00

10.

1.

12

13.

STANDARDS FOR NON-EXECUTABLE SPECIFICATION LANGUAGES

. VDM Specification Language — Proto-Standard. Technical

Report, British Standards Institution, March 1991. BSI
IST/5/19.

. J. Dawes, The VDM-SL Reference Guide. Pitman (1991).
. L. Hayes (ed.), Specification Case Studies. Prentice-Hall

International, Englewood Cliffs, New Jersey (1987).

. 1.J. Hayes and C.B. Jones, Specifications are not

(necessarily) executable. Software Engineering Journal, pp.
330-338 (November 1989).

Information Processing — Text and Office Systems — Office
Document Architecture (ODA) and Interchange Format.
Draft International Standard ISO/DIS 8613/1-6. Volume
parts 1-6, ISO (1988).

Information Processing Systems — Open Systems Intercon-
nection — LOTOS — A Formal Description Technigque Based
on the Temporal Ordering of Observational Behaviour.
1S08807. ISO (1989).

Information Processing Systems — Open Systems Interc-
onnection — Estelle — A Formal Description Technique Based
on an Extended State Transition Model. 1SO9074. ISO
(1987).

C. B. Jones, Systematic Software Development Using VDM
(second edition). Prentice-Hall International, Englewood

14,

15.

16.

17.

18.

19.
20.

21.

P. G. Larsen, The Dynamic Semantics of the BSI/VDM
Specification Language. Technical Report, the Institute of
Applied Computer Science (February 1992).

N. Plat and W.J. Toetenel, Tool Support for VDM.
Technical Report 89-81, Delft University of Technology
(November 1989).

N. Plat and P. G. Larsen, An overview of the ISO/VDM-
SL standard. Sigplan Notices 28 (8) (1992).

N. Plat and W. J. Toetenel, 4 Formal Transformation from
the BSI/VDM-SL Concrete Syntax to the Core Abstract
Syntax. Technical Report 92-07, Delft University (March
1992).

C. L. N. Ruggles (ed.), Formal Methods in Standards: A
Report from the BCS Working Group. Springer-Verlag,
Heidelberg (1990).

Recommendation Z.100. CCITT Specification and Descrip-
tion Language SDL. CCITT (1988).

M. Spivey, The Z Notation— A Reference Manual (second
edition). Prentice-Hall International, Englewood Cliffs,
New Jersey (1992).

S. Prehn and W.J. Toetenel (eds), VDM '91: Formal
Software Development Methods. Lecture Notes in Com-
puter Science, vols 551 and 552. Springer-Verlag, Heidel-

Cliffs, New Jersey (1990).

berg (1991).

Book Reviews

PauL CocksHOTT, A Compiler Writer’s Tool-
box, Ellis Horwood, Chichester, 1990. £18.95.
ISBN 0-13-173782-1

There are two sorts of compiler courses: the
one presents and compares alternative
techniques for each phase of compilation; the
other takes a single technique from each phase
and deals with it in detail. The comparative
course aims to give the student the knowledge
needed to choose the correct set of techniques
for a given language and application, and of
necessity will involve small examples and
exercises to illustrate each point. The single-
model course is geared more towards the
student acquiring the skills and experience
needed to implement a complete compiler,
special cases and all. One could say that the
first course gives the science, and the second
the engineering, and that both are necessary
and complementary. With compiler writing-
taking being edged out of the curriculum these
days, it is unlikely that there will be room for
two. The choice of which course to go for is
therefore important.

Paul Cockshott’s book is firmly in the
second camp. It presents an integrated set of
techniques for compiling languages in the
Algol/Pascal tradition into abstract machine
code which is then assembled on a PC, the
whole system using Turbo Pascal and a special
Toolbox written by the author. One can
scarcely get more specific, and so one wonders
what the value is of sharing these tools and
techniques outside the university department
where they were developed.

The value is that the book treats compiler
writing seriously, addressing the issues which
make or break a production compiler, but
which are wusually ignored in textbook
examples. Specifically, the book considers
object-oriented heaps, raster graphics, the
integrated editing environment, persistent

data, classes, dynamic linking and modifying
memory allocation, in addition to the usual
data types, control structures and procedures
of a block-structured language.

The vehicle for discussion is the language
Persistent S-algol, which is introduced in
Chapter 2. As its name suggests, PS-Algol
supports dynamic data declaration, implicit
storage management, recursion and powerful
input—output facilities. As such, it provides a
greater challenge for the compiler writer than
Pascal.

Chapter 3 looks at overall compiler strategy,
and describes how the compiler will be built
up from a one-pass PS-Algol to abstract
machine translator followed by an assembler,
and stresses how the extra step aids portability.
Chapter 4 gives a brief (but modern) overview
of the theory behind grammars, leading into
Chapter 5, which deals with lexical analysis
via regular grammars and a finite state
machine. Here we encounter for the first time
the Compiler Writer’s Toolbox, with different
programs and units being brought into play
for efficient state-driven lexical analysis. The
lexemes produced as a result are then classified
and stored in a symbol table as discussed in
Chapter 6.

Syntax analysis begins in Chapter 7, and the
method employed is recursive descent based
on BNF. Analysis of the basic control
structures and expressions is covered, before
Chapter 8 returns to the symbol table. The
Toolbox once again provides the framework
for the more sophisticated types, class
hierarchies and graphics in PS-Algol. The
author discusses how some of these features
(for example, first-class procedures) had to
be eliminated from current versions of the
language in order that the compiler could run
on a small PC. On the other hand, colour
screens were deemed sufficiently ubiquitous to
cause the raster graphics to be retained.

Chapter 9 introduces the S-Algol abstract
machine and goes through all the steps
necessary to generate code for S-Algol’s rich
data areas: stack, volatile heap and persistent
heap. Chapter 10 follows this up with a
discussion of the assembler, which is in itself a
very useful stand-alone section. Chapter 11
goes into more detail on heap management in
a dynamic declaration environment (unlike
Pascal’'s), and Chapter 12 discusses the
integrated editor, which provides for inter-
active compiling and good error reporting.
Finally, Chapter 13 looks at linking a program
for execution and loading it into memory,
once again using the Toolbox to good effect.
Some of the issues discussed here are very real
—interfacing to the DOS exec unit, use of
COMMAND .COM and getting back exec
error codes — and are usually simplified out of
compiler courses. Their inclusion adds greatly
to the value of the book.

The comprehensive set of appendices rounds
off the book, and includes details of how to
acquire the software from the author. There
are several minor errors in the diagrams and
text, but overall the book is well written and
presented. Only the early chapters have
exercises, and there are no answers. Some of
the exercises relate to using the Toolbox to
write a Pascal compiler. Since S-Algol, whichis
the exampie in the book, is in a sense a super-
set of Pascal, it would probably be better for
students to tackle a more advanced language,
for example Ada or C+ +.

1 would certainly recommend this book for
compiler engineering courses. The strangeness
of S-Algol is adequately compensated by the
opportunity it gives to examine more difficult
compilation issues. In addition, the Toolbox
together with the book could be a useful
adjunct to a software practitioner’s library.

J. BisHoP
Pretoria, South Africa

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 573

$202 14dy 60 U0 3senb Aq | 89ZGE/E/G/9/GE/e101ME/|UlWod/Wo0 dno olwepeoe//:sdiy wolj papeojumoq

