#(¢) is the state occupied at time ‘¢°, and ¢,
and ¢, are any two states with transition
probabilities

Probl¢(t+1) = 4,14() = 4,] = 4
then, P*(¢,) and P*(¢4,), the equilibrium
probabilities of being in ¢, and ¢, respectively,
obey:

P*(¢m)/P*(¢n) = qn,m/qm.n fOl’ al] m,n.
5)
Now the transition from (R o Ry R,M
LR )to(R‘,R‘,.. R R R )occurs
whenever L is accessed 'from the left or R,
is accessed from the nght Similarly, the
transition from (R,, SR, LR, R )
to (R, ,R . R R . R ) occurs when-
ever R is accessed from the right or R, is
accessed from the left. Observing that these
events are mutually exclusive and substituting
them in (§), we have:
P*R,,R,, ..., Ri,’ R ,R

TS

P*(R,,R,...R, ,R..,R)

D Ty ix

S, +s
=2t U ® porall i (6)

S‘m- Lt si" R
Hence the theorem.

A similar result exists for the Transposition
rule for the SLL.'? Theorem II is a general-
ization of the latter result. Indeed, in the
special case when the probability of access
from the right is zero (that is s, , = 0 for all §),
the Swap heuristic behaves identically to the
Transposition heuristic and (6) becomes ident-
ical to the expression in Ref. 12:

PR R, ..R R _.R) s

s L
P*R, R, .. R, R R s,..

e

Rivest!? also proved that the Transposition
heuristic is always more efficient than the
Move-To-Front heuristic. We can now state
an analogous claim concerning the Swap
heuristic.

Conjecture 1

The Swap heuristic is always more efficient
than the Move-To-End heuristic.
Experimental results clearly support the
conjecture that this result is true for all
distributions.!® However, the proof of the
claim is certainly non-trivial. It will involve
obtaining expressions for the ratio of the
asymptotic probabilities of the chain being in
two states, say, ¢, and ¢, in which the list
representation of ¢, can be derived by
interchanging exactly two of the elements in
¢, and vice versa. Examples of two such states

SHORT NOTES

are the orderings

w= (R, Ry s R R R,
Ry, R, ... R),
and,
B = Re B oo B R R Ry R, R,).

In the above, the representatlon of the states
¢, and ¢, are interchangeable by merely
interchanging the position of the elements R,
and R,. Computing such expressions for the
transposition heuristic is straightforward be-
cause of the cancellations of the asymptotic
probabilities of being in the intermediate
states. But generalizing the latter for the case
of the Swap heuristic is non-trivial because
such cancellations do not occur. Furthermore,
it is not certain whether such a generalization
may even exist. If the latter is the case and
such a generalization does not exist, the result
will have to be proved using mathematical
tools which have not been used in the literature
to analyze adaptive data structures. These will
involve not merely computing the asymptotic
probabilities of the associated states but also
deriving expressions for the asymptotic cost
evaluated in terms of the asymptotic state
occupancy probabilities.

To conclude this section, we also conjecture
that if two SLL heuristics 7 and p satisfy the
property that t is more efficient than p, then
the corresponding pair of DLL heuristics, 7/
and p’, obtained using the directed mapping,
are such that ¢’ is more efficient than p’. This
conjecture is a generalization of both Theorem
I and the above conjecture for the set of
directed mappings. The result seems intuitive
since a more efficient SLL scheme tends to
push the frequently accessed elements to the
end, and thus plausibly do a better job to
polarize the elements in the DLL.

III. Conclusion

In this paper, we have studied the problem of
adaptively reorganizing a Doubly-Linked List
(DLL) and have presented an interesting
relationship between arbitrary pairs of heur-
istics for this problem and those used to
reorganize a Singly-Linked List (SLL). This
is achieved by introducing the concept of
undirected and directed mappings between
SLLs and DLLs. In particular, we have
introduced a new heuristic called the Swap
heuristic, and derived the asymptotic prob-
abilities for the chain converging to the various
possible orderings. Two conjectures have been
proposed which suggest possible directions for
future research in the area of adaptive DLLs.
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Indexing for multi-attribute retrieval

1. Introduction

In his book,* Professor Wiederhold discusses
the concept of multi-attribute indexing: this
involves maintaining an index on the con-
catenation of several attributes, to provide a
faster response to a query specifying values for
several different attributes. Since in a given

query, an attribute may or may not be
specified, it is necessary to maintain some
index to serve every combination. (Here, an
index is said to serve a subset of attributes, if
it could be used to answer a query involving
precisely that subset of attributes.)

An interesting feature of multi-attribute
indexing is that one index can be used to
answer queries for several different choices of
subsets of specified attributes. For example,

the index on attributes (1,2,3,4) concatenated
in that order would serve the subsets {1}, {1,2},
{1,2,3}, and {1,2,3,4}. In fact, a multi-attribute
index on k attributes could serve k different
subsets: one of cardinality i for every i with
(1 < i< k). The actual subsets served are de-
termined by the order of concatenation of the
attributes. Wiederhold noted that by a clever
choice of order, the number of indexes required
for 4 attributes could be reduced from 15 to 6.

THE COMPUTER JOURNAL, VOL. 35, NO. 5, 1992 535

¥202 14dy 60 U0 1senb Aq 6/5Z01/GE£G/S/GE/E101ME/|UlW0d/Wo0 dno olwepeoe//:sdiy woij papeojumoq



Since each index can serve precisely one subset
of cardinality i, {1 < i < k), it follows that (3)
is in fact the minimum number of indexes
required to serve all combinations of 4
attributes. For 6 attributes, Wiederhold used
trial and error to work out a scheme to serve
all combinations with 20 indexes. His success
at that led him to conjecture that the lower
bound of (I—I) could be achieved in the general
case. He was not aware of any way to generate
such a set of indexes and he posed it as an
open question with a request for a solution.

An affirmative solution to this conjecture
was presented informally, by the first author,
at the Database Seminar of the Stanford
Department of Computer Science. Professor
Wiederhold and others present noted that,
since the indexes used are not necessarily in
lexicographic order, it would be useful to have
a means of providing the proper order of
concatenation for a subset specified in lexico-
graphic order.

Our solution was incorporated into Pro-
fessor Wiederhold’s book File Organization
for Database Design Ref. S, p. 168. Related
algorithms have been discussed in Refs 1-3.

The purpose of this note is to formulate and
solve the same problem in a more formal
setting. Our hope is to give a better insight
into the combinatorial nature of this problem.

Section 2 proposes an algorithm to generate
the set of indexes sought in Wiederhold’s
question. Section 3 gives an algorithm which
will return the specific index generated by the
algorithm of section 2 which serves a subset
provided as input.

2. The main result

It was noted in the introduction that the order
of the concatenation of attributes in a multi-
attribute index determines which subsets of
attributes that index serves. More precisely,
the ordered r-tuple X = (x,,...,x,) of distinct

integers 1 < x, <N serves the family F=
{{x:h {xl,xz},.. ,{x1, X5, ..., X,}} of subsets of
{1,...,N}. To simplify notation, in the

algorithm Build_Index_Set attributes are
represented by characters from an alphabet
and indexes by strings of that alphabet. For
the purpose of specifying the details of our
algorithms, we shall find it convenient to rely
on the following functions operating on
strings:

LEN(A): Returns the length of string A; (an
empty string has length 0).

CONCAT(A, B): Returns the string produced
by appending B to the end of 4.

LEFT (A, n): Returns the string consisting of
the n leftmost characters of A4.

Procedure Build_Index_Set(N);
{Input: an integer N;
Qutput: a minimum set R[I. (l )1 of indexes
that serve every subset of {1,. N} }
0. begin
1. R{1)<*A’; {here, A stands
for the empty string}
2 pt<2;
3 for i< 1 to N do begin
4 spt<rpt—1;
S. for j« | to spt do begin
6. if LEN(RL/]) 2 [3] then begin
7 R[rpt}« LEFT
(CONCAT( i’, RLJD,
LEN(RLD);
pt < —rpt+1;
end;
0. R[j] < —CONCAT(RL)), ‘i)

= e x
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11. end
12.  end;

13, return(R)
14. end;

We are now in a position to state our main
result.

Theorem 1. R is a minimal set of indexes which
serves all subsets of {1, ..., N}.

Our proof of Theorem 1 relies on several
intermediate results which we present as
lemmas.

To simplify our exposition, when referring
to the procedure Build_Index_Set (and when
no confusion is possible) the term iteration
always refers to an iteration of the outer loop;
furthermore, we shall let S(p, ¢) stand for the
set of all the strings of length ¢ in R at the end
of the pth iteration of Build_Index_Set.
In particular, S(¥, 1) denotes the set of all the
strings of length 7 in R when Build_Index_Set
terminates. We let | 4] stand for the cardinality
of set 4.

Lemma 1. At the end of the kth iteration
of procedure Build_Index_Set, R contains
precisely (5)—(,%)) strings of length 1, for
M<i<k.

Proof of Lemma 1. By induction on k; the
statement is trivially true at the end of the first
iteration ; assume the statement true at the end
of the (k—1)th iteration of procedure
Build_Index_Set.

Let 1 be an arbitrary, but fixed, integer in
the range [£] to k. To find S(k, 1), we note that
in iteration k of the outer loop for every ¢ such
that (] <r<k.

® Line 10 replaces every string in S(k—1,
t—1) with a string in S(k, 1),

® Line 7 writes one new string in S(k, ¢) for
every string in S(k—1,¢)
[since ¢ > [£], the condition of the if state-
ment in 6 is met}, and

o Every non-empty string in R was written in
Line 7 or Line 10 of the current iteration.

Thus, by the inductive hypothesis, |S(k, I)|

(G

which can be written as

k—1 k—1 k—1 k—1
+ - + .
1 1-1 1+1 1
Now, applying twice a well known com-
binatorial identity, we get

k k
ISk, DI =(])~(1+1),

as claimed. B

Lemma 2. When Build_Index_Set terminates,
there is a mapping f from the subsets of {1, ...,
N} to the strings in R such that (V) serves Y
and LEN(AY)) = max{|Y|, N—|Y|}.

is

Proof. We will define recursively a sequence of
functions f, such that £, is the desired mapping.

First, let f;({1}) = ' 1°. Next, for an arbitrary
subset S of {1,....k} (k=2), set §«
Seoi(S—{k}). Now f,(S) is defined as follows:

(i) If k is not an element of S, then f,(S) =
CONCAT(S, k).

(ii) Else if LEN(S") =|S|—1, then f.(S) =
CONCAT(S", k)
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(iii) Else f,(S) = LEFT(CONCAT(‘k’,S"),
IS

To prove that the mapping f, has the
desired properties, we use induction on N.
Clearly, the statement holds for N = 1. As-
sume it holds for N—1. We not that if /,(S) is
assigned in (iii), then LEN(S’) > |S| and, since
by the induction hypothesis LEN(S”) > max
{IS|—1, N—(IS|—1)} it follows that LEN(S")
= [5]. Thus the condition of step 6 of
procedure Build_Index_Set is met and the
string defined in (iii) is written in step 7 of
Build_Index_Set. Since LEN(S") > |S—{N}|,
LEFT(S’,|S|—1) still serves S—{N} and
thus LEFT(CONCAT(‘N’,S’), IS|) serves
S. We also have LEN(f,(S)) = LEN(S").
Since LEN(S") = |S| and N-|§|=
N—1—|S—{N}|, the length condition is still
met.

If f(S) is assigned in (i) or (ii), then the
string assigned is the index that replaced S’ in
step 10 of procedure Build_Index_Set, and so,
LEN(fy(5)) = :LEN(S")+1, asclaimed. W

Proof of Theorem. Let T be an arbitrary set of
indexes which serves every subset of {1, ..., N}.
We shall find it convenient to rely on two
straightforward observations whose justifica-
tion is immediate.

Observation 1. A subset Y of {1, ..., N} can only
be served by an index of T of length at least |Y|.

Observation 2. No two distinct subsets Y, Z of
{1,..., N} of the same cardinality can be served
by the same index in T.

By Lemma 2, R serves all subsets of {1,...,
N). To prove the minimality of R, we only
need associate with every index i, in R,
a corresponding index i, in 7, such that
LEN(i,) < LEN(i;), and such that distinct
indexes in R are associated with distinct
indexes of T.

To avoid using a fussy formalism, we shall
describe the above mapping by the following
procedure.

Step 1. Start with all indexes in 7 ‘unmarked’;
set 1< 0;

Step 2. Pick (Y)~(,,) unmarked indexes in T
of length at least N—¢, and assign them to Q.
Step 3. Map every index i in S(N,N—1) to a
distinct index j(i) in Q; j is ‘marked’ in T.
Step 4. Set 1< t+1; if ¢ < [¥] then goto Step
2 else exit.

Fact 1. If T contains M marked indexes, there
are at least ()~ M unmarked indexes of length
N—tinT.

Proof of Fact 1. By Observation 2, there are at
least (¥)—M subsets of {l,...,N} of
cardinality N —t that cannot be served by the
marked indexes in 7. Now Observation 1 and
2 combined, guarantee that there are at least
(‘:’)—M unmarked indexes in 7T of length at
least N—-r. B

Fact 2. When Step 2 is about to be executed for
the kth time, T contains (,~,) marked indexes.

Proof of Fact 2. The proofis by induction on k;
the statement is obviously true for k =0.
Assume it holds true after k executions of Step
2. We only need prove that the statement
holds true when Step 2 is about to be executed
for the (k+ 1)th time.

Since there are, by the induction hypothesis
(.Y, marked indexes in T, Fact 1 guaramees
that there must exist at least (3)—(>))
unmarked indexes in T of length at least
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N—k. By Lemma 1, precisely (§)—(,~,) of
them get marked in Step 3, and the conclusion
follows. W

To complete the proof of Theorem 1 we
only need observe that, by Fact | and Fact 2
combined, at the completion of the above
procedure, each element of R will be mapped
to an index of T of at least the desired length.
|

3. Generating an Individual Index

The following procedure takes the incidence
vector of a subset of {l,..., N} as input and
returns the index generated by procedure
Build_Index_Set which serves that subset.

Procedure /ndex_Gen(Y);

{Input: An integer N and a subset Y of {l1,...,
N} given by its incidence vector S

Output : The index generated by the procedure
Build_Index_Set which serves Y}

0. begin

1. for i< 1 to N do begin

2. if S[7] = 0 then

3. B« Concat(B, i’);

4. else

5. if B = A then

6. A< CONCAT(A, i");
7. else begin

8. A<« CONCAT('i’, A4);
9. B< LEFT(B, LEN(B)—1);
10. end

1l. end;

12. return(CONCAT(4, B))

12. end;

Announcement

25-28 May 1993

The 8th Scandinavian Conference on Image
Analysis, University of Tromse, Norway

Announcement and first call for papers

Invitation to the 8th SCIA

The 8th Scandinavian Conference on Image
Analysis will be arranged by the Norwegian
Society for Image Processing and Pattern
Recognition (NOBIM) and sponsored by the
International Association for Pattern Rec-
ognition (IAPR). The conference will be held
in Tromse from 25 to 28 May 1993. Tromse,
located at latitude 69°40° N, is Northern
Norway’s centre for administration and edu-
cation.

Scientific programme

The scientific programme will include several
invited speakers and parallel sessions with
papers for oral and poster presentation. The
conference language will be English. The
contributed papers will cover original un-
published research results, either theoretical
or applied.

Conference topics

@ Image processing and analysis
@ Pattern recognition
o Computer vision

SHORT NOTES

Theorem 2. For every subset Y of {I,...,N},
Index_Gen returns the index generated by
Procedure Build_Index_Set which serves Y and
is of length at least Max{{Y|,N—|Y1{}.

Proof of Theorem 2. Let S, = (s, ...,5,) and let
Y, be the subset of {1, ...,k} whose incidence
vector is S,. We shall prove by induction on k
that after k iterations of the loop of Procedure
Index_Gen, I, = CONCAT(A, B) contains an
index generated by k iterations of
Build_Index_Set which is of length at least
Max {|Y,l,k—|Y [} and that the string A4
contains precisely the elements of Y,. The
statement clearly holds for k = 1. Suppose it
holds for k—1.

If 5, =0, then only line 3 of Index_Gen
executed in this iteration. By the induction
hypothesis, I, = CONCAT(/,_,, k’), anindex
that would be written in Step 10 of procedure
Build_Index_Set. Since ¥, = Y,_,, the string 4
still contains precisely the elements of Y.
Since LEN(/,) = Len(/,_)+1, the length
requirement is met.

Now suppose s, = 1. If the string B is
empty, then only step 6 of Index_Gen will be
executed. Now the string A contains precisely
the elements of Y. As above, [ =
CONCAT(I,_,, k"), thus the index is written
by step 10 of Build_Index_Set and satisfies the
length requirement. If the string B is non-
empty, then steps 8 and 9 of Index_Gen are
executed : Step 8 guarantees that the string 4
contains precisely the elements of Y, ; Step 9
guarantees that [, = LEFT(CONCAT(‘k’,

e Parallel algorithms and architectures
® Neural nets

@ Remote sensing

® Medical and biological applications
o Industrial applications

Submission of papers

Papers must be in English, and only full papers
will be accepted. Authors are invited to submit
three (3) copies of each full paper. The cover
paper should contain: title of the paper;
name(s) and affiliations of the author(s); brief
abstract (2000 words); name and address for
correspondence.

All pages should show the name of the first
author and be consecutively numbered. In the
final version all pictures must be rasterised. If
the length of the paper exceeds 8 pages or
contains colour illustrations an additional fee
will be added to the registration fee.

The deadline for submission of papers is 15
October 1992. All papers will be assessed by
two reviewers. Authors will be notified as to
acceptance by 20 December 1992. For accepted
papers, a final camera-ready copy will be
required by 1 March 1993. Instructions for
writing the final paper will be sent to the
authors.

Social programme

The social programme planned includes visits
to Spitzbergen and North Cape. Participants
and accompanying persons are invited to bring

I, ), LEN(Z,_)). If LEN(J,_) > [%], then
1, will be written in Step 7 of Build_Index_Set
and will meet the length requirement. But
LEN(/,_,) must be greater than [%!], for
otherwise Max{|Y,_,|,k—|Y,_,|} = [, thus
|Y,_,l =%} and Bisempty. W
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Dominion University, Norfolk, Virginia,
23529, US.A.
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cross-country or mountain skiing equipment,
as the skiing conditions in the mountains are
normally superb in late May. Sea-fishing will
also be arranged and we will have a good
chance of enjoying all these activities in the
midnight sun. We emphasise that in Tromse,
also called the gateway to the Arctic, the
midnight sun lasts from approximately the
20th of May until the 20th of July. The
scenery at the time of the conference will be
snowy mountains and day-light the whole
night through as the sun never goes to rest.
The indoor activities will consist of a get-
together party on the first night of the
conference and the Conference Banquet, both
of which are included in the conference fee
(there is an extra fee for accompanying
persons).

Further information

For all inquiries regarding the conference
and/or for inclusion on the mailing list, please
write to:
Kjell Arild Hogda, Forut Information Tech-
nology Ltd., P.B. 2806 Elverhoy, N-9001
Tromse, Norway. Tel: +47 83 58 622. Fax:
+47 83 82420. E-mail: scia@conan . uit.no.
Requests of any kind concerning the con-
ference or the social programme can be sent to
this e-mail address. By simply mailing the text
send info to scia@conan-uit-no you will
automatically be included in our conference
mailing list and will regularly be supplied with
up-to-date information on the programmes.
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