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sumptions in a transition, such as the failure of a
variable to maintain a specific value, can be modelled by
letting an expression e represent the potential new value
of a variable x, then computing the predicate difference
d{T=>S)z

e. The predicate difference gives the conditions
under which the invariant will change truth value, that is,
the conditions under which the system would not be
secure.

8.3. Formalizing the database inference problem

An important topic in computer security and privacy is
database inference, which concerns the question of how
database systems can prevent the inference of confidential
information from responses to queries. Although the
system may never explicitly release the confidential fact,
a user may be able to infer the secret by putting together
other facts that are not protected. This problem can be
modelled by letting S represent the secret information
and F represent the facts that the database has revealed
so far. If a new query is given, changing F to F', and
F => S, then the secret has effectively been disclosed and
security has failed.

The database inference problem can be modelled using
predicate differences. Assume that the system has not
revealed the secret S, i.e. -<(F=>S) is true. If x is a
variable in the predicate F that defines the current set of
facts, and a query will give an expression e as the new
value of x, then the system is secure if and only if the
expression -> (F=> S) is independent of the substitution of

e for x. Let / be the invariant F& -> S, which is equivalent
to -. (F=> S). Then if dl/dF? = 0, the substitution of e for
x will not affect the invariant: i.e. secrecy will not be
compromised.

9. CONCLUSIONS AND FUTURE
DIRECTIONS

Predicate differences can be an effective analytical tool
for evaluating the effect of changes to formal speci-
fications. They may also be useful in re-verifying
specifications after modification; determining if a change
will cause a previously secure system to become non-
secure; and as a metric for changes to predicates.

Examples presented in this paper were based on real
applications, but additional experience is needed to
explore the technique. Integrating the calculation of
predicate differences into a tool for a formal specification
language would make it possible to compute 'predicate
slices' of the formal specification. Tools to compute
predicate slices for popular specification languages such
as Z and InaJo could be useful in evolving and
maintaining system specifications.
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Notice

The book "ML for the Working
Programmer", written by L C Paulson and
published by Cambridge University Press,

was reviewed in this Journal in October
1992, page 450. The publishers have asked
us to announce that this book is now

available in paper back (ISBN 0-521-
42225-6, price £14.95).
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