
D. R. KUHN

sumptions in a transition, such as the failure of a
variable to maintain a specific value, can be modelled by
letting an expression e represent the potential new value
of a variable x, then computing the predicate difference
d{T=>S)z

e. The predicate difference gives the conditions
under which the invariant will change truth value, that is,
the conditions under which the system would not be
secure.

8.3. Formalizing the database inference problem

An important topic in computer security and privacy is
database inference, which concerns the question of how
database systems can prevent the inference of confidential
information from responses to queries. Although the
system may never explicitly release the confidential fact,
a user may be able to infer the secret by putting together
other facts that are not protected. This problem can be
modelled by letting S represent the secret information
and F represent the facts that the database has revealed
so far. If a new query is given, changing F to F', and
F => S, then the secret has effectively been disclosed and
security has failed.

The database inference problem can be modelled using
predicate differences. Assume that the system has not
revealed the secret S, i.e. -<(F=>S) is true. If x is a
variable in the predicate F that defines the current set of
facts, and a query will give an expression e as the new
value of x, then the system is secure if and only if the
expression -> (F=> S) is independent of the substitution of

e for x. Let / be the invariant F& -> S, which is equivalent
to -. (F=> S). Then if dl/dF? = 0, the substitution of e for
x will not affect the invariant: i.e. secrecy will not be
compromised.

9. CONCLUSIONS AND FUTURE
DIRECTIONS

Predicate differences can be an effective analytical tool
for evaluating the effect of changes to formal speci-
fications. They may also be useful in re-verifying
specifications after modification; determining if a change
will cause a previously secure system to become non-
secure; and as a metric for changes to predicates.

Examples presented in this paper were based on real
applications, but additional experience is needed to
explore the technique. Integrating the calculation of
predicate differences into a tool for a formal specification
language would make it possible to compute 'predicate
slices' of the formal specification. Tools to compute
predicate slices for popular specification languages such
as Z and InaJo could be useful in evolving and
maintaining system specifications.

Acknowledgements

I am grateful to John Cherniavsky, Jim Lyle, Bill
Majurski, and Charles Nicholas for many helpful
comments on this work.

REFERENCES
1. S. B. Akers, On a theory of Boolean functions, SI AM

Journal 7 (4).
2. N. Bell, E. W. Page and M. G. Thomason, Extension of 9.

the Boolean difference concept to multi-valued logic
systems. Proceedings of the 1972 Symposium on the Theory
and Applications of Multiple-Valued Logic Design. 10.

3. E. W. Dijkstra, A Discipline of Programming. Prentice
Hall, Englewood Cliffs, NJ (1976).

4. S. Gibbs, D. Tsichritzis and E. Casais, Class management 11.
for software communities. CACM 33 (9) (1990).

5. D. Gries, The Science of Programming. Springer Verlag, 12.
New York (1987).

6. D. R. Kuhn, Predicate differences and the analysis of
dependencies in formal specifications. 14th National 13.
Computer Security Conference. Washington, D.C.
(October 1991). 14.

7. H. Lu and S. C. Lee, Fault detection in M-logic circuits
using the M-difference. Proceedings of the International
Symposium on the Multiple Valued Logic, 1984.

8. P. N. Marinos, Derivation of minimal complete sets of

test-input sequences using Boolean differences. IEEE
Transactions on Computers C-20 (1) (1971).
D. E. Muller, Application of Boolean algebra to switching
circuit design and error detection. Transactions of the
Institute of Radio Engineers EC-3 (1954).
I. S. Reed, A class of multiple-error correcting codes and
the decoding scheme. Transactions of the Institute of Radio
Engineers IT-4 (1954).
I. S. Reed, Boolean difference calculus and fault finding.
SI AM Journal of Applied Mathematics 24 (1) (1973).
R. P. Trueblood and A. Sengupta, Dynamic analysis of the
effects access rule modifications have upon security. IEEE
Transactions on Software Engineering SE-12 (8) (1986).
M. Weiser, Program slicing. IEEE Transactions on Software
Engineering SE-10 (7) (1984).
M. Whitney and J. Muzio, Decisive differences and partial
differences for stuck-at fault detection in MVL circuits.
18th Intl. Symposium on Multiple- Valued Logic, Palma de
Mallorca, Spain, 24-26 May (1988).

Notice

The book "ML for the Working
Programmer", written by L C Paulson and
published by Cambridge University Press,

was reviewed in this Journal in October
1992, page 450. The publishers have asked
us to announce that this book is now

available in paper back (ISBN 0-521-
42225-6, price £14.95).

578 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/578/352737 by guest on 10 April 2024




