Editorial — Formal Methods: What? Why? and When?

« What exactly are they?
« Why do we need them?
« When will they deliver?

The original title of this special issuet was simply ‘ Formal
Aspects’, and it was intended to bring topics which are of
particular interest to the BCS FACS (Formal Aspects of
Computing Science) specialist group to a wider audience.
Almost any area of ‘computing’ has a formal aspect, and
hence the potential range of subjects and number of
contributions could have been huge. Indeed, the wide
range of topics addressed by FACS workshops over the
years is indicative of this diversity and is now reflected in
FACS volumes within the BCS Workshop series. Some
narrowing was obviously needed, and hence the topic of
Formal Methods was selected.

Although often spoken about and written about, there
is much variability in what is actually meant by the term
‘Formal Methods’. To extend a familiar quip, ‘Formal
Methods are over sold, under used, and little undér-
stood’.

Many readers of The Computer Journal (TCJ) work in
areas of computing which are not perceived as being
formal — although, ultimately, they probably are; indeed,
lack of appropriate formality is arguably the cause of
many problems that arise in the development of programs
and systems. But I'm getting ahead of myself. In an
attempt to bring the essence of so-called Formal Methods
to TCJ readers who would not normally delve into
publications of a more theoretical or formal nature, the
authors of both invited and submitted papers were asked
to regard ‘ Formalism for Informalists” as a working title
for this issue. The hope being that those readers not
already familiar with Formal Methods might gain an
appreciation of the topic and find guidance about where
to look in the (introductory ?) literature should they wish
to investigate the subject further. The intention was that
papers would then go on to give ‘state of the art’
information which would be of more relevance and
interest to those who are already ‘converts’ or who are
familiar with the kind of notation which is the fingua
Jfranca of Formal Methods.

Obviously each author has a different perception of
what an ‘informalist’ is and what he may assume of the

typical TCJ reader. Hence, although I have made.

attempts to avoid the extremes that were present in some
early drafts, there is considerable variation in the level of
explanation to be found in the papers. The inclusion of
more discursive material and an attempt to make each
paper reasonably self-contained has resulted in papers
being somewhat longert than is normal. In two cases large
papers have been divided and each part written for a
.different target audience, typically the newcomer to a
topic and the aficionado.

t The contents of this special issue extend over two physical issues
of the Journal (35(5) and 35(6)) — the symbol } indicates papers that
appeared in TCJ, 35(5), October 1992. In order to put the complete set
of papers in context, essentially the same editorial as appeared in 35(5)
is repeated here.

A major problem with ‘ Formal Methods’ and perhaps
one which is largely responsible for the widespread
disillusionment that they don’t provide all the answers —
just like that—is that they are not prescriptive. In an
attempt to clarify what (I think) Formal Methods are,
and what they are not, I include a short paper of my own
entitled Formal Methods — Mathematics, Theory, Recipes
or what?} To paraphrase that paper here would largely
defeat its objective; but using a loose definition that
incorporates the precise descriptions of requirements for
systems, of the actual systems themselves, and of the
means by which we can reason about their inter-
relationship, the contents proper of this issue follow as set
out below.

We start with two papers on logic by Galton. Here the
split is fairly obvious. Classical Logic: a Crash Course for
Beginners} is a short but very readable introduction to
the logical concepts that underlie formal reasoning. His
second paper, Logic as a Formal Method], deals with
more complex and powerful logical systems.

The next two papers address the topic of model-based
specifications (i.e. specifications of the style of VDM and
Z) and discuss how such specifications can be used to
derive programs. The first, The Rudiments of Algorithm
Refinement] by Woodcock, presents a calculus for the
derivation of procedural programs, whereas Clement in
his paper, The Role of Data Reification in Program
Refinement: Origins, Synthesis and Appraisalf, ap-
proaches the task by considering the data and the basic
operations that manipulate it. Of course any program
involves both data and control, and hence these aspects
converge and there is common ground.

An alternative approach to specification — and one
which is more fundamental, indeed it is in some sense
assumed by model-based specifications — is via algebraic
axioms. In a two-part paper entitled Introduction to
Algebraic Specification, Part 1, by Ehrig, Mahr, Classen
and Orejas sets the groundwork in Formal Methods of
Software Development and then in Part 2 Ehrig, Mahr
and Orejas give a comprehensive account of the origins
and development of the subject under the title In-
troduction to Algebraic Specification, From Classical
View to Foundations of System Specifications. This is
one topic within the ambit of Formal Methods that is
now very well established and can be regarded as mature.
This is in no small measure due to two of our contributing
authors.

From abstract(?) data types we move to an area that
may be regarded as ‘an application’. In Protocol Design
and Implementation Using Formal Methodsi by van
Sinderen, Pires and Vissers the language LOTOS (Lan-
guage for Temporal Ordering Specifications) is used not
only as a specification language but also as a design
language. That paper describes the use of specialised
LOTOS-to-LOTOS transformations and this leads us

"THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 545

CPJ 35

120z Judy 01 U0 159N AQ 91.92GE/GHG/9/GE/Bl0MME/|UfW00/W0o"dno"olLIBpeoe//:Sdny WOl papeojumoq

EDITORIAL

nicely to a more general presentation in How to
Produce Correct Software — An Introduction to Formal
Specification and Program Development by Transfor-
mation by Boiten, Partsch, Tuijnman and Volker.
The transformational approach is further developed
by Harrison in his paper A High-Order Approach to
Parallel Algorithms, which highlights the close and
natural interplay between functional languages and
parallelism.

As will already be apparent, specifications play a
crucial role in Formal Methods, and hence it follows that
the languages used to express specifications must be
properly defined. One approach to this topic is addressed
by Larsen and Plat in Standards for Non-Executable
Specification Languages. Having invested heavily in the
formal development of a program or system, what
happens if changes are required? Correctness consider-
ations seem to dictate that we should re-derive the
(revised) system ab initio. Common sense suggests that
the two systems are likely to be very similar, and hence
there ought to be a quicker and more direct way to tackle
this problem. This takes us to the area of the reusability
and modification of formally derived software. A
contribution to this relatively unexplored subject is made
by Kuhn in A Technique for Analysing the Effects of
Changes in Formal Specifications.

Of course, depending on the context in which a piece
of software is to be used, the kind of factors included in
its specification will vary greatly. The reliability of
software within real-time control systems has come
under great scrutiny in recent years, and in their extensive
paper Barroca and McDermid appraise Formal Methods:
Use and Relevance for the Development of Safety Critical
Systems.

As argued in my position paper, ‘Formal Methods’
are not necessarily the same as so-called structured
methods. Semmens, France and Docker follow up this
point. In Integrating Structured Analysis and Formal
Specification Techniques they highlight the respective
advantages and describe attempts to maximise the
inherent benefits by marrying the two.

Continuing the theme of bringing formality into
‘established” practice Misi¢, VelaSevi¢ and Lazarevic, in
their paper Formal Specification of a Data Dictionary for
an Extended ER Data Model, not only present a
formalisation, in Z, of the basic Entity Relation model
but also report on on-going work associated with the
formal development of an extended (XER) model.

The final contribution, Automatic Translation of VDM
Specifications into Standard ML Programs by O’Neill,
outlines how a VDM syntax-directed editor was modified
so as to deliver SML code as output; thus producing a
valuable tool to assist in the validation of the original
specification.

Working to meet deadlines for this special issue has
been hard work for all concerned. I am greatly indebted
to the authors and to the referees, all of whom strove
very hard to deliver the goods within the very tight
timescales. Special mention must be made of several
research workers who recognised that their commitments
prevented them accepting the invitation to contribute,
and of one author who eventually found it impossible to
produce copy by the required date and had to withdraw.
I must also thank Colin Tully and Cliff Jones, who gave
advice which greatly assisted in my attempts to cast the
net as wide as possible.

I make no claims that my coverage of Formal Methods
is exhaustive. Little, if any, explicit mention is made of
topics such as formally based CASE tools, concurrency,
the various programming paradigms as such (the most
notable omission being Object-Oriented ‘ programming’),
real-time systems, and the use of Formal Methods in
the creation of ‘general’ Information Systems. Never-
theless, the hope is that by studying (some of) the articles
herein the reader might appreciate that Formal Methods:

o allow us to reason logically about system development,
e are needed to fully demonstrate the adequacy of our
programming products, ’
e will pay ever-increasing dividends as their use -is
extended,

e are oversold - but only by those who do not fully
understand them,

e arc underused — because not enough programmers are
skilled in their use, and

e are insufficiently understood — because they require an
appreciation of abstract concepts and great attention
to detail. These ‘skills’ take a considerable time to
assimilate.

If this issue makes the reader more aware of the
capabilities of, and the rationale for, Formal Methods it

. will have fulfilled the editors’ expectations.

JOHN COOKE

546 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$20z I4dy 0} uo 1senb Aq 91.9ZGE/G1G/9/GE/e101ME/|UlWod/Wo0 dno-olwepeoe//:sdiy wolj papeojumoq

