theorem II is a general-
ization of the latter result. Indeed, in the
special case when the probability of access
from the right is zero (that is st K = 0 for all i),
the Swap heuristic behaves identically to the
Transposition heuristic and (6) becomes ident-
ical to the expression in Ref. 12:

P*(R, R, ...R, R, ...R, ) s, ,

P*(R, Rt ...Rt R, ...R, ) s, L

Rivest12 also proved that the Transposition
heuristic is always more efficient than the
Move-To-Front heuristic. We can now state
an analogous claim concerning the Swap
heuristic.

Conjecture I

The Swap heuristic is always more efficient
than the Move-To-End heuristic.

Experimental results clearly support the
conjecture that this result is true for all
distributions.15 However, the proof of the
claim is certainly non-trivial. It will involve
obtaining expressions for the ratio of the
asymptotic probabilities of the chain being in
two states, say, <j>m and <j>n in which the list
representation of tj>m can be derived by
interchanging exactly two of the elements in
<pn and vice versa. Examples of two such states

are the orderings

K = (*,,. *,, , . . . ,•***»,, **.••• •

Rti,Ry,...,RtJ,

and,

^n = {Rx,R ,Ry,R Rk ...,
Rk,Rx,...,Ri}).

In the above, the representation of the states
<pm and #n, are interchangeable by merely
interchanging the position of the elements RI

and Ry. Computing such expressions for the
transposition heuristic is straightforward be-
cause of the cancellations of the asymptotic
probabilities of being in the intermediate
states. But generalizing the latter for the case
of the Swap heuristic is non-trivial because
such cancellations do not occur. Furthermore,
it is not certain whether such a generalization
may even exist. If the latter is the case and
such a generalization does not exist, the result
will have to be proved using mathematical
tools which have not been used in the literature
to analyze adaptive data structures. These will
involve not merely computing the asymptotic
probabilities of the associated states but also
deriving expressions for the asymptotic cost
evaluated in terms of the asymptotic state
occupancy probabilities.

To conclude this section, we also conjecture
that if two SLL heuristics T and p satisfy the
property that r is more efficient than p, then
the corresponding pair of DLL heuristics, x'
and p', obtained using the directed mapping,
are such that r ' is more efficient than p'. This
conjecture is a generalization of both Theorem
I and the above conjecture for the set of
directed mappings. The result seems intuitive
since a more efficient SLL scheme tends to
push the frequently accessed elements to the
end, and thus plausibly do a better job to
polarize the elements in the DLL.

III. Conclusion

In this paper, we have studied the problem of
adaptively reorganizing a Doubly-Linked List
(DLL) and have presented an interesting
relationship between arbitrary pairs of heur-
istics for this problem and those used to
reorganize a Singly-Linked List (SLL). This
is achieved by introducing the concept of
undirected and directed mappings between
SLLs and DLLs. In particular, we have
introduced a new heuristic called the Swap
heuristic, and derived the asymptotic prob-
abilities for the chain converging to the various
possible orderings. Two conjectures have been
proposed which suggest possible directions for
future research in the area of adaptive DLLs.

Acknowledgements

The authors are grateful to various readers for
their comments and in particular to Mr
Valiveti for helpful discussions.

D. T. H. NG AND B. J. OOMMEN
School of Computer Science,
Carleton University,
Ottawa, Ontario K1S 5B6, Canada

References

1. E.J.Anderson, P. Nash and R. R.
Weber, A counter-example to a conjecture
on optimal list ordering. J. Appl. Prob. 19
(3) 730-732 (1985).

2. J. R. Bitner. Heuristics that dynamically
organize data structures, SIAM J.
Comput. 8 (1), 82-110 (1979).

3. P. J. Burville and J. F. C. Kingman, On a
model for storage and search, J. Appl.
Probability, 10, 697-701 (1973)

4. J. H. Hester and D. S. Hirschberg, Self-
organizing linear search, Comp. Surveys,
17 (3), 295-311 (1985).

5. W. J. Hendricks, The stationary distribu-
tion of an interesting Markov chain, J.
Appl. Probl. 9 (1) 231-233 (1972).

6. Y. C. Kan and S. M. Ross, Optimal list
order under partial memory constraints,
J. Appl. Prob. 17 (4) 1004-1015 (1980).

7. D. E. Knuth, The Art of Computer Pro-
gramming, Vol. 3: Sorting and Searching,
pp. 398-399. Addison-Wesley, Reading,
Mass. (1973).

8. D. Matthews, D. Rotem and E. BretHolz,
Self-organizing doubly-linked lists, / .
Comp. Maths. A, 8 99-106 (1980).

9. J. McCabe, On serial files with relocatable
records, Oper. Res. 609-618 (1965).

10. B. J. Oommen and E. R. Hansen, List
organizing strategies using stochastic
move-to-front and stochastic move-to-
rear operations, SIAM J. of Comput., 16
(4) 705-716 (1987).

11. B. J. Oommen, E. R. Hansen and J . I .
Munro, Deterministic optimal and ex-
pedient move-to-rear list organizing
strategies. Theoretical Computer Science,
74, pp. 183-197, (1990).

12. R. Rivest, On self-organizing sequential
search heuristics, C-ACM 19 (2) 63-67
(1976).

13. S. M. Ross, Introduction to Probability
Models. Academic Press, New York
(1980).

14. J. P. Tremblay and P. G. Sorenson, An
Introduction to Data Structures with Appli-
cations, McGraw-Hill, New York, 1976.

15. D. T. H. Ng and B. J. Oommen, General-
izing singly-linked list reorganizing heur-
istics for doubly-linked lists, Proceedings
of the 1989 Conference on the Math-
ematical Foundations of Computer Science,
Rytro, Poland, 380-389 (1989).

Indexing for multi-attribute retrieval

1. Introduction

In his book,4 Professor Wiederhold discusses
the concept of multi-attribute indexing: this
involves maintaining an index on the con-
catenation of several attributes, to provide a
faster response to a query specifying values for
several different attributes. Since in a given

query, an attribute may or may not be
specified, it is necessary to maintain some
index to serve every combination. (Here, an
index is said to serve a subset of attributes, if
it could be used to answer a query involving
precisely that subset of attributes.)

An interesting feature of multi-attribute
indexing is that one index can be used to
answer queries for several different choices of
subsets of specified attributes. For example,

the index on attributes (1,2,3,4) concatenated
in that order would serve the subsets {1}, {1,2},
{1,2,3}, and {1,2,3,4}. In fact, a multi-attribute
index on k attributes could serve k different
subsets: one of cardinality i for every i with
(1 ^ / < k). The actual subsets served are de-
termined by the order of concatenation of the
attributes. Wiederhold noted that by a clever
choice of order, the number of indexes required
for 4 attributes could be reduced from 15 to 6.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 535

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/5/533/402562 by guest on 09 April 2024


