
A Technique for Analyzing the Effects of Changes in Formal
Specifications

D. R. KUHN
National Institute of Standards and Technology, Technology Administration, U.S. Depl. of Commerce, Gaithersburg, Maryland 20899 USA

Formal specifications are increasingly used in modeling software systems. An important aspect of a model is its value as
an analytical tool to investigate the effect of changes. This paper defines the notion of predicate differences and shows
how predicate differences may be used to analyze the effects of changes in formal specifications. Predicate differences
have both theoretical and practical applications. As a theoretical tool, predicate differences may be used to define a
meaning for the 'size' of a change to a formal specification. Practical applications include analyzing the effect of design
changes on a previously verified design; defining an affinity function for reusable software components; computing slices
of formal specifications, similar to program slices; investigating the conditions under which invalid assumptions will
render a system non-secure; and formalizing the database inference problem.

1. INTRODUCTION
Formal specifications are increasingly used in verifying
that a design meets critical requirements, such as safety
or security. In addition to design verification, formal
models are useful as analytical tools, to answer questions
about how the system will behave in various circum-
stances. A model should also be useful to investigate the
effect of changes to design or requirements. For example,
suppose a design P is stated formally, then shown to
meet the requirements specification S through a formal
proof that P=> S. The design may be changed from P to
P', so that verifying the new design requires showing
P' => S. Depending on the formulas involved, changing
the value of a variable x may or may not affect the truth
of the implication. In general, the values of other terms
will determine whether a change in the value of x will
change the implication P=> S. This paper defines the
notion of predicate differences and shows how predicate
differences may be used to analyze the effects of changes
in formal specifications. This paper extends the work
described in ref. 6.

Predicate differences might be used in formal speci-
fication language tools to compute 'predicate slices'
from formal specifications, similar to the program slices
defined by Weiser.13 A program slice selects all lines from
a program that may directly or indirectly affect the value
of a particular variable at a particular point. Computing
the predicate difference for a substitution in a formal
specification gives the conditions under which the change
makes a difference, in effect a 'slice' through the
specification.

The changes that will be considered in this paper are
those that are made by replacing some variable x with an
expression e in a predicate formula or subformula. This
is denoted P%. (The notation Px

e represents predicate P
with every free occurrence of variable x replaced by
expression e, with suitable renaming to prevent variable
capture. The symbols &, |, ->, => represent and, or, not,
implies, respectively. The exclusive OR operation is
denoted by ©.) In some cases, additional terms may be
added to the formula.

For example, suppose an invariant is
A&B&C&D^>S, and it is changed to
G&B&C&D=>S. The desired new invariant
G&B&C&D=>S is given by (A &B&C&D)i=>S.

When the invariant is a Boolean formula, the effect of
such a change can be determined using the Boolean
difference. The predicate difference, introduced in Section
3, can be used to determine the effects of changes in
predicate calculus formulas. It will be helpful in discussing
the predicate difference to first review the properties of
the Boolean difference.

2. BOOLEAN DIFFERENCE
The Boolean difference,110 can be used to calculate the
dependency of a Boolean function on a literal xt of that
function. The Boolean difference of xt with respect to
F, dF/dx^ gives the conditions under which the value of
F will change if the value of xt changes. Boolean
differences have been used in digital circuit testing811

and in computer security access control.12 The Boolean
difference has been generalized to multi-valued logic for
VLSI circuit testing.2714

For a function F =J\xv ...,xt,...,xn), the Boolean
difference of F with respect to x(is

dF/dx, = f(x1,...,x(,...,xn)@d(x1,...,-<x(,...,xn).

This is equivalent to

which follows from the fact that xt must be either 0 or 1.
The difference dF/dxt is an expression that does not
contain xt.

t

A useful property of the Boolean difference is that
1

dF/dx(=

if F is unconditionally dependent
on x(

0 if F is unconditionally independent
of xt

F' an expression not containing xt,
otherwise

To see intuitively why dF/dxi gives the conditions
under which a change in the value of xt will change the
value of F, consider that F will change if either (a) it is
initially true and changing the value of xt makes it false:
F& ->(F^X), or (b) it is initially false and changing the
value of xt makes it true: -^F&{Flx). Note that the
disjunction of (a) and (b) is, by definition, the exclusive
OR.

574 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/574/352723 by guest on 10 April 2024

ANALYZING THE EFFECTS OF CHANGES IN FORMAL SPECIFICATIONS

The Boolean difference of a function F =J[FV . . . ,FJ,
with respect to one of its component functions Fn is

dF/dFi=AF1,...,Fi,...,Fn)@AFx,...,^Fi,...,Fn).

The partial Boolean difference gives the effect on the
truth value of a Boolean formula of a component of the
formula, through a particular term. For a formula
F = J{FV ...,FJ), the partial Boolean difference of F with
respect to Ft with respect to a variable x(of Ft, is

dF/d(xs | Ft) = dF/dFt & dFi/dxj

3. PREDICATE DIFFERENCE

The Boolean difference suggests a similar predicate
difference in predicate calculus. The properties of the
predicate difference are similar to those of the Boolean
difference. However, the Boolean difference with respect
to a term gives the conditions under which a change in
the value of the term will change the value of the Boolean
function. A Boolean term can change only from x to -• x.
The change to a predicate depends on the expression
substituted for JC. Thus a predicate difference is with
respect to a particular change x/e (the substitution of
expression e for free variable x), rather than simply with
respect to x. Note also that the predicate difference with
respect to a change x/e may still contain x.

Definition 1. Independence: P is independent of x/e when
P has the same truth value as Px, i.e. P = Px

e.

Definition 2. Dependence: If P is not independent of x/e,
then P is dependent on the value of x/e.

Definition 3. Predicate difference: The predicate difference
for a predicate P with respect to variable substitution
x/e, denoted dPx

e, is P © Px
e.

The following lemmas establish some properties of the
predicate difference that are used in the remainder of the
paper.

Lemma 1. dPx = 0 iff P is independent of the value of
x/e.

Proof
Assume ('if direction) P = Px {definition of inde-
pendence}
Then (PoP)
= (P@P = Q) {definition of ©}
= (P © Px = 0) {Definition 3}
Assume (P@PX = 0) ('only if direction)
= (-^(P<=> Px) = 0) {definition of ©}

Definition 4. Unconditional dependence: P is uncondi-
tionally dependent on x/e if P has the opposite truth
value of PT, i.e. (/><=>-/>*)&(/>J <=>-/>).

Lemma 2. dPx = 1 iff P is unconditionally dependent on
the value of x/e.

Proof.

term and e = -> x in a propositional formula, the predi-
cate difference is equivalent to the Boolean difference.

The predicate difference can also be derived using
predicate transforms. The predicate transform
w/?(' JC := e', R) gives the minimal conditions under which
an assignment in a program will result in the condition
specified by R.3i That is, if g=> wp('x:=e\ R),
then execution of x:= e in a state in which Q holds
will result in a state in which R holds. The transform
wp^x:=e\ R) is Rx. The predicate difference gives
the conditions under which a substitution will change
the value of a predicate, say R; that is, the
conditions under which -*(Rowp('x:=e',R)). But,
- (Rowp(lx:= e\ R)) = ->{RoRx) = R@RX = dR%.

4. PARTIAL PREDICATE DIFFERENCE
The predicate difference of a predicate formula F =
fiF^ ...,Fn), consisting of component formulas con-
nected by &, |, or => with respect to one of its component
formulas Ft is

dF/dFt =AFl,...,Fi,...,Fn) ®AF,,.-., - /? , ...,Fn).

Definition 5. Partial Predicate difference: the partial
predicate difference gives the effect on a formula of a
component of the formula, through a change in a
particular term. For a formula

F =/(/•,...,-FJ,

the partial predicate difference of F with respect to Ft
with respect to a change in a variable xje of F(, is

= (P@PX)=\. M

If dPx is not 0 and not 1, then the resulting formula can
be solved for 1 to determine the conditions under which
Px will be dependent on x. Note that if e is a Boolean

5. THE SIZE OF CHANGES TO
PREDICATES
How 'big' is a change? A metric for changes to a
predicate can be defined by using the predicate difference
to define an ordering relation: x/e ^ z//if dPx => dP) {x
may equal z and e may equal/). Also define x/e < z//if
dPx=>dPz

f but not dP)=>dPx. The ordering x/e^z/f
expresses the fact that the change x/e is 'smaller' than
z/f. The smallest change x/e is no change at all, where
dPx = 0, as shown in Lemma 1.

5.1. Example

Given a predicate (a\b), does a/c represent a bigger or
smaller change than a/{a\c)r}. The predicate difference
d(a | b)a

c is c & -> b \ b & ->c, and d(a \ b)a
aic is -.« & -. b &c. So

d(a\b)a
aU^d(a\b)a

c, i.e. a/c is a bigger change than
a/{a\c). Although the substitution a/(a\c) is a greater
textual change than a/c, the predicate that results from
a/{a | c) simply enlarges the number of states (since
a\b=>a\b\c), but a/c changes the predicate to define a
different set of states. •

If dPx => dP} then it can be said that Px differs less from
P than does P^. This idea can be generalized to define a
meaning for how much two predicates Q and R differ
from a third, P. To compare how two predicates Q and
R differ from P, the differences P © Q and P © R can be
computed. (We do not necessarily know what substi-
tutions x/e, if any, will make Pz equal to Q or R.)
lfP@Q=>P@R then Q differs less from P than R,
otherwise R differs less than Q (unless Q = R). This view

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 575

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/574/352723 by guest on 10 April 2024

D. R. KUHN

makes intuitive sense by noting that, if P 4= Q 4= R,
then P@Q^>P@R is equivalent to
(/>=>g=>#)|(7?=>0=>i>). That is, Q is 'closer' to Pin
both sides of the disjunction.

5.2. Application

A possible application for the size metric is for the
definition of affinity functions for software components.
Briefly, an affinity function estimates the degree of
similarity between two components.4 The affinity func-
tion for object oriented programs described in ref. 4 is
based on counts of the methods that are common among
classes, a purely syntactic feature.

Using the notions developed in this section, a
semantics-based affinity function can be denned using
the formal specifications of components. Suppose a
requirement R is to be implemented. Three components
are available, A, B, and C, whose specifications are
SA, SB, and Sc, respectively. The differences SA © R,
SB © R, SC(B R, can be computed to determine which
of the specifications S{ is closest to the requirement
specification R.

6. THE RELATIONSHIP BETWEEN
PREDICATE DIFFERENCES AND
BOOLEAN DIFFERENCES
The Boolean differences can be viewed as an 'upper
bound' on the result of changes to an individual variable
in a component formula. In terms of the size metric of
the previous section, the change from a variable in a
component formula is never larger than the change that
results from negating the entire component formula.

The predicate difference of a predicate formula F =
f{Fx, ..-,Fn) consisting of component formulas connected
by &, |, or =>, with respect to one of its component
formulas Ft is

dFF> =f(F F F^ffiflF -> F F}
U I - . F j — . / V * l > • • • i J i i • • • • > L n) ' 3 ? J \ r u • • • > r t > • • • > l n >

which is equivalent to the Boolean difference of F with
respect to Ft. Theorem 1 shows the relationship between
this Boolean difference with respect to a component
formula and the partial predicate difference with respect
to a variable of the component formula.

Theorem 1. The partial predicate difference of a formula
dF/d(FJx implies the predicate difference dF%, where
Ft is a component formula of F, and x is some variable
in Ft:

Proof
First, determine an expression for dF% . Without loss of
generality, assume that F is converted to conjunctive
normal form. Then F{ may appear in one or more
conjuncts of the converted formula. With the conjuncts
containing Ft appearing first, followed by conjuncts not
containing Ft, the formula appears as follows: (G, H etc.
are component subformulas not containing Ft.)

(Ft\Gx\Gt\...)

Then the predicate difference with respect to F(is

(Fi\Gl\G2\...)&(Fi\H1\H2\...)&(Fi\J1\J2\...)...&R

&{-^F(\J1\J2\...)...&R.

Factoring F(out of the formula up to R gives

(Fi\((G1\G2\...)&(Hl\H2\...)&(J1\J2\...)...))&R
®{-*Ft\((Gl\Gt\...)&(.H1\Ht\...)&(.J1\Jt\...)...))&R.

This is equal to

i J 1 i 2

&{J1\J2\...)...)&R.

And since X® ->X is 1, this is equal to

^({G1\G2\...)&(H1\H2\...)&(J1\J2\...)...&R.

Computing dF/d(fyx in the same way shows that
= (F(© (Ft)

x) &
&{H1\H2\...)&{J1\J2\...)...)&R,

so

Corollary. Applying modus tollens gives the following
corollary:
If the Boolean difference is 0, then the predicate
difference is 0 as well:

The next section discusses how predicate differences
can be used to evaluate the effects of changes in
specifications.

7. ANALYZING THE EFFECTS OF
CHANGES
Let / be an invariant P=> S. To determine the effect on
the invariant / of changing variable x in P to e, the
partial predicate difference dI/dPz

e can be computed.
This gives the conditions under which the invariant will
change value, in other words, the conditions under which
it becomes false, since it was true before the change.

After analyzing the effect of the change, if a conjunct
M is added to the antecedent, it is necessary to show that
the new antecedent maintains the invariant. There are
then two ways to proceed with showing that the modified
antecedent {P*)&M maintains the invariant. The first is
to show directly that P*&M=>S. The second is to show
that the modification guarantees that the invariant will
not change value by showing that the conditions under
which it becomes false do not occur, i.e., the antecedent
Px

e&M implies the negation of the partial predicate
difference dI/dPz, i.e.: Pz& M => -. {dI/dPx). Proving this
is equivalent to proving Pz &M => S directly. This result
is proved formally below.

Theorem 2.

Proof
(P => S) & (M => - (dI/dPz))
= (P->S)&(M^-^(PZ&^S)) {Theorem 3 (below)}

Let the conjuncts not containing Ft be abbreviated by R.
= {P => S) &{M => Pz =* S)

576 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/574/352723 by guest on 10 April 2024

ANALYZING THE EFFECTS OF CHANGES IN FORMAL SPECIFICATIONS

Thus, if the modification term M implies the negation of
the predicate difference, the invariant will be preserved.

If the invariant / has already been shown and we wish
to modify P to P1, we can compute the conditions under
which the value of the invariant will change using the
following result:

Theorem 3. Let / be an invariant P=>S. Then / is
dependent on the value assigned to x in P under the
conditions given by -n P & Px

e & -> S = Px
e& -> S.

Proof

dI/dPx
e = (/> 0 />*) <£ -. S {Definition 3 and 5}

= (P&-iPx
e\->P&PZ)&->S {Definition of ©}

S {assumed: (P=>S) =

The form -• P&PX&-<S may be more useful if we expect
the change x/e to maintain the invariant, because
showing either Px

e & -. P = 0 or Px& -. S = 0 is sufficient to
show that PX=>S. If Px & -> P is easier to calculate, and
the result is 0, then there is no need to compute the
predicate difference. Note that by Lemma 1, the
invariant is independent of the change if Px & -> S = 0,
which is equivalent to Px => S.

These results can be used to evaluate the effects of
changes to parts of large formulas. Suppose a speci-
fication P => S is given and P = A&B&C&D. A change
will be made to C. An additional condition M will be
added but the modified antecedent must still meet the
requirement 5. The new value of P will be
P = A&B&C&D&M, and it must be shown that
F => S. If M => -• dPic, then we do not have to compute
dP/dCx, because Theorem 1 shows that
M=>^dPc_c=>-idP/dCx. This, plus Theorem 2, shows
that F => 5.

These analysis techniques may be used for a variety of
applications. Some examples are considered in the next
section.

8. APPLICATIONS
This section presents some problems to which predicate
differences can be applied. The applications presented
here are from the field of computer security, but the
technique could be used with formal specifications for
other types of applications as well.

8.1. Change analysis example

Consider a system which uses a token to control access
to a network. To gain access, a user must have both a
valid token and the right password. The system maintains
the following state invariants (among others) as security
requirements.

A user is authorized only if the token is authorized:

{u^auth => t_auth)

A token is authorized only if its password is active (non-
zero) :

t^auth^pw 4= 0)

We wish to ensure that the following state transition
invariant holds:

A token can be activated {i.e. its password changed from
zero to non-zero) only by the security officer:

ipw' 4= 0 &pw = 0 => s_auth)

The password changing function is

chgpasswd(input_raO
{
/* if security officer, then change password to input

value*
i if (s^auth) pw := input_t;a/

This chgpasswd function is modelled by

(s-auth =>pw' = inval) & (-> s_auth =>pw' = pw)

A proof is done to show that the state invariants plus the
effect of the chgpasswd function ensure the state transition
invariant (the function must also maintain the invariants,
but the proof is omitted for brevity).

(u^auth => t_auth) &
(t^auth=>pw #= 0)&
(s-auth=>pw' = inval) &
(-> S-.auth => pw' = pw)
=> {pw' 4= 0 &pw = 0 => s_auth)

Suppose that the design is to be changed to allow either
the user or the security officer to change passwords,
rather than requiring the security officer to do so. The
chgpasswd function specification then becomes:

{{s^auth | u-.auth) =>pw' = inval)
& (-> (s_auth | u^auth) => pw' = pw)

After making the change to the specification, a new proof
must be conducted. If the proof fails, the specification
must be analyzed manually to determine why, then
appropriate changes made. The conditions under which
the change will affect the state transition invariant can be
calculated using the predicate difference. As it turns out,
the predicate difference is 0, so the change will not affect
the invariant. By Theorem 3, the predicate difference is

(u_auth => t-auth) &
(t&auth => pw 4= 0)&
(u-auth | s^auth =>pw' = inval) &
(-• (u^auth | s-auth) =>pw' = pw) &
-, {pW

r 4= 0 &pw = 0 => s^auth) = 0

Depending on the problem, the predicate difference
may be either more or less effort to calculate than a new
proof. The advantage in computing the predicate
difference is in determining the conditions under which a
change will render non-secure a system that was
previously shown secure.

8.2. Analyzing the effect of security flaws

One important problem in security evaluations is to
determine the effect of violations of assumptions. In
general, violations of assumptions will affect the security
of the system under some conditions, but not make the
system non-secure all the time. The predicate difference
for a hypothesized violation of assumptions gives the
conditions under which the security invariant does not
hold.

In a state machine model a proof is given that
transitions Tt imply the security invariants S, i.e.
(Tt=> S) &(T2=> S) &... &(Tn=> S). A violation of as-

37

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 577

CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/574/352723 by guest on 10 April 2024

D. R. KUHN

sumptions in a transition, such as the failure of a
variable to maintain a specific value, can be modelled by
letting an expression e represent the potential new value
of a variable x, then computing the predicate difference
d{T=>S)z

e. The predicate difference gives the conditions
under which the invariant will change truth value, that is,
the conditions under which the system would not be
secure.

8.3. Formalizing the database inference problem

An important topic in computer security and privacy is
database inference, which concerns the question of how
database systems can prevent the inference of confidential
information from responses to queries. Although the
system may never explicitly release the confidential fact,
a user may be able to infer the secret by putting together
other facts that are not protected. This problem can be
modelled by letting S represent the secret information
and F represent the facts that the database has revealed
so far. If a new query is given, changing F to F', and
F => S, then the secret has effectively been disclosed and
security has failed.

The database inference problem can be modelled using
predicate differences. Assume that the system has not
revealed the secret S, i.e. -<(F=>S) is true. If x is a
variable in the predicate F that defines the current set of
facts, and a query will give an expression e as the new
value of x, then the system is secure if and only if the
expression -> (F=> S) is independent of the substitution of

e for x. Let / be the invariant F& -> S, which is equivalent
to -. (F=> S). Then if dl/dF? = 0, the substitution of e for
x will not affect the invariant: i.e. secrecy will not be
compromised.

9. CONCLUSIONS AND FUTURE
DIRECTIONS

Predicate differences can be an effective analytical tool
for evaluating the effect of changes to formal speci-
fications. They may also be useful in re-verifying
specifications after modification; determining if a change
will cause a previously secure system to become non-
secure; and as a metric for changes to predicates.

Examples presented in this paper were based on real
applications, but additional experience is needed to
explore the technique. Integrating the calculation of
predicate differences into a tool for a formal specification
language would make it possible to compute 'predicate
slices' of the formal specification. Tools to compute
predicate slices for popular specification languages such
as Z and InaJo could be useful in evolving and
maintaining system specifications.

Acknowledgements

I am grateful to John Cherniavsky, Jim Lyle, Bill
Majurski, and Charles Nicholas for many helpful
comments on this work.

REFERENCES
1. S. B. Akers, On a theory of Boolean functions, SI AM

Journal 7 (4).
2. N. Bell, E. W. Page and M. G. Thomason, Extension of 9.

the Boolean difference concept to multi-valued logic
systems. Proceedings of the 1972 Symposium on the Theory
and Applications of Multiple-Valued Logic Design. 10.

3. E. W. Dijkstra, A Discipline of Programming. Prentice
Hall, Englewood Cliffs, NJ (1976).

4. S. Gibbs, D. Tsichritzis and E. Casais, Class management 11.
for software communities. CACM 33 (9) (1990).

5. D. Gries, The Science of Programming. Springer Verlag, 12.
New York (1987).

6. D. R. Kuhn, Predicate differences and the analysis of
dependencies in formal specifications. 14th National 13.
Computer Security Conference. Washington, D.C.
(October 1991). 14.

7. H. Lu and S. C. Lee, Fault detection in M-logic circuits
using the M-difference. Proceedings of the International
Symposium on the Multiple Valued Logic, 1984.

8. P. N. Marinos, Derivation of minimal complete sets of

test-input sequences using Boolean differences. IEEE
Transactions on Computers C-20 (1) (1971).
D. E. Muller, Application of Boolean algebra to switching
circuit design and error detection. Transactions of the
Institute of Radio Engineers EC-3 (1954).
I. S. Reed, A class of multiple-error correcting codes and
the decoding scheme. Transactions of the Institute of Radio
Engineers IT-4 (1954).
I. S. Reed, Boolean difference calculus and fault finding.
SI AM Journal of Applied Mathematics 24 (1) (1973).
R. P. Trueblood and A. Sengupta, Dynamic analysis of the
effects access rule modifications have upon security. IEEE
Transactions on Software Engineering SE-12 (8) (1986).
M. Weiser, Program slicing. IEEE Transactions on Software
Engineering SE-10 (7) (1984).
M. Whitney and J. Muzio, Decisive differences and partial
differences for stuck-at fault detection in MVL circuits.
18th Intl. Symposium on Multiple- Valued Logic, Palma de
Mallorca, Spain, 24-26 May (1988).

Notice

The book "ML for the Working
Programmer", written by L C Paulson and
published by Cambridge University Press,

was reviewed in this Journal in October
1992, page 450. The publishers have asked
us to announce that this book is now

available in paper back (ISBN 0-521-
42225-6, price £14.95).

578 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/574/352723 by guest on 10 April 2024

