How to Produce Correct Software — An Introduction to Formal
Specification and Program Development by Transformations

E. A. BOITEN, H. A. PARTSCH, D. TUIJNMAN anp N. VOLKER*
University of Nijmegen, Department of Computer Science, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

The task of software production is to build software systems which are to fulfil certain requirements. For years the
approach has been to build up by trial and error a program which, having satisfied carefully prepared test data, offers a
plausible solution to the problem. But is it correct? Even for toy examples this is not obvious. In particular, it is often
not even clear whether the original problem has been properly understood. The reason for this dilemma is that the
transition from the informal problem statement to the final program is too big to be intellectually manageable. To
master these problems, we advocate a software development method where the whole process is split into smaller steps
by introducing formal specifications for (parts of) the problem and then stepwisely deriving efficient programs by

correctness-preserving transformations.
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1. INTRODUCTION

The task of software production is to build software
systems which are to fulfil certain, often vague,
requirements. As a little example, which will accompany
us in the remainder, consider the following problem:

Airports have electronically controlled boards to inform
passengers of departure times of flights. The entries on the
board are linearly ordered according to the (scheduled)
departure times. Whenever a plane leaves, the respective entry
on the board is eliminated and substituted by a blank entry
(*gap’). Since not all planes leave on time, gaps usually will not
only appear at the beginning of the board, but can be scattered
all over it. After a certain period of time, usually the board is
‘updated’ by shifting all meaningful entries to the beginning of
the board (without destroying the previous ordering) and thus
accumulating all gaps at the rear. A request is received to
develop a program for this update operation.

A programmer, confronted with this problem, might
come up with the following program, written in a Pascal-
like notation:

function update (1:board):board;
begin

var vi, vk:nat; var vt:board;

vis=1; vt=t;

for vk from 1 upto || do

if vt[vk] is gap

then skip
else vr[vi] = vt[vi]; vi[vk) ==gap; vi=vi+ 1

endif
enddo;
vt
end

At first glance, this little program seems to be a plausible
solution to the problem. But is it correct? Even for
such a toy example, this is not obvious. In particular, it
is not even clear whether the original problem has been
properly understood. The reason for this dilemma is that

* This research has been carried out within the NFI-project STOP
(Specification and Transformation Of Programs) and partially
sponsored by NWO (Netherlands Organization for Scientific Research)
under grant NFI-FW3315.

the transition from the informal problem statement to
the final program is too big to be intellectually
manageable. To master these problems, we advocate a
software development method where the whole process is
split into smaller steps by introducing formal
specifications for (parts of) the problem and then
stepwisely deriving efficient programs by correctness-
preserving transformations. Its essence is illustrated by
Fig. 1.
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From Fig. 1 it is obvious that making a formal
specification is an essential first step for our approach.
This may seem like extra work, but the formulation of
such a specification forces the client to clarify his/her
wishes at an early stage, thus decreasing the chance of
futile work.?” The transformation phase consists of the
application of correctness-preserving transformations;
thus the final result satisfies the formal specification by
construction. Furthermore, the calculational nature of
the transformations suggests building systems which
support the transformation process.

The use of transformational programming is somewhat
reminiscent of the use of mathematics in engineering.
Just as few people would employ formal calculations for
solving trivial problems, transformational programming
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should not be seen as aimed at the derivation of simple,
‘throwaway’ programs. Instead, the particular strength
of the method lies in deriving programs which are either
very sophisticated or have to be 100 percent correct.

An additional benefit of transformational program-
ming lies in the fact that many transformation rules are
formalisations of programming knowledge. This can be
helpful for a better understanding of programming in
general and, in particular, should lead to more insight
into the (partial) automation of programming. A further
aspect is the possibility of reuse, i.e. parts of derivations
can be used in the derivation of programs for related
problems. This makes the approach not only useful for
the development but also for the maintenance stage of
the software life cycle.

The basic idea of transformational programming is
not new; for 15 years research has been going on. By
now, the method is well established in academic circles
(cf. e.g. Ref. 27 for a comprehensive treatment of the
subject), and has ripened enough to make it feasible for
use in real-world applications.

2. FORMAL SPECIFICATIONS

An initial formal specification must give a clear and
precise description of what the program-to-build should
produce. The formalisation of an informally stated
problem usually entails the formulation and use of high-
level, abstract concepts. Therefore, a specification
language has to be sufficiently rich to express these
adequately. Below we present some specification
constructs, such as algebraic data types or descriptive
constructs, which are better suited for this purpose than
those of conventional imperative or functional languages.

2.1. Algebraic specification of data structures

An algebraic specification gives a common description of
data structures and the (basic) operations on these in an
implementation-independent way. One only specifies the
desired properties of these operations, without giving an
operational description. We may consider a thus specified
abstract data type as a ‘black box’, of which we can only
observe the outside behaviour of the operations.

Access
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Construction
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operations

Figure 2.

Basically, an abstract data type is determined by its
operations. As can be seen from the above picture, these
fall conceptually into two classes. On the one hand,
constants and constructors build ‘new’ objects. On the
other hand, test and access functions extract information
from an abstract object, and modification functions turn
one object, and some primitive information, into another
object.

The interrelations between the various operations are
defined by (conditional) equations between terms, built
from the constants and operations as described above.

Each term represents an abstract object; an equation
specifies that two terms represent the same object. This
forms the essence of the semantics of algebraic
specifications.

This way of specifying abstract data types gives great
flexibility with respect to implementation: any concrete
data structure, with appropriate operations on it, that
fulfils the stated properties can be used. Moreover, the
characteristic properties are fixed, and can be used in
transforming a program - irrespective  of what
implementation will be chosen for the algebraic
specification.

For formalising the essential data structure in our
running example, the flight board, different abstract
concepts might be appropriate. One possibility is to view
it as a sequence of entries. Disregarding the nature of the
particular entries, we first concentrate on a specification
of the concept ‘sequence’.

A sequence of objects (of arbitrary element type) is
either empty (constant ¢), or it is obtained by adding an
object ‘before’ another sequence (constructor >+). In
the latter case, the sequence can be decomposed into its
first element and the rest of the sequence. As these two
operations are partial, a function to test whether a
sequence is empty (isempty) is also needed.

Formally, this yields the following specification,
written in a Pascal-like notation. The header declares the
name of the type and its parameters (here: an arbitrary
sort m); the exports section lists those identifiers which
are visible outside the type definition. Then follow the
declarations of sorts, constants and operations; partial
operations (such as first or rest) are provided with
assertions restricting their domains. Lastly, the properties
(laws), which were motivated informally above, are
specified.

abstracttype SEQU = (sort m):
exports sequ, ¢, isempty, first, rest, _>+_;
sort sequ,
£: sequ,
function isempty (sequ):boolean,

{empty sequence}

{test on emptiness}
function first (s:sequ| - isempty(s)):m,
{first element}
function rest (s:sequ — isempty(s)) :sequ,
{all without first element}
function _ >+ _ (m; sequ):sequ;

{addition of an element}
laws x:m; s:sequ ||

isempty(€) = true,

isempty(x > +5) = false,

Sirst(x > +s) = x,

rest(x >+s)=3s
endabstracttype

The abstract notion of sequences thus specified can be
implemented in various ways. One-way linked lists are an
obvious possibility, but sometimes doubly linked lists
may prove to be more useful; and when the sequences are
known to be limited in length, arrays also can be
considered. These are but a few of the alternatives.

Like functions, parameterised specifications, such as
SEQU, can be instantiated with concrete arguments. For
instance, to have sequences of natural numbers at one’s
disposal, one declares

type natsequ = SEQU(nat)
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which gives a sort natsequ and the operations and
properties of SEQU (with all occurrences of sort m
replaced by nat). Instantiation facilitates the extension of
an abstract type by new functions or extra properties, as
shown in the example of indexed sequences below.

The exported operations of a type can be made
available in another type by using the based on-construct.
This enables the hierarchical construction of data types,
and thus modularisation of the overall problem
specification. As a practically important consequence,
implementation of one type is possible independently of
the choice of implementation for other, more primitive
types.

Sequences as specified above only allow sequential
access from left to right. Sometimes, however, direct
access to arbitrary elements of a sequence is desirable.
Using instantiation and hierarchical construction via
based on, we can extend the specification of sequences
with operations for indexed access:

abstracttype INDSEQU = (sort m):
exports sequ, &, isempty, first, rest, _ >+ _,
) ] <[=:-15
based on NAT;
type sequ = SEQU(m);
function |_| (sequ):nat,
{length}
function _[_] (s:sequ; i:natfj | < i< |sf):m;
{indexed access}
function _[_:_] (s:sequ; i:nat, j:nat ||
1<ig<sInl €< |s)):m;
{‘slicing "}
laws x:m; s:sequ; i:nat ||
lel =0,
[x >+5 = 1+]s,
Is| = 1= s[1] = firsi(s),
i>1=si] = (rest(s)) [i—1],
i>j=sli:j]=¢,
jzi=slij] = sl >+s [i+1:]]
endabstracttype

Returning to our running example, we now may specify
a flight table as an indexed sequence of elements:

type board = INDSEQU(elem)

where an element is either a ‘real’ entry or a gap,
formally:

type elem = entry| gap.

Of course, due to space limitations, only the flavour of
algebraic specifications can be given. For a more
elaborate treatment, the reader is referred to (e.g.) Refs
4,16, 17 and 41.

2.2 Descriptive specifications

The operations provided by an abstract data type form
the basis for specifying algorithms. Just as algebraic
specifications only define what result an operation has,
and not how it is implemented, for an initial formal
specification of an algorithm one is merely interested in
describing its result, rather than how it is calculated.
Therefore more abstract concepts are needed than purely
imperative or functional constructs.

For predicates, for instance, quantifiers often form a
useful means of describing a problem. Assuming an

equality = on the element type, equality of two sequences
can be specified as

function _=_ (s, 7:sequ):boolean;
Is| = |¢| A Vicnat ||(1 < i< |s]) e sti] = {[i]

where the (sequential) conjunction A and implication &>
ensure evaluation from left to right in order to cope with
partiality. Another example is testing whether all gap-
entries on a board have been shifted to the rear, which is
specified by

function normalised (¢:board):bool;
35,5 :board || f = s++ 5 A no-gaps(s) A all-gaps(s”)

with 4+, no-gaps and all-gaps as defined below.

In the same manner, a function result of a type other
than boolean can be characterised by a predicate that
gives the relation between arguments and result. For
instance, an updated board has to have the same non-
gap entries, in the same order, as the original board, and
all gaps shifted to the rear:

function update (t:board):board;
some s:board || |{| = |s| A same-entries(s, t) A
normalised(s)

The operator some formalises a (non-deterministic)
choice among all objects satisfying the given predicate.
Thus update is a non-deterministic ‘function’, i.e. not a
function in the mathematical sense. If a function is
known to be determinate, this can be made explicit by
using that instead of some — e.g. for joining two
sequences:

function _ ++_ (s, ¢:sequ):sequ;
that u:sequ || [u] = [s|+{f| A @[1:|s]] =s Aulls|+1:Jul] = £

2.3 Applicative-functional specification

Of course, specifications can also be written with the
usual constructs of functional languages: conditional
expressions, as well as definition and application of
functions, including recursive application. As functional
languages are by now well established,®'* we shall not
go further into this subject, but restrict ourselves to some
examples.

Appending an element at the end of a sequence can
easily be specified using the join-function:

function _ +< _ (s:sequ; x:m):sequ;
s++ (x>+¢)

A filter function that yields the subsequence of all
elements which fulfil some predicate is given by:

function filter (s:sequ; p:function (m):bool):sequ;
if isempty(s) then ¢
elsf p(firsi(s)) then firsi(s) > + filter(rest(s), p)
else filter(rest(s), p) endif

With this function, we can easily specify the functions
no-gaps, all-gaps and same-entries mentioned above
(where _is gap tests whether an object of type elem is of
type gap):
function all-gaps (t:board):bool;

Silter(z, _is gap) = t;
function no-gaps {t:board):bool;

Silter(z, ~(_is gap)) = ¢;
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function same-entries (s, {:board):bool;
Silter(s, ~(_is gap)) = filter(t, ~(_is gap))

Moreover, functional constructs can be mixed freely with
descriptive constructs.

2.4 Imperative constructs

In practice, most programs are written in imperative
languages like C and Pascal. Therefore, we also allow
imperative programs, but recommend their use mainly
for the final goal of a program derivation. The essential
part of the work should be done at the functional level,
since functional languages have been shown to be more
amenable to formal manipulation.

3. TRANSFORMATIONAL
PROGRAMMING

The aim of a transformational development can vary a
lot depending on the specification and also on non-
functional requirements such as the degree of efficiency
required, the kind of language in which the
specifications/programs are stated and the target com-
puter architecture. In general the following basic tasks
can be distinguished:

e development of algorithmic solutions from algebraic
or descriptive specifications;

e optimisation of programs with respect to their control
structure;

e cfficient implementation of data structures;

e adaptation of programs to different architectures.

Most transformation rules assert the equivalence between
two pieces of program, denoted by =, possibly under
some conditions. This means that, in the context of a
larger program, either piece may be replaced by the other
without changing the meaning of the program. There are
also rules which allow us, in one direction, to refine the
semantics of a program, i.e. to make/restrict a choice out
of several options left open in a specification.

Transformation rules can be divided into several
groups depending on the constructs occurring within
them and on their degree of complexity. Typical basic
rules are the laws and derived properties of the underlying
data types like the commutativity of multiplication, or
the rule

isempty(s)y =|s| =0

which holds in the type INDSEQU defined above.
Further basic rules deal with the introduction, elim-
ination and interchangeability of the constructs of the
specification language, like the distributivity of function
application over a conditional expression:

Af B then E, else E, endif)
= if B then f(E,) else f(E,) endif

Of particular importance are the elementary rules about
functions, like the instantiation of a function with actual
parameters, called ‘unfolding’, and the reverse ‘folding’
operation, which replaces an expression by a suitable
function application.!! In this context we must also
mention ‘generalisation’: the introduction of a new
function by adding extra parameters to an already
existing one. The combination of these rules on functions,

together with the other basic rules, forms a quite powerful
calculus which is sufficient to solve the first two tasks
mentioned above.

The set of transformation rules does of course not
have to be fixed. Instead, the development of a program
includes usually a number of auxiliary results, which can
be used for derivations in the same problem area or for
other, related algorithms. Note that in particular every
(correct) development forms a transformation rule
asserting that the final product fulfils the initial
specification. We remark that although the essence of
transformational programming lies in the constructive
derivation of programs, there is also room for
verification, i.e. in some cases it can be more convenient
to guess a program/transformation rule and then verify
it by deduction.

In order to minimise translation problems, it is an
advantage to do the whole development essentially
within one language, which therefore has to be sufficiently
rich (‘wide spectrum’) to allow the adequate description
of a program/specification during all phases of the whole
software development process. However, this is not a
strict necessity, and assuming that the language interfaces
are clearly defined it is also feasible to use for example a
different language in the requirements building phase or
for the formulation of the final programs.

Returning to our example, we recall that our aim is to
find an efficient implementation of the function update.
According to our methodology, this will be done by
successive application of transformation rules which are
presented informally (for a rigorous treatment of the
rules, we refer the reader to Ref. 27). In order to obtain
an applicative program from the descriptive, non-
operational specification, we first generalise the problem
by introducing two new parameters s and s’. Intuitively,
these will record the progress made in updating, which is
formally captured by the assertion in the new function
upd.

Step 1: generalisation (with assertion).

function update (b:board):board;
upd(e, ¢, b) where
function upd (s, 5, t: board || no-gaps (s) A all-gaps(s’) A
same-entries(s ++s ++1t, b)):board;
s++5" ++some u:board || [u| = |t| A same-entries(t, u)
A normalized(u)

The parameter ¢ represents that part of the board which
has not yet been updated. We-first solve the simple case
when it is empty.

Step 2: case introduction in upd: isempty(t) v ~isempty(t);
simplification.

function upd (s, s, t:board || no-gaps(s) A all-gaps(s’) A
same-entries(s ++ s ++1t, b)) :board;
if isempty(t) then s++ s’
else s++5 ++
(some u: board | |u| = |1 A same-entries(t, u) A
normalized(u))
endif

When ¢ is not empty, we investigate its first element and
append it either to s or §’, according to the assertion.

Step 3: case introduction in else-part: - firsi(s) is
gap V (first(¢) is gap); simplification.
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function upd (s, s’, t:board || no-gaps(s) A all-gaps(s’) A
same-entries(s ++s ++1, b)):board;
if isempry(?) them s++ 5
elsf firs«(t) is gap
then s++ (8" +<firsi(f)) ++
(some u: board | |u| = |rest(£)| A
same-entries(rest(t), u) A normalized(u))
else (s+<first(t)) ++5 ++
(some u: board | |u| = [rest(t)| A
same-entries(rest(f), u) A normalized (u))
endif

Now the expressions in the second and third alternatives
are instantiations of the specification of upd as given in
step 1. Furthermore, the new parameters comply with
the assertion. Therefore folding is possible, whereby we
obtain an applicative program. Note that the length of
the third parameter of the recursive calls strictly
decreases, so termination is ensured.

Step 4: fold (with assertion).

function upd (s, s, t:board || no-gaps(s) A all-gaps(s”) A
same-entries(s++s"++1, b)):board;
if isempty(t) then s++5
elsf first(r) is gap then upd(s, s’ +<first(t), rest(r))
else upd(s+<first(1), s, res(1))
endif

Notice that the sum of the lengths of the three parameter
sequences is constant; so they can be represented by one
indexed sequence and two indices denoting the bound-
aries between the three segments. Furthermore, this
suggests an implementation of the sequence involved by
means of an array.

Step 5: data type representation (i, k, u) for (s, s', t) with
1 € i<k < u+1 such that s corresponds to #[1:i—1],
s" to ufi:k—1], and ¢ to ufk:|ul]).

type board = ARRAY(elem);
function wupdate (¢:board):board;
upd'(1, 1, ) where
function upd’ (i, k:nat; u:board):board;
if & > |u then u
elsf u[k] is gap then upd'(i, k+1, u)
else upd'(i+1, k+1, swap(u, i, k))
endif

where swap(u, i,k) exchanges the elements on position
and k in the array w.

Basic rules are often combined into more powerful and
compact rules. The resulting transformations allow us to
capture programming techniques like the simplification
of recursion, various methods for storing of values
instead of recomputation, and the transition from a tail-
recursive definition to an imperative program. The latter
can be applied here, leading to our final, imperative
program,

Step 6: transition to iteration; sequentialisation.

function update = (t:board):board;
begin
var vi, vk:nat; var vf:board; var ve:elem;
vie=1; vt=t;
for vk from 1 upto |¢| do
if ve[vk] is gap
then skip

else ve = vt[vi]; vtjvi] = vt[vk]; vi{vk] = ve;
vi=vi+1
endif
enddo
vt
end

If we compare this program with the one given at the
beginning, we realise that they coincide with respect to
the overall structure, but differ in the else-branch of the
conditional. In fact, the program given in the beginning
is not correct, as it only works properly when vk is
different from wvi. This phenomenon is typical of
programming ‘in one step’. The essential idea underlying
an algorithm is often straightforward, but one fails in
getting the details and borderline cases right. The
methodology advocated in this paper is a safeguard
against making these kinds of errors, the removal of
which is known to be enormously time-consuming, if
successful at all.

The most inventive step in the above derivation was
the choice of generalisation and assertion in the first step.
Together with the decision in step 3 to consider the first
element of the remaining part of the board, this led in a
straightforward way to a linear algorithm which updates
the board from top to bottom. By choosing a different
generalisation:

function update (b:board):board; .
const (board b,, board b,) = pupd(b); b, + + b,;
function pupd (s:board || ~isempty(s)): (board, board);
some (z:board, ¢ :board) | no-gaps(t) A all-gaps(t’) A
same-entries(t, s) At +|t'] = |s| ’

but with an otherwise analogous derivation, one arrives
at the following (recursive) ‘ divide-and-conquer’ solution

function pupd (s:board || ~isempty(s)) : (board, board);
if |s| = 1 then if first(s) is gap then (¢, s) else (s, ) endif
else const (s :board, s”:board) = nonempty-
split(s);
const (¢, :board, t,:board) = pupd(s’);
const (¢,:board, t,:board) = pupd(s”);
(1 ++1t,, 1+ +1,)
endif

This algorithm relies on other operations of our data
type, and thus needs another implementation in order to
be efficient. Whereas the former solution was well suited
for implementation by arrays, this one can be made
efficient by using linked lists and pointers. Note
furthermore that this algorithm is a good starting point
for parallelisation.

4. STATE OF THE ART AND NEW
DEVELOPMENTS

At first glance, one might get the impression that not
much progress has been made in the area of
transformational programming since Burstall and
Darlington’s seminal work™ and other results from the
late 1970s and early 1980s. Indeed, in many approaches
the core transformation steps fold, generalise and unfold
still play a crucial role —just as induction and gen-
eralisation still do in mathematical proofs. Actually,
progress has been made in multiple ways.

Theoretical foundations and abstract descriptions of
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program transformations and their underlying concepts
have led to deeper insights into the nature of computing
and programming. The ideas of transformational (or
calculational) programming have shown to be applicable
in various areas besides the optimisation of functional
programs. Numerous research groups, many of them
liaised with IFIP Working Group 2.1 (‘Algorithmic
Languages and Calculi’), are working in this field, and
research projects at national and international levels
have brought about further cooperation and increase of
knowledge. Various conferences and journals devoted
entirely to formal program development also bear witness
to interest and progress in the area.®-24:3%2:38.39 Gtimuylated
by this positive evolution, it is necessary and worthwhile
at this time to initiate and stimulate a further transfer of
the collected knowledge to practitioners, and to
researchers in other, related areas.

4.1 Specification and languages

Most research groups in the area of formal program
development nowadays seem to agree that functional
languages are easiest for use in formal manipulations.
Higher-order functions play an ever-increasing role,
often in conjunction with a semantics and calculus based
on category theory, which allow us to -capture
calculational properties in a very general way.?*?* Much
of this framework can also be retained in a relational
setting.! Recent research has shown that particular
classes of higher-order functions, so-called skeletons,
provide useful abstractions of parallel architectures to be
used in descriptions and derivations of parallel
algorithms, %28

In general, progress made on the language level will
also have an impact on the effort to be spent in
requirements engineering, i.e. in obtaining specifications:
development of more abstract and more expressive
specification constructs widens the scope of formal
program development, and thus lessens the effort needed
in requirements engineering, although, admittedly, there
is still some work to be done in this area.

Abstract data types have become an established subject
in theoretical computer science.*! ‘Automatic’
implementations of abstract data types, e.g. via term
rewriting, provide a valuable prototyping possibility.
Libraries of often-used data structures (including various
standard implementations) will form a substantial part
of the future programmer’s workbench. Abstract data
types are making their way into industrial applications,
in successful formal specification formalisms like VDM
and Z,%° and via their (limited) implementations in Ada
and object-oriented languages.'?

4.2 Methodology

A theoretical basis for program development by trans-
formation has been given in the form of a trans-
formational calculus.®® Currently the emphasis is on the
consolidation, classification, and ‘transfer’ to
practitioners of the available knowledge on program
transformations, as summarized in (e.g.) Refs 18 and 27.
Even though most results have been obtained in the area
of deriving efficient functional and imperative algorithms
for sequential architectures and particular languages, it is
becoming more obvious that ‘transformational pro-

gramming’ is actually a ‘meta-approach’, which is largely
independent of the language or programming paradigm
used. The application of the method with various other
paradigms, like logic programming and object-oriented
programming, has led to some interesting first results. In
particular, the application to parallel programming (Refs
15 and 25) seems promising. Always important is the
investigation into higher-level steps in transformational
developments: tactics and strategies.'®®*® A complemen-
tary approach is the investigation into reusability of
transformational developments. Some first case studies
have been done by our group.?®:3! Another aspect that
needs further research is the complexity effect of
transformations,*? — even though transformational pro-
gramming purports to aim at more efficient programs,
usually complexity considerations are not formally taken
into account during developments.

4.3 Systems

Many small transformation systems have been
implemented in order to test the feasibility of the
approach.?'?® Most of these are of an experimental,
academic, nature. Promising results have been achieved
with Smith’s KIDS system.?® Current emphasis is also on
systems for supporting the specification process.?® More
sophisticated transformation systems can also provide
on-line support during the derivation, thus helping to
establish not only correctness but also other program
qualities like efficiency, modularity or robustness.
Ultimately, this should lead to ‘expert transformation
systems’, which perform derivations (semi-)automati-
cally. On a more prosaic level, the computer can be used
to provide complete documentation of the derivation
process.” For the future, transformation systems are
envisaged as components of integrated project support
environments,® along with components like compilers,
(syntax-directed) editors and theorem provers.

4.4 Applications

Many of the standard algorithmic problems of computing
science have by now been treated in a transformational
way, like sorting,® ' parsing®® and pattern matching.
5.30.34 Fyrther examples have been drawn from other
traditional example areas, like combinatorics and graph
problems. Less experience exists with formal specification
and development of medium-sized and large software
systems, the development of a transformation system
within the CIP project being an exception.? It is now
recognised that there is a need to apply this method to
more examples of everyday programming.

5. CONCLUSIONS

At first glance, it seems that transformational pro-
gramming has not provided the solutions to the software
problem which had been envisaged by early researchers
in the area.? '2 In particular, science has not yet succeeded
in providing the powerful and easy-to-use support
systems that are vital to a realistic and large-scale
application of the method. To a large extent this is due
to the fact that most published work is still too ‘academic’
and not usable by practitioners as it stands. Another
problem is that program transformations constitute a
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relatively new calculus, whose complexity has been
likened to the complexity of integral calculus but which
is, however, not yet as widely accepted.

On the other hand, research in program transformation
has led to the discovery of a large amount of knowledge
on the process of programming and the algorithmic
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Book Review

F. D. ROLLAND, Programming with VDM,
Macmillan Press, £13.99. ISBN 0-333-56520-7

The author describes this book as ‘an in-
troduction to VDM and how it can be used by
the programmer’. It begins with a broad
overview of formal methods in general and
VDM in particular, including a section pro-
moting the use of formal methods as a tool for
improving the quality and reliability of soft-
ware. This chapter also points out the parallel
between formal specification and object-
oriented design.

Chapters 2 to 7 introduce the various basic
elements of the VDM language. The first of
these presents a much simplified view of basic
logic and simple set theory, and this is followed
by chapters dealing with functions, operations
and states, composite objects, sequences and
maps. Each of these last five chapters includes
a simple VDM specification illustrating the
use of the particular VDM construct it
introduces, accompanied by an ‘implemen-
tation’ of it as a program in Modula-2. This
pattern is repeated in the final chapter, which
presents a rather more substantial case study
making use of all the concepts dealt with in the
earlier chapters.

The author’s enthusiasm for formal
methods is evident throughout, and the text of
the book is generally easy to read. Un-
fortunately the same is not always true of the
mathematical formulae or of the VDM. In
particular 1 find the curious mixture of

mathematical notation, in which some special
characters appear verbatim (e.g. <, €, A)
whereas others appear as some sort of Ascii
approximation (e.g. #, = and > appear as
#, ==2> and > = respectively), annoying.
In addition there are rather too many ty-
pographical errors.

More serious worries attach to the semantic
(in a mathematical sense) content of the
material presented. The first problem is that
the treatment throughout could easily be taken
to imply that classical Boolean logic and not
the logic of partial functions (LPF) is the true
foundation of VDM — there is virtually no
mention of the notion of undefinedness which
is central to LPF.

Another problem is that the example
specifications presented seem to fail entirely to
capture the idea that a formal specification
gives a way of defining the functionality of a
piece of software abstractly without having to
worry about details of interface, hardware,
etc. — too many of the examples get hung up
on details of how the results of operations are
presented to the end user’s computer screen,
whereas [ would have preferred such details to
have been left to the implementation. In a way
this is perhaps understandable in that the
author is clearly trying to present pairs of
specification/code which are as close to each
other as possible, but I feel that this treatment
obscures too much of the power of formal
specification. Indeed, the impression is that
the specifications have been reverse-engineered

from the code rather than that the specific-
ations have been written so as to encapsulate
the essential functionality of the system and
that the code has then followed.

The most serious problem by far, however,
is that the author does not seem to fully
understand the semantics of the specifications
he writes, as several of the examples are faulty.
For instance, one defines a state which can
only take one value, namely empty, with the
result that all the operations defined on this
state are actually unimplementable; another
has an under-defined operation.

The stated aim of the book is ‘to enable
readers not only to write and interpret simple
VDM specifications, but also to use a simple
set of guidelines for transforming these
specifications into a high-level language simi-
lar to Modula-2’. On the assumption that the
Modula-2 code given as implementing the
faulty specifications actually implements what
the specification was meant to say as opposed
to what it does say (my knowledge of Modula-
2 is minimal), then it is perhaps as well, if
disappointing, that I do not believe these
guidelines are apparent. And sadly there are
too many problems with the specifications for
it to be recommended for serious students of
VDM, whether programmers or otherwise.

R. MooRre
Manchester

Special issue on Spatial Data — Call for Papers

Later in 1993 The Computer Journal will be publishing a
special issue on Spatial Data. This is a particularly
important subject at the present time and the issue is seen
as being a major contribution to the scientific literature.
For this reason a formal Call for Papers is being issued.
Papers are invited related to techniques for the pro-
cessing, storage or retrieval of spatial data or related
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applications involving spatial data. Novel technical
contributions, surveys and tutorial papers all will be
considered. They must be written for a general audience
of computer scientists, not just for specialists. Please send
all contributions to the Editor-in Chief at the address
given on the front inside cover of this Journal. Deadline:
15 March 1993.
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