
Formal Methods: Use and Relevance for the Development of
Safety-Critical Systems

L. M. BARROCA1 AND J. A. McDERMID2*
'Department of Computer Science, University of York, York YO1 5DD
2 University of York and York Software Engineering Ltd

We are now starting to see the first applications of formal methods to the development of safety-critical computer based
systems. Discussion on what are appropriate methods and tools is still intense, and there is no standard approach that
presents a complete solution for the formal development of such systems. Some of the protagonists claim that formal
methods offer a complete solution to the problems of safety-critical software development. Others claim that formal
methods are of little or no use - or at least that their utility is severely limited by the cost of applying the techniques.
The aim of this paper is to try to cast some light on this debate and to discuss from a technico-philosophical viewpoint
the benefits and limitations of formal methods in this context.

Received May 1992

1. INTRODUCTION

We are now starting to see the first applications of formal
methods to the development of safety-critical computer
based systems. However, discussion on what are appro-
priate methods and tools is still intense, and there is no
standard approach that presents a complete solution for
the formal development of such systems. Some of the
protagonists claim (or at least are said to claim by their
detractors) that formal methods offer a complete solution
to the problems of safety-critical software development.
Others claim (or at least are said to claim by the ' formal
methods' protagonists!) that formal methods are of little
or no use - or at least that their utility is severely limited
by the cost of applying the techniques. The aim of this
paper is to try to cast some light on this debate and to
discuss from a technico-philosophical viewpoint the
benefits and limitations of formal methods in this context.
It is, perhaps, useful however to expose our prejudices
now by summarising our view -formal methods are both
oversold and under-used.

In order to provide justification for this view it is
necessary first to lay some terminological groundwork
and to consider current practices. The term 'formal
method' is widely used, but with differing meanings. In
this paper we use the term to refer to methods with a
sound basis in mathematics. We use the term 'structured
method' to refer to methods which are well defined but
which do not have a sound basis in mathematics for
(completely) describing functionality. Technically the
most significant difference between the two classes of
technique is that formal methods permit functionality to
be specified precisely whereas structured methods only
allow system structure to be specified precisely. (Interest-
ingly many formal techniques are weak at describing
system structure and boundaries.) In practice some
formal techniques also explicitly address other, non-
functional, aspects of systems, for example their timing
behaviour.

It is possible to distinguish five types, or classes, of
formal methods, which can be roughly characterised as
follows.

* To whom correspondence should be addressed.

(1) Model-based approaches - giving an explicit, al-
beit abstract, definition of system (program) state and
operations which transform the state, but giving no
explicit representation of concurrency, for example Z23>69

and VDM.30

(2) Algebraic approaches - giving an implicit defi-
nition of operations by relating the behaviour of different
operations without defining state, again giving no explicit
representation of concurrency - for example OBJ20 and
PLUSS.13

(3) Process algebras - giving an explicit model of
concurrent processes and representing behaviour by
means of constraints on allowable observable com-
munication between the processes - for example CSP26

and CCS.51

(4) Logic-based approaches - a variety of approaches
using logic to describe properties of systems, including
low-level specification of program behaviour and speci-
fication of system timing behaviour - for example tem-
poral and interval logics.1735

(5) Net-based approaches - giving an implicitly con-
current model of the system in terms of (causal) data flow
through a network, including representing conditions
under which data can flow from one node in the net to
another - for example Petri Nets59 and Predicate Tran-
sition Nets.1871

In practice the distinctions are not always clear, and
there are hybrid methods which incorporate facets of
more than one approach. Most of the methods have set
theory and predicate logic as their underlying basis, so
there is some technical similarity between all the
approaches. However, there are significant differences
between the expressive power of the methods, and this
was the essence of our classification above. In com-
.menting on formal methods we will, where appropriate,
identify the classes of method to which the comments
apply.

Formal methods can be used in two distinct ways.
First, they can be used for production of specifications
which are then used as the basis of a fairly conventional
system development. Second, formal specifications can
be produced as above, then used as a basis against which
the correctness of the program is verified (proven). In the
first case the mathematics is used, essentially, as a

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 579

37-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

documentation medium. The benefits of the formalism
include precision, abstraction, conciseness and mani-
pulability. Manipulations might include consistency
checking, automatic generation of prototypes or ani-
mation, and derivation of properties by means of proof.
In the second case similar benefits accrue but, in addition,
it is possible to prove the correspondence of program
and specification - to show that the program does what
it is specified to do - thus giving software development
the same degree of certainty as a mathematical proof.

Structured methods are used fairly widely in industry.
Formal methods are used much less widely, but their use
is on the increase. In practice most industrial-scale
applications of formal methods have involved model-
based approaches where programs were developed
'conventionally' from formal specifications. Formal
verification of programs is much less common and the
main examples, outside academia, are in the security
community in the USA.

There are some examples of the use of formal methods
for safety-critical systems, most notably by Rolls Royce
and Associates25 and at the Darlington reactor in
Canada.57 Reports from such projects indicate that
formal methods were effective and contributed to the
success of the work. Thus there is some practical evidence
that formal methods are of utility in producing safety-
critical systems, although it is always difficult to isolate
the factors that lead to successful projects. Also the use
of formal methods is advocated by a number of standards,
most notably DefStan 00-55 in the UK.52 This standard
implies that the techniques are of central importance in
the development of software for safety-critical systems.

The paper is based on the premise that formal methods
are, in principle, valuable to industry for at least some
aspects of the development of safety-critical systems, and
that their introduction represents a significant step in the
evolution of software development towards a true
engineering discipline. However, there are theoretical
and philosophical limitations to the methods, and it is
not entirely clear how relevant and useful the methods
are for solving the particular problems encountered in
the development of safety-critical systems. This is the
main point which we hope to illuminate in this paper. As
well as discussing limitations of formal methods, in
principle, the paper set out what the authors see as being
a practical problem with formal methods, vis a vis
application in the development of safety-critical systems,
given their current state of development.

In Section 2 we set out the issues which have to be
addressed in developing software for safety-critical
systems, focusing particularly on how we gain confidence
in the safety of systems containing software. In sub-
sequent sections we discuss the (potential) role of formal
methods in the software development life-cycle. This
enables us to return to our main concern: the utility and
relevance of formal methods, both in principle and in
practice, in the development of safety-critical computer-
based systems.

2. THE DEVELOPMENT OF SOFTWARE
FOR SAFETY-CRITICAL SYSTEMS

Even when used in a safety-critical application, software
cannot directly (of itself) cause loss of life, but it may
control some equipment that can cause loss of life. Thus,

software can contribute to the safety (or otherwise) of a
system. In practice we often apply the term 'safety
integrity' to software, to denote the extent to which the
integrity (freedom from impairment) of the software
contributes to the overall safety of a system.

We might think that we simply require software in
safety-critical systems to be highly reliable; however, this
misses a key point. First, software can fail frequently but
still not lead to unsafe behaviour - if the failures do not
cause hazardous consequences.* Second, reliable soft-
ware can be unsafe - if in the rare event of failure there
are catastrophic consequences. This suggests that we
need to consider both failure modes and their con-
sequences. However, for the purpose of discussing the
effectiveness of formal methods, we need to focus
primarily on failures. Although we cannot take reliability
as the only measure of safety, or safety integrity, we must
accept that reliability remains a valid measure and
objective - so long as it is related to classes of failure
which can lead to hazards.

2.1 Safety integrity goals and assurance

In this section we discuss the objectives of techniques for
producing software with a high degree of safety
integrity - although following Laprie we more often use
the term dependable, or dependability.37 Also we present
some fundamental principles which we believe facilitate
the assessment of the contribution to safety of various
(alternative) software development techniques. To sim-
plify the discussion we will assume that the system to be
produced is to be assessed by some agency independent
of the developers - this is the case in many industries,
e.g. civil aerospace, and probably should always be true
where human life is at stake. We also assume that normal
software engineering discipline is applied (see for example
Macro & Buxton)48 and focus on the additional issues
which affect dependable systems.

A characteristic of safety-critical systems is that a
failure can be catastrophic. Thus in developing software
for safety critical systems we have to achieve two distinct
goals: (i) to develop the software in such a way that it is
impossible or extremely unlikely that its behaviour
(execution) will lead to a catastrophic failure; and (ii) to
provide evidence that will convince both the developers
and the assessment authority of the dependability of the
software (that the software will not, or at least it is very
unlikely to, cause catastrophic behaviour in its op-
erational environment). The above points cannot be
established for software in isolation, but we will deal
with software as independently of its operational
environment as possible. We used terms such as
'extremely unlikely' above without quantification. Ideal-
ly we would like to attach a reliability figure or probability
to these undesirable events. However, this is not
necessarily straightforward as we noted above, and we
will return to this point later.

As a consequence of the above observations we can see
that we would like to achieve and to demonstrate, for the
software in a system, that: (i) its requirement specification
does not admit (allow) executions which would lead to

* Reports indicate that there have been five 'anomalies' in the
software controlling the trip systems in the French nuclear power
plants, but none of these has led to safety-related 'incidents'.

580 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

catastrophic failure in its intended operational context;
(ii) it is free from design flaws which could lead to
catastrophic failure in its intended operational context;
i.e. that it satisfies its specification or, at least, the safety-
relevant portion thereof (note that this might involve
taking into account new failure modes which are only
apparent at the design, rather than the requirements
level); (iii) it can protect itself against the failures of other
components of the system (which are not trapped by
other means, e.g. hardware memory protection), and
from external threats or attacks which could cause
catastrophic failure. These are objectives, and it is useful
to discuss the degree to which the objectives are
attainable.

Demonstrating to our complete satisfaction that we
have achieved the first objective, i.e. adequate specifi-
cations, is generally accepted to be impossible (see for
example Leveson (1986) for discussions of this point).38

In essence, the difficulty is that we do not have any way
of knowing that we have identified all the possible threats
to, or failure modes of, the system, so we can never be
sure that our specification(s) is (are) complete. However,
it is possible to apply techniques which reduce the
likelihood that the specification is catastrophically flawed
(see Section 3.2 below).

As indicated above, design is a fallible human activity,
but it is rather less problematical than specification, so
we can (usually) be rather more confident that we have
got the design and implementation ' right' with respect to
the specification than that we have got the specification
'right'. Clearly the distinction arises because, once we
have written the specification, we have bounded the
issues which we need to address in the later stages, so we
are less likely to make major omissions in the design and
implementation. We have previously used the term
'assurance' for the degree of confidence that we have in
the specifications and design,43 and we amplify on the
issue of levels, or degrees, of assurance below.

There are generally applicable techniques which can
assist with the third point, for example solutions to the
so-called Byzantine Generals problems,36 where each
system component assumes that all other components
can fail in any manner, including maliciously. There are
also techniques, for example the work of Ezilchelvan
et al. (1986)15 which are effective in the face of rather
less pessimistic fault assumptions. However, achievement
of protection against failures is largely application-
dependent, so we will primarily concern ourselves with
the first two points.

As indicated earlier we cannot have complete con-
fidence that we have achieved safety integrity. Instead we
need to achieve assurance, or confidence.

Assurance is based on a number of issues, including
the level of trust we have in the individuals carrying out
the development, etc. However, one of the main
contributing factors to assurance is the evidence produced
during software development - and this in turn derives
from the verification and validation activities which we
carry out throughout the software development process
(see also Section 3).

It is common to equate validation with answering the
question 'are we building the right thing?' and veri-
fication with answering the question ' are we building the
thing right?' Clearly this interpretation of the terms
identifies validation as dealing with the first of our three

demonstrable properties above, and verification as
dealing with the second point.

Whilst we have some reservations about these terms,
we continue to use them as they are in widespread usage.
A key issue for us is how much assurance we get from
particular verification and validation techniques.

2.2 Fundamental principles of assurance

Assurance could, in principle, be based on reliability
figures if they could be linked to catastrophic (rather
than non-critical) failures. However, it is generally
accepted that it is not practical to assess reliability at the
high levels required for safety-critical systems.40 Further,
we have previously argued that deployment decisions for
critical systems are actually made on subjective grounds
(perhaps subjective reliabilities) not calculations of
reliability based on frequent data, because of the
uncertainties introduced by the inherent limitations of
synthetic reasoning.43 Thus we present the principles
which we believe underlie the choice of software
engineering techniques in terms of assurance.

Assurance can be thought of as confidence-based, of
course, on objective evidence. Our fundamental tenet is
that assurance arises from comprehension and diversity
(perhaps the terms 'understanding' and 'independence'
are more evocative). Simplistically we can say that the
greater our comprehension of some artifact, the greater
our confidence about the dependability of the artifact.
There is nothing remarkable about this statement - it
simply reflects the fact that confidence increases with
understanding. Similarly, confidence increases with the
number of independent, or diverse, ways that we have
arrived at compatible or equivalent understandings of
the system.

More practically, we recognise that in developing or
evaluating a putatively safe system we may discover a
flaw, or flaws. Clearly discovery of a flaw reduces our
confidence in the dependability of the system. Thus we
can define assurance in the following way,

Assurance that we have correctly assessed the dependability of
an artifact increases as our comprehension of the artifact, and
the number of ways we have obtained compatible under-
standings, increases.

Thus we need to base our discussion of which methods
and techniques to use in achieving dependability on the
criterion of which yields the greatest understanding of
the system under development. For a simple artifact we
may be able to gain sufficient comprehension of the
artifact itself that we can directly assess its conformance
to the specification (and the 'validity' of the require-
ments). For a more complex artifact we may find it
impossible to gain adequate comprehension directly, or
simply more cost-effective to gain assurance in the
process. In practice it is helpful to address assurance
from both the product and the process points of view,
i.e. from the point of view of what is produced and how
it is produced.

Also software tools are extensively used in developing
dependable systems. The use of the tools is nugatory
unless we can trust them. Consequently we require
assurance in the tools themselves! Thus assurance in
tools is one of the factors influencing assurance of a
'target' system, and for very simple artifacts greater

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 581

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

assurance may arise without the use of tools, as the
benefits of using the tools may be outweighed by the need
to comprehend them (to gain assurance in their correct
functioning). In practice this probably means that manual
techniques are more effective only for programs of a few
tens, or hundreds, of lines of code.

The use of diversity in various forms of fault-tolerant
systems, including design diversity, is becoming more
commonplace. The principle extends to the development
process. For example, the use of more than one
(independently developed) tool to carry out some analysis
reduces the risk of common-mode failure, and increases
confidence. Similarly, in the author's view, one of the
psychological bases behind the value of formal techniques
is that specifications, programs and proofs are redundant
structures, and the risk of complete ' system' failure is
reduced as failures (design or construction errors) in one
form will probably be detected by comparison with the
others. Thus we believe that diversity is a ubiquitous
principle and that it can be applied to analysis methods,
personnel, tools, and so on, but we will return to this
point in relationship to formal methods later in the
paper.

This discussion enables us to clarify the fundamental
principle behind assurance.

Assurance arises from comprehension of, and diversity in, the
complete procurement process, including the artifact which is
developed, and the methods and tools used in its development
and evaluation.

This principle should be evident in the ensuing discussion,
although we focus more on the issues of comprehension
than diversity.

3. FORMAL METHODS IN THE SAFETY-
CRITICAL SYSTEMS LIFE-CYCLE

Our aim here is to discuss the development process for
safety-critical systems and to indicate where, in principle,
formal methods can be applied beneficially. It is hoped
that this general discussion will become more clear and
concrete when we discuss and illustrate particular formal
techniques in Appendix A.

3.1 The Software Life-Cycle

We give here a brief overview of the nature and scope of
the software life-cycle. A fuller description of life-cycle
concepts and the important concepts of process design
can be found in McDermid & Rook.47

The software 'life-cycle' is concerned with the de-
velopment of software from initial concepts through
delivery, use, and so-called maintenance. It is helpful to
produce a generic model of the life-cycle in order to have
a basis for discussing different software development
paradigms. Therefore we base our model on an abstract
view of the activities carried out in software development
and maintenance.

The first observation which we make is that, except for
trivial systems, it is not possible to proceed directly from
the initial concepts to executable software. Instead a
number of intermediate system specifications are pro-
duced, e.g. requirements specifications. We refer to
these using the generic term descriptions.

In general development proceeds from concepts,

through requirements, etc. and one description is
developed by some intellectual or automated process
from the preceding description or representations. We
refer to this process as a transformation, although there
is no implication that this is a purely automatable
process, and synthesis would perhaps be a better term.

In an ideal world the transformations would yield a
sequence of descriptions, resulting in executable pro-
grams which satisfied their requirements and the initial
concepts. In practice, errors and infelicities are discovered
during development (and maintenance) which cause
iteration, i.e. repetition of the current transformation or
rework of earlier representations. We use the term
Verification and Validation (V&V) for the checking
activities which may lead to iteration. We have already
indicated the distinction between these terms above, so it
seems unnecessary to repeat any discussion here, but it is
relevant to consider a distinction between forms of
verification in the context of formal methods.

It is common to use the term formal verification to
mean verification based on the concepts of mathematical
proof. More strictly it means proofs where all the detail
of the mathematical argument are presented. Clearly this
is a form of analytical reasoning.

We can have very great confidence in the correctness
(with respect to the specification) of a formally verified
system, but the cost of gaining this confidence is very
high (at the current state of the art, see below).
Consequently the use of formal verification would only
be justified where the cost of system failure is very high,
e.g. in safety-critical systems. Also the successful
use of formal verification is contingent on proper tool
support, and this affects our views on assurance as the
proof tools tend to be complex.

An alternative style of verification known as the
rigorous approach involves the use of much less detailed
proofs, or arguments, and 'obvious' truths would be
accepted without any requirement to present an explicit
argument in a rigorous proof.30 With the rigorous
approach, much of the benefit of formal proofs is gained
at a much lower cost. It is probable that future large-
scale software development projects will be based on the
rigorous approach.

3.2 Typical development stages

As indicated above, there are many different approaches
to software development adopted in industry. The
following ' typical' model is intended to encapsulate the
differing nature of the information being worked with at
different stages in software development, without making
commitment to any particular development method-
ology. It is intended that the model encompasses most
real safety-critical systems developments, i.e. we have
erred towards including stages which might not always
be employed.

Five stages are identified in addition to the concepts
'stage', as follows.

(1) Requirements specification - description of the
system and its operational environment, particularly
stressing the interface between the system and the
environment.

(2) System specification - an 'external view' of the
system to be produced describing the system inputs, the

582 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

system outputs and their relationships without describing
internal system structure.

(3) Architectural design - a high-level internal view of
the structure of the system as it is to be produced - ' the
grand plan' of the system like the architecture of a
building.

(4) Detailed design - details of algorithms and data
structures needed to implement the system.

(5) Implementation - the program source code (and
the executable images).
The first two, Requirements Analysis and System
Specification, are in the domain of requirements, and
this is usually summed up as representing what the
customer or user wants. The remaining three are in the
design domain, and this is usually summed up as
representing how the system developer intends to satisfy
the requirements. In practice there may well be multiple
stages of detailed design. We leave more detailed
descriptions of the life-cycle stages to the subsequent
sections, but make some observations on the distinctions
between the stages.

The what/how dichotomy is rather simplistic and, in
practice, it is perfectly legitimate for customers or users
to specify 'how' something should be done, e.g.
to specify an algorithm. Similarly the system developer
may have valid views on requirements - arising from a
knowledge of similar systems or of implementation costs.
In general it is more reasonable to say that requirements
and design specifications will contain varying proportions
of 'what' and 'how' information, and that the levels of
description really represent degrees of commitment to
implementation strategies.14 In particular, for safety-
critical systems, requirements may place stringent con-
straints on system architecture in order to achieve some
degree of fault tolerance, and the what/how distinction
is a fairly poor guideline to the distinction between
requirements specification and design documents.

For the sake of clarity the following discussion takes a
fairly 'pure' view of each of these stages of system
development, but it should be borne in mind that any
level of description may contain information which we
might think of as being primarily related to one of the
other levels.

3.3 The role of formal methods in the software
development process

We discuss each of the above five stages in the
development process and describe in more detail the
characteristics of the descriptions and the role that formal
methods can play in representing, producing and
checking the description. To simplify discussion, we use
the term 'target system' to describe the system being
specified and implemented in cases where there might
otherwise be ambiguity.

3.3.1 Requirements analysis

Requirements analysis is the first stage of the de-
velopment process concerned with documenting the
user's or customer's perceived needs by ' transformation'
from the (by definition undocumented) initial concepts.
The distinguishing characteristic of requirements analysis
is that it is primarily an information-gathering exercise

which can only be validated, not verified (except for
internal consistency).

The results of requirements analysis should describe
both the system and the environment in which it operates.
This is the case for two reasons: (i) the environment may
change, impacting the functionality required of the
system; (ii) the boundary of the system is not known
a priori. It is hard to bound precisely that part of the
environment which should be considered in requirements
analysis, but it should cover at least those systems,
individuals, etc. which interact directly with the target
system. In the case of safety-critical systems the en-
vironment model should cover sources of threats to the
system and other systems or equipments in which
hazards could arise due to failure in the target system.
The need to represent the environment means that
requirements descriptions must be able to represent
concurrency explicitly (because the system and processes
in the environment operate concurrently).

In requirements analysis it must be possible to describe
non-computable systems. This is both because users may
ask for unrealisable systems and it is desirable to be able
to record their requests exactly, and because it must be
possible to record partial requirements, or requirements
based on the assumption of infinite resources, which may
arise as part of the information-gathering process.

The results of requirements analysis are the primary
basis for communication with the user and customer.
For this reason it is desirable that the representation
should be as precise as possible, i.e. formal. It is
also necessary that requirements be intelligible to the
customers, as one of the primary forms of validation is
review with the customer. However, it is rare for users to
be educated to understand the necessary formalisms.
Consequently it seems that formal techniques either
cannot be used at this stage, or if they are used some
interpretation of the formalism is required for com-
munication with the customer. For example, it would be
possible to use techniques of animation, specification
execution, or derivation of properties by proof techniques
in validation of requirements. In this latter case we might
wish to prove that no sequence of operations which
could be undertaken by the system (if it satisfied its
specification) could lead to it (and the environment)
entering an unsafe state. Animation is mandated by
DefStan 00-55.52

Technically, requirements analysis methods need to
deal with causality, for e.g. 'when this event occurs in
the environment the system must perform the following
actions', and other properties such as behaviour of the
system under hardware failure conditions. One of the key
differences between ' normal' and safety-critical systems
is the need to be able to deal with causality in the
presence of failure, and this is the reason that techniques
such as failure modes effects analysis and fault tree
analysis are used at this stage in safety-critical systems
developments.

There are few formal methods oriented towards
requirements, although the work of the Alvey FOREST
project is noteworthy, as it deals with issues such as
formally representing causality and giving guidelines for
requirements capture.49-61

Some recent work has been developed to represent
timeliness requirements for safety-critical systems.6667

The separation between safety and mission (functionality)

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 583

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

is suggested for the formal analysis of requirements. This
separation has been used for nuclear systems58 and
railway control systems.9 Saeed uses Timed History
Logic as a formal model for requirements specification.

The use of formal methods in the requirements phase
has added the possibility of animation to the already
noted advantages of unambiguity, completeness and
consistency.28 Notations become more complete, ad-
dressing not only functionality but also non-functional
requirements such as timing. However, they have not yet
been able to combine power with expressiveness and
intuitivity, and there is still a long way to go to make the
notations presentable to the user without (substantial)
loss of precision.

3.3.2 System specification

System specification is still in the requirements domain,
i.e. it is primarily concerned with what the system should
do, not how it does it, although this is not always an easy
distinction to make in practice (see below). The primary
distinction between this and the previous stage is that it
describes only the system, not the environment, and it
gives precise definitions of the system interfaces. In
practice the system specification may be an enriched
subset of the requirement specification, and it should
encompass both the system interfaces and its function-
ality.

In the contractual model of the life-cycle the system
specification would be the basis of the contract for the
development team. The implicit requirements for pre-
cision suggests that the specifications produced should be
formal. Further, the need to specify 'what' not 'how'
suggests that it would be desirable to use algebraic
specification techniques, i.e. techniques where the be-
haviour of a system is specified implicitly by equations
relating inputs to outputs.76

Algebraic specification techniques have been widely
applied to small examples, but there is little evidence, as
yet, that they are suitable for specifying large systems. In
an algebraic approach we are forced in some cases (for
example, to establish the existence of an object in a
database by reasoning about the sequence of inputs, e.g.
creates and deletes, to the system), to be rather more
obscure and cumbersome than in the model-oriented
approach. There is a conflict between the theoretical
attractiveness of algebraic approaches and their apparent
practical limitations. However, the more operational
techniques may compromise design freedom.

There is another important issue related to system
specification which can be illustrated by example. It is
possible in an avionics system that some interfaces, e.g.
to radar subsystems, would be specified very precisely
during requirements, down to the level of the meanings
of bits at the interface. However, interfaces to other
devices, e.g. a head-up display, may be known in terms of
the information to be displayed, but not in terms of the
data formats, etc. Defining these formats is a design
exercise which should involve human factors experts. In
producing a system specification the interface definition
would have to be made precise, so it will inevitably
contain design information. The extent to which the
system specification will (implicitly) contain design
information will depend on the nature of the system

being built (recall our general comment above about the
relationships between the different levels of specification).

The system specification should be verified against the
requirements. In practice this will probably be an
informal exercise. Since design information may have
been added, it is also desirable that it is validated against
the initial concepts. It is possible that techniques of
animation or specification execution can be used in
validation although, as pointed out above, system
specification may not initially contain enough infor-
mation to allow execution of all aspects of the
specification.1124 For safety-critical systems, further
failure analysis may be appropriate, especially if it is
possible that new failure modes can be deduced from the
system specification which were not apparent at the
requirements stage.

There seem to be two possible ways in which formal
techniques can evolve to become more applicable for this
stage in the software development process. First, al-
gebraic techniques can be developed so that they are
applicable to large-scale systems. This will almost
inevitably involve schemes for modularising speci-
fications. Second, it may be possible to find ways of
applying the more operational techniques so that they do
not unduly compromise design freedom.

In the more operational perspective it is worth
mentioning here the more recent work of Harel and
Pnueli on the specification of reactive systems.22-33 The
Statechart approach with time constraints (Timed
Statecharts) is a semantically well-founded proposal for
the specification of the behaviour of a system that
interacts with an environment. It has at the same time the
notable advantage of presenting a visual formalism and
being amenable to animation.

P. Zave has also proposed an operational approach to
specification in a language called PAISLey (Process-
Oriented, Applicative and Interpretable Specification
Language), where she argues in favour of explicitly
modelling concurrency.73'74

3.3.3 Architectural design

The architectural design describes the system interfaces,
functionality and structure as the designers intend to
implement it. The architecture is distinct from the
previous stage in that it describes system structure and
how the functionality will be achieved as well as what
functionality is required. The level of detail contained in
such a specification will vary from project to project.
However, it is not the level of detail which characterises
the architectural design, but the fact that this is the first
description of the system which is produced primarily
from the developer's, rather than the user's, point of
view.

Many different ways of producing formal specifications
have been proposed; however, the concept of architecture
outlined above seems to match closely the ideas of
model-oriented specifications and process algebras. We
should refer here to the extensions that have been made
to model-oriented specifications in order to increase their
structure. This work has been closely related to object-
oriented extensions to the existing notations.41 Arguably
an 'ideal' approach would use a process algebra for
specifying concurrent structure and communication, but

584 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

employ model-oriented specifications to state the be-
haviour of the operations engaged in by the processes.

A primary characteristic of the transformation from
system specification to architecture is that it may not be
structure-preserving. In other words, the structure of the
design may have to be different from that of the
requirement. This change in structure may be necessitated
so that the system performs sufficiently quickly, so that
the customer can afford it, or perhaps so that it has the
appropriate fault-tolerance characteristics.

Ignoring, for the moment, the fact that software may
not function correctly, we can consider the effect of
reliability requirements on architecture. If the reliability
requirements can be met by a single (simplex) processor
(because the available processor chips are of adequate
reliability), the architecture may follow closely the
structure of the requirements with one ' design function'
for each 'requirements function'. However, if this is not
the case, redundancy may have to be used, thereby
causing replication of function and introduction of new
functions, e.g. for fault detection and system
reconfiguration. In this case more than one design
function would map to a function in the requirements
and there would be functions which had no (direct)
requirements counterpart at all. If we add timing
requirements, we may find further changes in structure
due to the fact that no one processor can keep up with the
data coming from a sensor. Thus the limitations of
current hardware technology are a primary factor in
determining the design, but there are many other issues
such as reliability, failure behaviour, timing behaviour,
and so on. We can draw a number of points from this
observation.

First, we have given non-functional reasons for the
change in structure. In other words non-functional
requirements such as performance, cost and reliability
drive the design process. This is significant, because
formal specifications do not, for the most part, enable
this non-functional information to be recorded. There
are, of course, exceptions to this, and some of the
specification logics deal specifically with timing.

Second, many formal methods support a concept
known as refinement,31 which enables us to define and
verify the correctness of the relationships between two
formal descriptions of the same system. However, the
published refinement techniques are usually too re-
strictive to admit the sort of structural change identified
above, although current research work is addressing this
problem, amongst others.445556

Third, we need quite a permissive interpretation of
equivalence between the levels of representation. It must
be possible to take into account non-determinism,
asynchrony, etc., which would mean, inter alia, that the
order of the outputs would not be determined entirely by
the order of the inputs. This may be particularly relevant
where high-priority inputs to a system can cause it to
change operational mode and therefore 'ignore' other,
'lower priority' inputs. The notion of behavioural
equivalence introduced in algebraic specification (see for
example Ref. 68) admits at least some of the requisite
laxity in the meaning of equivalence, but it is still a
research issue to determine an appropriate set of
refinement rules for dealing with the changes from
system specification to architecture.

It is also necessary to be able to represent concurrency

within the architectural design. Notations such as
Statecharts,22-33 already referred to above, are specially
amenable to represent the system interfaces and explicit
concurrency. The primary problem associated with
applying formal methods at this stage in the life-cycle is
that there is no method, or notation, which encompasses
all of the requirements identified above. At present the
would-be user of formal methods must choose the
technique which best supports the characteristics which
are most critical in his application area, or to use an
eclectic approach and find appropriate ways of relating
the different formalisms used.

3.3.4 Detailed design

It is our view that detailed design should proceed from
the architecture by the conventional process of (structure-
preserving) refinement. This is not a universally held
view, indeed the phrase 'one man's design is another
man's requirement' is often used in the software industry
when discussing hierarchical specifications of systems.
Given the interpretation of the relationship between
requirements and design given above, this would mean
that the structure of the design could be changed in each
representation. In our opinion this is an unhealthy
attitude from at least two points of view.

Technically it implies that the architect did not have a
complete (adequate) understanding of the system. This is
particularly critical if the proposed changes involve
modifying the process structure and hence impacting
timing, etc. possibly to the extent that the system no
longer meets its (non-functional) requirements. Clearly
problems with the architecture may be found in detailed
design: these should be resolved by updating the
architecture, not making low-level changes to the overall
design.

Managerially it implies that the project is not under
adequate control. For example, modules common to
several subsystems may have been identified for separate
implementation, and the basis on which this decision was
made could be invalidated by allowing changes at this
level. Thus even if the restructuring preserves subsystem
interfaces it could have ' knock-on' effects on the rest of
the project and invalidate project plans, project re-
sourcing, etc.

This structure-preserving view of detailed design is
consistent with (capable of being supported by) current
refinement techniques (see for example Refs 31 and 54).
The classical refinement techniques apply for sequential
systems. Some techniques for dealing with concurrent
systems, e.g. CCS,5051 support hierarchical de-
composition of systems, which is akin to refinement. So
far as we are aware there is no satisfactory formalism for
dealing with the simultaneous refinement of both the
concurrent and sequential aspects of a system. Again, in
practice, it seems that in order to use formal methods for
all aspects of detailed design and refinement to this level
it is necessary to take an eclectic approach and to work
out on an ad hoc basis how to relate the different forms
of specification.

5.5.5 Implementation

There has been considerable work on formal treatment
of the final stage of development, that is, formally

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 585

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

relating a program to a low-level specification. Tech-
niques include the so-called 'constructive' approach, e.g.
Backhouse,5 and program verification environments, e.g.
Gypsy.21 The constructive techniques are methods based
on the idea of deriving the program from low-level
specifications, and are intended to be applied manually.
The verification environments are based on similar
mathematical bases to the constructive techniques,26 but
typically are more concerned with giving automated
assistance to proof of correspondence between a program
and a specification. Techniques for formal implemen-
tation are most well developed for sequential programs,
but some work has been carried out for concurrent
programs. The techniques are expensive to use, and most
of their uses to data have been in highly critical systems
where the cost of failure justified the expense of applying
the techniques in development. A considerable improve-
ment in productivity using these techniques will be
necessary before they can become more widely used.

The majority of these techniques are suited to the
development of sequential programs, or at least programs
which terminate. However, many critical applications
where the use of these formal verification techniques
would by justified on economic grounds are continuously
running programs, monitoring the state of some (physi-
cal) process and taking the necessary remedial actions if
the process is becoming dangerous, e.g. monitoring
and controlling the flow of steel through a steel mill.
Improvements in techniques for handling concurrency
and continuously running programs will be necessary to
handle this class of programs in a satisfactory manner.

Weaker forms of verification may be valuable under
some circumstances. For example, tools such as Malpas
can carry out various analyses on programs, and these
can be used to validate or verify the program.7

Capabilities of the tools include analysing control and
data flow for undesirable features and establishment of
the information flow in the program so that it can be
compared against the specification. More recently de-
veloped, the SPARK toolset facilitates the formal proof
of complete programs.8 It consists of a strictly defined
subset of the Ada language, augmented by formal
annotations, and a set of accompanying tools.

4. STRENGTHS AND WEAKNESSES OF
FORMAL METHODS

In the introduction we made a number of comments
regarding the strengths and weaknesses, or limitations of
formal methods. We now return to these issues and
endeavour to substantiate them as far as possible.

4.1 Strengths
We identified in the intfoduction a number of (purported)
benefits of using formal methods. Our aim here is to
amplify these points and to provide a justification for our
views based, as far as possible, on the insight gleaned
from the examples given in the appendix.

We asserted in the introduction that the benefits of
using formal methods for specification included pre-
cision, abstraction, conciseness and manipulability. We
address these points, and a few subsidiary issues, dealing

with them first as issues of principle then assessing how
close current methods come to these ideals.

Some of the points made below are not clear cut. To
avoid circumlocution we state the positive view here and
explain any contrary views in Section 4.2 below.

4.1.1 Strengths — in principle

Specifications are primarily media for communication.
That is, they are intended to convey information from
the producer of the specification to the reader,
e.g. from the specifier of a module to the imple-
mentor. Alternatively they can be viewed as a means
for documenting agreements, i.e. the specifier and
implementor agree that the specification defines the
interface to the module which is to be built. This is still
a form of communication, although it implies different
degrees of responsibility for producing and verifying the
document. A communication medium should be (or
facilitate specifications which are) clear and unam-
biguous. This is not equivalent to saying that they are
precise, abstract or concise, but there are relationships
between these five properties, as we will new show.

Ambiguity is easily dealt with. Formal notations are
simple 'sugared mathematics' and hence they have an
unambiguous meaning, that of the underlying math-
ematical structures. More accurately, the more soph-
isticated mathematical notions are built on more primi-
tive notions, e.g. sets and propositional logic, and this
means that there is a well-defined interpretation of the
formal notations and this is enough, in principle, to
ensure consistent interpretation of specifications. We can
now focus on the issues of precision and clarity.

Formal specifications are, or can be, very precise
definitions because the semantics of the notations are
well defined and those of other media, such as English,
are not. Other notations, for instance those used by
structured methods, are also precise but they are less
expressive - showing structure not functionality - so
formal methods give more useful precision than other
approaches to specification. The direct benefit of the
precision is that it reduces, or even eliminates, the risk of
ambiguity and misinterpretation of specifications. Thus
precision is a property of formal methods (or notations)
and it is a major contributor to the production of
unambiguous specifications. It should also be pointed
out that this precision has a major pragmatic benefit in
reviews - it is often possible to have very detailed and
very constructive reviews when they are based on formal
methods because there is no argument about what has
been said, only about whether or not what has been said
is what should have been said. In other words, precision
aids validation as well as communication.

The nature of the abstractions made possible by use of
appropriate formalisms should be clear from the
examples given in the appendix. Abstraction is one of
our primary intellectual weapons for coping with
complexity, and it aids clarity by 'drawing away from'
details which are not germane to our interests.

Clarity also arises from conciseness. As we indicated
above, formal notations vary in their ability to represent
concepts concisely but, hopefully, they can be used to
produce very compact descriptions. More importantly,
they can be much more compact than equally clear
natural-language descriptions whilst (normally) being

586 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

more precise. To some extent this is borne out by the
examples in the appendix (compare the length of the
specifications with the length of their prose explanations),
but obviously the examples are a little biased by the fact
that it was necessary to give a more tutorial level of
description than would normally be the case.

The properties of abstraction, precision and con-
ciseness all contribute to clarity. Good structure also
contributes to clarity. In principle there is no reason why
formal methods should not yield good structure, but this
does not seem to be an inherent property of the
formalisms. This is perhaps an area where the structured
methods are more effective.

In the introduction we stated that a valuable property
of formal specifications is that they are manipulable, that
is, there are well-defined rules for analysing and perhaps
transforming formal specifications. This property can be
used to show consistency of specifications and to derive
important consequences of specifications, e.g. that
processes cannot deadlock, or that a trip system is
obliged to drop the control rods if the temperatures
sensed go outside the valid range. Thus manipulability
also aids in validation and it gives further abstrac-
tions - the derived properties - which can also help to
make specifications clearer.

In general it is possible to represent the mapping
between a specification and the corresponding program
within a formal framework. Obviously a very important
aspect of manipulability, which we have not been able to
illustrate, is the possibility of verifying that the im-
plementation, or at least the source code, satisfies the
specification. More generally, it is possible to reduce the
verification of the mapping between levels of specification
and between specifications and programs to a matter for
formal proof. Thus, in principle, formal methods can
offer very high confidence that the programs correspond
to their specifications.

Finally it should be noted that formal methods are, in
effect, a lingua franca - they will be (should be) inter-
preted the same way by readers of different backgrounds
whether the distinctions are between their mother tongues
or their professional disciplines. This truly is a property
we require of a language for communication.

4.1.2 Strengths - in practice

It is interesting to consider the extent to which the above
strengths are realised in practice. In Section 4.2 we
discuss weaknesses, so our aim here is not to be directly
critical but simply to observe which of the above supposed
strengths are manifest in practice. The simple answer is
all, to some extent!

Formal methods are perhaps most effective as a form
of communication and for agreeing and documenting
(design) decisions. The properties relating to ambiguity,
clarity and so on are not fully substantial (see below) but,
nonetheless, they do offer an effective medium for
communication - between cognoscenti.

These observations are borne out by industrial
experience. The use of formal methods in industry is not
widespread, but where they have been applied the
evidence is encouraging. It is always difficult to make
valid comparative analyses of the effectiveness of software
development technology but, for example, IBM Hursley
report a reduction in development costs of 9 % through

the use of Z on CICS,60 and a significant improvement in
fault rate, although the formally specified version of the
product is not yet on full release. In the context of safety-
critical systems, probably the most notable examples of
the use of formal methods are by Rolls Royce and
Associates and by RSRE on VIPER. In both cases
significant quality benefits were attributed to the use of
formal methods.

Thus there is relatively little evidence about the use of
formal methods on real industrial projects of any nature,
and even less on those involving safety-critical software.
Nonetheless, what evidence there is indicates that the
strengths discussed above are found in practice, albeit
with some limitations. The biggest limitation, in principle,
probably relates to the issue of ambiguity. The biggest
problem in practice relates to manipulability, largely due
to the paucity of effective tools. We return to these two
points below.

4.2 Weaknesses

Unfortunately the existing formal methods do not fully
live up to the ideal described above. This is mainly due to
the state of development of current methods and their
support tools, but there are also some issues of principle
which run counter to those set out above, or which at
least indicate limits to what they mean in practice for
formal software development.

4.2.1 Weaknesses - in principle

The most fundamental weakness, or limitation, relates to
the problem of specification validation, to which we
alluded earlier. We may be able to carry out development
from the specification with ' mathematical certainty' but
we will always have doubts about the veracity of the
initial specification.

Clearly it is extremely valuable to remove doubts
associated with software development but, unfortunately,
most evidence suggests that the primary source of
(significant) software errors is the specification - and
safety-critical systems are, if anything, more prone to this
sort of problem.38 At best this means that the math-
ematics, of itself, is insufficient to assure safety. Perhaps
more significantly we are now faced with a value
judgement about the level of effort we should put into
formal development as against the effort we should place
on means of validating the top-level specification. It
should be noted that we can use proof techniques to
assist in validation, e.g. by deriving safety properties
from a specification, but this simply reduces the 'gap'
between formalisms and the 'real world', and does not
eliminate it. Thus we know that we cannot simply rely on
formalism to achieve and demonstrate safety. We will
return to this general issue from a more pragmatic
perspective after considering ambiguity and the nature of
safety properties.

Another major, although less clear-cut limitation is to
do with interpretation of specifications. Formal speci-
fications do not just have an interpretation in terms of
the underlying mathematics, they are also interpreted by
software engineers in terms of a computational model
and by system users in terms of a model of the use of the
system in its operational environment. The issue of
ambiguity then becomes not one of the existence of a

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 587

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

unique model for the specification in the underlying
logic, but of compatibility of interpretations made in
different domains by individuals with differing back-
grounds and knowledge. Formal specifications are still
less ambiguous than most prose, but they cannot be said
to be free of ambiguity in any absolute sense as they are
open to interpretation. This weakens, but does not
negate, this strength of formal methods.

Another fundamental issue is that so-called 'non-
functional' requirements and properties such as safety
and security cannot be adequately articulated within a
first-order framework. This is a somewhat subtle tech-
nical point which is best illustrated by example. Consider
the requirement for a system to tolerate single-point
failures. At the level of system architecture, this may be
interpreted to mean the failure of single processor/
memory units. At the level of software module speci-
fication this may be treated as failure of a procedure
invocation, and at a lower level it may be interpreted as
the failure of a single logic gate or transistor. In other
words, the requirement is re-interpreted in terms of the
relevant abstractions at each stage in the development
process. Thus we view properties such as safety (which
may encompass notions of fault-tolerance) as being
higher-order in that they are really specifications which
apply to other specifications.

In order to link formal specifications to the 'real
world' and to guide the interpretation of the speci-
fications we give prose descriptions of the basic entities
specified and other fundamental notions. In a prose
specification we always have to work with such informal
descriptions. With a formal specification we can work
largely within an analytical framework, subject to the
need to re-interpret parts of the specification such as the
notion of fault, once we have established the primary
links between our specifications and the 'real world', so
there is reduced scope for errors of misinterpretation.
Thus the true limit of formal methods with respect to
ambiguity and precision is that they can only reduce the
scope for misinterpretation and other failings of speci-
fications, not eliminate them. In practice, there are
usually ways round such problems of principle.

We next address another issue of principle, which was
not addressed under the heading of strengths above, and
which has some practical ramifications. Once we realise
that there is no such notion as absolute safety we have to
recognise that we are primarily concerned with gaining
assurance or confidence in safety, not a guarantee. As we
indicated in Section 2.1, assurance arises from com-
prehension and diversity both of (or in) the product and
the process. If we carry out formal proofs as well as
producing formal specifications we are producing arti-
facts of considerable complexity - in other words the
proofs themselves are highly complex and difficult to
understand. This leads to the question - does the use of
formal proofs increase or decrease our comprehension
and assurance in a software system?

It is hard to answer this question fairly from the point
of view of principle because it is difficult not to be
influenced by the capability of current program veri-
fication tools, so we defer discussion of this point. There
is one further issue of principle, however, regarding
formal proofs which we should raise. Certain properties
of specifications and programs, such as whether or not
they halt, are formally undecidable. This means that it is

impossible to write a program, for example a theorem
prover, that can decide (calculate) whether or not the
undecidable property holds, for instance that the
program will halt. It is not often that such problems are
encountered in practice, but it is important to be aware
of the perhaps surprising result that there are some
properties which simply cannot be proven within a
formal framework.

4.2.2 Weaknesses - in practice

There are many weaknesses or limitations of current
formal methods. Our aim here is to give a brief survey of
the most critical issues and to try to give a fair assessment
of the likelihood that these problems will be resolved in
the near future. As far as possible the comments build on
the insights gained by studying the examples set out
in the Appendix.

The most striking aspect of many specifications is the
forbidding symbology and, to a lesser extent, the arcane
terminology. The mathematical abstractions embodied
in notations such as Z and Timed CCS facilitate brevity
and precision, but they do not necessarily contribute to
clarity. Indeed, there are many who would argue that the
objectives of clarity and precision (or clarity and
conciseness) are fundamentally opposed. In part this is
an educational issue which we will return to below, but
there seems to be some substance in this criticism as even
seasoned users of formal methods often have difficulty in
reading someone else's specifications, at least until they
get used to the style. In the authors' view this is because,
in practice, we rely a good deal on the informal
interpretation of the specifications, not their interpret-
ations in terms of the underlying logic, in order to gain
comprehension.

A somewhat related issue is that there is a high 'guff to
stuff' ratio in many formal specifications. In other
words, it is often necessary to set out a lot of basic
background mathematics which has no direct bearing on
the problem in hand before we can directly specify the
system of interest. In our examples this perhaps is most
apparent with the Z specifications, although the author
believes that this is a property of the type of problem
specified, not the Z notation itself. This problem is also
clearly manifest with verification environments such as
m-EVES,12 where it is often necessary to prove lots of
elementary mathematical theorems in order to build a
basis on which to reason about the program properties of
interest. This directly affects clarity and comprehension,
as discussed above.

It could be argued that the formal specifications are
not really precise, as the notations and semantics for the
methods are not particularly well defined (at least in
some cases). This is not an entirely fair criticism with the
examples chosen, but it is certainly the case that there are
many variants of Z although there now is a stan-
dardisation effort as part of the IFIP-founded ZIP
project. Also some notations are considerably less well
defined than the examples we have used, so it is not
always clear what is meant by a formal specification in
practice, although they can, in principle, be made precise.
In the case of Z we have the ability to extend the
language, for example by adding new operators, and
there is no way of guaranteeing that these syntactic
extensions are valid semantically as the language is

588 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

currently defined, although it would be possible to insist
on proofs of soundness as has been provided for the Z
mathematical toolkit. Thus current formal techniques
are less well defined than they might be, and there are
some difficult compromises between expressive power,
flexibility and precision of definition.

Although the above problems are to a large extent
practical issues, it is our view they will not be solved in
the short run, although it is to be expected that technical
progress will eventually yield reusable specification
libraries and more ' user friendly' notations, for instance,
by linking formal and structured methods. It is also to be
expected that formal methods will 'stabilise' and the
quality of their semantic and syntactic definitions will
improve (there is already evidence for this, for example
there are moves to standardise VDM and Z,* which are
two of the leading model-based specification approaches).

We have specification languages which are effective at
representing functionality and certain aspects of con-
currency. They are capable of representing some timing
properties and more sophisticated notions such as
permission and obligation. However, there are limit-
ations. The concept of time is very abstract and it is
typically quite difficult to handle absolute clock time
within the available specification formalisms (in fact
there are considerable philosophical difficulties here,
especially when we need to deal with time in distributed
systems where we cannot guarantee clock synchron-
isations). There are no well-defined ways of handling
faults, or fault tolerance, although this is an area where
there is now some research being undertaken.

A related, and rather stronger point, is that current
refinement techniques do not deal with timing and failure
behaviour. That is, we do not have well-defined rules for
carrying out refinement in such a way that we can
guarantee that the implementation we produce satisfies
the timing and/or failure specifications. As almost all
safety-critical systems have to satisfy timing requirements
and have to achieve safety even in the presence of failures
this is a major drawback - although it is much less of a
problem in ' mainstream' developments. There seems to
be no reason, in principle, why the above problems
should not be solved in the reasonably near future,
although the issues of refinement are quite subtle and it
would perhaps be unwise to rely on solutions appearing
within the next ten years.

A further major issue is the extent to which we have to
trust tools. Clearly it is necessary to trust some of the
tools we use, such as compilers and loaders, to some
extent. The crux is the extent to which we have to trust
complex tools, especially those which may be more
complex than our application. In fact it is quite likely
that any compilers and theorem provers used will be
more complex than the application program. In many
circumstances we have some form of independent check
on the tool, for example we carry out testing on loaded
code which gives an independent check (albeit probably
far from exhaustive) on the compiler and loader.
However, to a large extent the tools have to be trusted
except in so far as the testing and execution of the
application gives an independent check. This is par-
ticularly worrying for tools such as theorem provers

• A draft ISO standard for VDM is due this year, and Z is
proceeding in the same way.

which are often complex heuristic programs. Proving
compilers and theorem provers is a difficult task and
certainly beyond the state of the art - although again
these are problems which are being researched. There is
also a recursive problem - to what extent do we trust the
tools used to verify the verification tools? Thus the use
of formal methods and their support tools reduces
certain classes of risk, such as the specifications are
inconsistent, but it does not remove all risks and
introduces others, particularly in the area of trust in
tools. Again it would seem unwise to rely on having
solutions to these problems within a decade, if not longer
in this case.

Finally we should not forget education and training. It
is clear that few practising software engineers have the
necessary skills to use formal methods. Perhaps more
significantly, there are few engineers with both the
application domain knowledge necessary to help validate
the specifications and the skills to write or read them, and
this exacerbates the validation problem. It is relatively
easy to give engineers a level of understanding of formal
specifications which will enable them to read the
specifications with confidence, but it requires consider-
able skill and experience to write good specifications.
Much of the skill in fact lies in finding good abstractions,
and simple understanding of the notation is far from
adequate to guarantee the production of good speci-
fications. Unfortunately the principle of developing
abstractions is not, as yet, something that even the
formal methods experts know how to teach. However, it
is perhaps relatively easy to overcome this problem if
industry is willing to make the investment in staff time
for education and training.

4.3 Summary

It is hopefully clear that there are benefits from the use
of formal methods and that some of the theoretical
benefits are borne out in practice, although there are
limitations, in principle, to what can be achieved with
formal methods. At present, however, there are many
more limitations reflecting immaturity of the techniques
themselves and inadequacies of the support tools than
there are philosophical problems. The difficult question
which arises from this analysis is ' to what extent should
formal methods form part of the development method
for developing safety-critical systems given their strengths
and limitations?' We address this point in our con-
clusions.

5. CONCLUSIONS

Our main aim here is to draw the discussion to a close by
substantiating our claim about formal methods being
both under-used and oversold, and to consider when and
to what extent it is appropriate to use formal methods in
the development of safety-critical systems.

5.1 When and how to apply formal methods

Given the above discussions it should be clear that we are
now entering the realm of value judgements. There is
simply not enough information on which to base an
objective evaluation of the relative contribution of formal
methods, and other technologies, to the software and

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 589

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

system development process. The following therefore
represent our views based on a mixture of experience and
assumptions about the prevalent classes of errors made
in system development. It is worth noting, however, that
there would be considerable benefit in carrying out
experiments where different techniques were used to
develop the same system to gain at least some evidence
on which comparative judgements of method effective-
ness could be based.

We would advocate the presence of formal methods
throughout the several phases of the software life-cycle
(see Section 3). There is no unified methodology that can
be proposed for the whole development; we would use
formal methods to produce top-level specifications for
systems, but carry out development by a systematic
application of stepwise refinement (informal variety)
supplemented by formal refinement where there are
adequate techniques.

In the phase of requirements analysis both the
environment and the system are described, first building
a model of the real world and then specifying the model
of the computer system. The capture of the requirements
is a vital stage, and it is advisable that at least a set of
well-established guidelines would be followed. The
representation of cause-effects relationships and non-
functional requirements such as time and resources,
should be done in a formal framework from where the
subsequent development can be achieved mainly by
enrichment. Safety should be explicitly treated here
dealing with the presence of failure. We would advise
that when it comes to the definition of the model of the
computing system, still as part of the requirements, it
should be stated formally, namely relations between
inputs and outputs, preferably in some notation that
could be easily animated. It is against this model that the
correctness of the final program is verified.

In the Design phases we would use an eclectic approach
to specification. For example, we would use a notation
such as Timed Statecharts to represent concurrent and
communication structure, but specify the effects of the
individual actions in another formalism such as Z; here,
we would also advise the use of modularity, taking
probably a more object-oriented approach such as
ObjectZ. We would define a set of transformation rules
that would allow the verification of the preservation of
behaviour as structure and detailed functionality are
added. Refinement as design becomes more detailed
should be carried out in a semi-formal way. We would
also derive a number of theorems, for example stating
that the system would not deadlock, or giving a top-level
statement of safety policy, but probably would reason
about these (putative) theorems informally. We would
use animation and simulation techniques, and methods
such as Real Time Logic to analyse timing properties.29

We would also link the formal techniques, so far as
possible, to standard safety techniques such as fault tree
analysis. It would seem quite possible to apply such
techniques in a manner analogous to the use of fault trees
on programs.39

When implementation is considered, we would link the
specifications to techniques for schedulability analy-
sis2-3>?0 and program timing analysis.75 We would use
code verification techniques such as SPARK for the most
critical code.

In summary, we would supplement existing good

practices with the use of formal specifications in order to
gain clarity in top-level specifications, to aid consistency
checking of specifications and to assist in validation
through derivation of key properties from the speci-
fications.

5.2 Claim and counter-claim

Many 'formal methods' protagonists clearly appreciate
and clearly articulate the limits in principle and in
practice associated with formal methods. Unfortunately,
however, there are many counter-examples to this good
professional practice - although much of the evidence is
somewhat anecdotal. Nonetheless there clearly are
occasions where unsubstantiated claims are made and,
for example, the limitations of current techniques in
terms of their expressive power or the capabilities of the
support tools are 'glossed over'. Perhaps the best recent
example of this is the claims made for VIPER, a formally
specified microprocessor, where recent analysis has
shown that the several claims made about the de-
velopment were in excess of what had actually been
achieved.8

It is perhaps also worth noting that the theoretical
problems mentioned above also affect real system
developments. As long ago as 1976 Gerhart and Yelowitz
pointed out cases where formally verified programs had
failed.19 In the examples cited the problems were that
inappropriate proofs had been carried out, not that the
proofs themselves were flawed.

On the other hand, many 'opponents' of formal
methods say that the techniques are fundamentally
flawed, or have no relevance. Again, it is hard to separate
fact from anecdote, but some major textbooks on
software engineering, for example Ref. 48, argue quite
strongly that the techniques are still research topics, so
they cannot (even should not) be applied in industry, and
that they have intrinsic limitations, essentially because of
the problems of verifying refinements. There are already
(limited) counter-examples to the first point. The second
issue is much more substantive, however the key issue is
not the substantiveness of the point but judging the
extent to which the observed limitations actually matter
in practice. In our view the limitations do not affect the
value of formal specifications per se as a documentation
and communication medium. However, the issue of
verifying refinements is a valid objection - but one that
says we need to supplement proofs of refinement with
other checks, not that the approach is fundamentally
flawed. Nonetheless, it is clear that we do not yet have
adequate refinement techniques and that this is still a
difficult research topic.

It would be easy to re-open the whole debate on use
and relevance - and we do not wish to do this. We hope
to have now produced enough evidence to show that
formal methods can be used effectively in industry. Since
their use has been limited to date, our assertion about the
benefits of wider use seems to be true! The examples
given above show that the techniques are sometimes
oversold, and it would appear to be very easy to
overstate their value. The theoretical benefits are very
great and fairly clear, but the limitations are far more
subtle and so it is rather more difficult to articulate them
clearly and accurately. Also there is a temptation in
trying to stimulate the use of formal methods to stress

590 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

their value and to 'skate over' the limitations. This may
not be deliberate overselling but it has a similar effect.
Thus we stand by the assertion that formal methods are
both oversold and under-used, but recognise that this is
a simplification of a complex situation.

REFERENCES
1. A. Abdel-Ghaly, P .Y.Chan and B. Littlewood, Evalu-

ation of competing software reliability predictions. IEEE
Transactions on Software Engineering SE-\2{9), 950-967
(1986).

2. N. C. Audsley and A. Burns, Scheduling Real-Time Sys-
tems. YCS 134, Department of Computer Science, Uni-
versity of York (1990).

3. N. C. Audsley, A. B. M. F. Richardson and A. J. Wellings,
Hard real-time scheduling: the deadline monotonic ap-
proach. Proceedings 8th IEEE Workshop on Real-Time
Operating Systems and Software, Atlanta, GA, USA (1991).

4. N. C. Audsley, K. Tindell, A. B. M. F. Richardson and
A. J. Wellings, The DrTee architecture for distributed hard
real-time systems. Proceedings 10th IFAC Workshop on
Distributed Control Systems, Semmering, Austria (1991).

5. R. Backhouse, Program Construction and Verification.
Prentice-Hall International, Englewood Cliffs, New Jersey
(1986).

6. P. Bennett, VIPER: A Perspective. Centre for Software
Engineering (1990).

7. B. Bramson, Malvern's program analysers. RSRE Research
Review (1984).

8. B. Carre, T. Jennings, F. Maclennan, P. Farrow and
J. Garnsworthy, SPARK: the SPADE Ada Kernel, (3rd
edition). Program Validation Ltd. (1990).

9. V. Chandra and M. Verma, A fail safe interlocking system
for railways. IEEE Design and Test of Computers 8 (1),
58-66 (1991).

10. S. J. Clark, A. C. Coombes and J. A. McDermid, The
Analysis of Safety Arguments in the Specification of a
Motor Speed Control Loop. YCS 136, Department of
Computer Science, University of York (1990).

11. D. Coleman and R. Gallimore, Software Engineering Using
Executable Specifications. Macmillan Computer Science
Series (1987).

12. D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson,
W. Pase and M. Saaltink, m-EVES: A Tool for Verifying
Software. Cp-87-5402-26, I. P. Sharp Associates Ltd
(1987).

13. P. Dauchy, Application de la Methode PLUSS de
Specification Formelle a une Fonction du Metro de Lyon.
In Journee AFCET-INRETS, Conception et Validation des
Logiciels de Securite dans les Transports Terrestres (1989).

14. J. E. Dobson and J. A. McDermid, An Investigation into
Modelling and Categorisation of Non-Functional Require-
ments (for the Specification of Surface Naval Command
Systems). YCS 141 and YCS 160, Department of Computer
Science, University of York (1990).

15. P. D. Ezilchelvan and S. K. Shrivastava, A characteris-
ation of faults in systems. Proceedings 5th IEEE Inter-
national Symposium on Reliability in Distributed Software
and Database Systems, pp. 215-222. IEEE Press, Los
Angeles (1986).

16. J. H. Fetzer, Program verification: the very idea. Com-
munications of the ACM 31(9), 1048-1063 (1988).

17. A. Galton, Temporal Logics and Their Applications. Aca-
demic Press, London (1987).

18. H. Genrich and K. Lautenbach, System modelling with
high-level Petri nets. Theoretical Computer Science 13,
109-136(1981).

19. S. Gerhart and L. Yelowitz, Observations of fallibility in
applications of modern programming methodologies. IEEE

6. PROVENANCE
This paper is based on a chapter to appear in Safety
Aspects of Computer Control, edited by Phil Bennett to
be published by Butterworth Heinemann in 1992. The
chapter contains more examples which we believe
substantiate the points made above.

Transactions on Software Engineering 5£-2(3), 195-207
(1976).

20. J. Goguen and J. Tardo, An introduction to OBJ: a
language for writing and testing software specifications. In
Specification of Reliable Systems (1979).

21. D. Good, Mechanical Proofs about Computer Programs.
Technical Report 41, Institute for Computing Science, The
University of Texas at Austin (1984).

22. D. Harel, H. Lachover, A. Naamad and A. Pnueli, State-
mate: a working environment for the development of
complex reactive systems. IEEE Transactions on Software
Engineering 16 (4), 403-414 (1990).

23. I. Hayes (ed.), Specification Case Studies. Prentice-Hall
International, Englewood Cliffs, New Jersey (1986).

24. S. Hekmatpour and D. Ince, Software Prototyping, Formal
Methods and VDM. Addison Wesley, Reading Mass.
(1988).

25. J. V. Hill, The development of high reliability soft-
ware - RRAs experience for safety critical systems. In
Proceedings, BCS/IEE SE Conference. Peter Peregrinus,
Liverpool (1988).

26. C. A. R. Hoare, An axiomatic basis for computer pro-
gramming. Communications of the ACM (1969).

27. C. Hoare, Communicating Sequential Processes, Prentice-
Hall, Englewood Cliffs, New Jersey (1985).

28. M. Jaffe and N. G. Leveson, Completeness, robustness,
and safety in real-time software requirements specification.
In Proceedings, 11th International Conference on Software
Engineering, pp. 302-311 (1989).

29. F. Jahanian and A. K. Mok, Safety analysis of timing
properties in real-time systems. IEEE Transactions on
Software Engineering SE-12 (9), 890-903 (1986).

30. C. Jones, Systematic Software Development Using VDM.
Prentice-Hall International, Englewood Cliffs, New Jersey
(1986).

31. C. B. Jones, Data reification. In The Theory and Practice of
Refinement, edited J. McDermid, pp. 79-89. Butterworth
Scientific, Sevenoaks (1989).

32. M. W. Jones-Lee, M. Hammerton and P. R. Philips, The
value of safety: results of a national sample survey.
Economic Journal, 95, 49-72 (1985).

33. Y. Kesten and A. Pnueli, Timed and hybrid statecharts
and their textual representation. In Formal Techniques in
Real Time and Fault Tolerant Systems, edited J. Vytopil,
pp. 591-620. Lecture Notes in Computer Science no. 571.
Springer-Verlag, Heidelberg (1991).

34. J. Kramer, J. Magee and M. Sloman, The CONIC Toolkit
for Building Distributed Systems', IEE Proceedings Pt D.

35. F. Kroger, Temporal Logic of Programs. Springer-Verlag,
Heidelberg (1987).

36. L. Lamport, R. Shostak and M. Pease, The Byzantine
generals problem. ACM Trans, on Programming Languages
and Systems 4 (3), 382-401 (1982).

37. J.-C. Laprie, Dependability: a Unifying Concept for Reliable
Computing and Fault Tolerance. In Dependability of
Resilient Computers, edited T. Anderson, pp. 1-28. BSP
Professional Books (1989).

38. N. G. Leveson, Software safety: what, why and how.
Computing Surveys 18(2), 125-163 (1986).

39. Leveson, N. G. and P. R. Harvey, Analyzing software
safety. Transactions on Software Engineering SE-9 (9),
569-579 (1983).

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 591

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

40. B. Littlewood, Predicting software reliability. Phil. Trans.
Royal Society A 327, 513-527 (1989).

41. Logica UK Ltd, Comparative Study of Object Orientation in
Z. Technical report zip/logica/90/046 issue 3.0 (1991).

42. J. A. McDermid, Assurance in high-integrity software. In
High-Integrity Software, edited C. T. Sennett, pp. 226-273.
Pitman, Bath (1989).

43. J. A. McDermid, Towards assurance measures for high
integrity software. In Proceedings of Reliability '89. The
Institute of Quality Assurance, London (1989).

44. J. A. McDermid, (ed.), Proceedings of Workshop on Theory
and Practice of Refinement. Butterworth Scientific, Seven-
oaks (1988).

45. J. A. McDermid, (ed.), Software Engineer's Reference
Book. Butterworth Scientific (Sevenoaks) (1990).

46. J. A. McDermid and K. Ripken, Life Cycle Support in the
Ada Environment. Cambridge University Press (1984).

47. J. A. McDermid and P. Rook, Software development
process models. Software Engineer's Reference Book (1991).

48. A. Macro and J. N. Buxton, The Craft of Software En-
gineering. Addison Wesley, Reading, Mass. (1987).

49. T. S. E. Maibaum, S. Khosla and P. Jeremaes, A modal
[Action] logic for requirements specification. In Software
Engineering '86 , edited P. J. Brown and D. J. Barnes,
pp. 278-294. Peter Peregrinus, Stevenage (1986).

50. R. Milner, A Calculus of Communicating Systems. Lecture
Notes in Computer Science no. 92. Springer-Verlag,
Heidelberg (1980).

51. R. Milner, Communication and Concurrency. Prentice-Hall,
Englewood Cliffs, New Jersey (1989).

52. MoD, Defence Standard 00-55, The Procurement of Safety
Critical Software in Defence Equipment. Technical report,
Ministry of Defence (1991).

53. F. Moller and C. Tofts, A Temporal Calculus of Com-
municating Systems. Technical report LFCS-89-104,
Edinburgh University (1989).

54. C. Morgan, Deriving Programs from Specifications. Pren-
tice-Hall International, Englewood Cliffs, New Jersey (1990).

55. C. Morgan and J. Woodcock (eds), 3rd Refinement Work-
shop. Springer-Verlag, Heidelberg (1990).

56. J. Morris and R. Shaw (eds), 4th Refinement Workshop.
Springer-Verlag, Heidelberg (1991).

57. D. Parnas, G. Asmis and J. Kendall, Reviewable devel-
opment of safety critical software. In Proceedings, In-
ternational Conference on Control and Instrumentation in
Nuclear Installations. The Institute of Nuclear Engineers,
Glasgow (1990).

58. D. Parnas, A. J. van Schouwen and S. P. Kwan, Evaluation
Standards for Safety Critical Software, Technical report,
Queens University, Kingston, Ontario (1988).

59. J. Peterson, Petri nets. Computing Surveys 9 (3), 223-252
(1977).

60. M. Phillips, CICS/ESA 3.1 Experiences. In Z User
Workshop: Proceedings of the Fourth Annual Z User
Meeting. Springer Verlag, Heidelberg (1990).

61. C. J. Potts and A. Finkelstein, Structured common sense.
In Software Engineering '86, edited P. J. Brown and
D. J. Barnes. Peter Peregrinus, Stevenage (1986).

62. T. Ralson and S. Gerhart, Formal methods: history,
practice, trends and prognostics. American Programmer,
pp. 2-14 (1991).

63. J. Reason, Actions not as planned: the price of auto-
matization. In Aspects of Consciousness, edited
G. Underwood and R. Stevens. Academic Press, London
(1979).

64. W. Reisig, Petri nets with individual tokens. Theoretical
Computer Science 41, 185-213 (1985).

65. P. Rook, Project planning and control. In Software
Engineer's Reference Book, edited J. McDermid. Butter-
worth Scientific, Sevenoaks (1990).

66. A. Saeed, T. Anderson and M. Koutny, A formal model
for safety-critical computing systems. In Proceedings, IF AC
Workshop SAFECOMP '90, pp. 1-6 (1990).

67. A. Saeed, R. de Lemos and T. Anderson, The role of
formal methods in the requirements analysis of safety-
critical systems: a train example. In Proceedings of the 21st
Symposium on Fault-Tolerant Computing, pp. 478-485
(1991).

68. D. Sanella and A. Tarlecki, On Observational Equivalence
and Algebraic Specification. Department of Computer
Science, University of Edinburgh (1984).

69. J. M. Spivey, The Z Notation: A Reference Manual.
Prentice-Hall International, Englewood Cliffs, New Jersey
(1989).

70. K. Tindell, A. Burns and A. Wellings, Allocating real-time
tasks (an NP-hard problem made easy). Real Time Systems
(1992) (in the Press).

71. K. Voss, Using predicate/transition-nets to model and
analyze distributed database systems. IEEE Transactions
on Software Engineering SE-6 (6), 539-544 (1980).

72. L. Wittgenstein, On Certainty. Blackwell, Oxford (1969).
73. P. Zave, An operational approach to requirements ex-

pression for embedded systems. Transactions on Software
Engineering (1982).

74. P. Zave, The operational versus the conventional approach
to software development. Communications of the ACM 27
(2), 104-118 (1984).

75. N. Zhang, A. Burns and M. Nicholson, Analysing assem-
bler code for program execution time estimation. In Spirits
Workshop (1992).

76. S. Zilles, Algebraic Specification of Data Types. Technical
Report 11, Project MAC, Massachusetts Institute of
Technology, Cambridge, Mass. (1974).

APPENDIX. EXAMPLES OF FORMAL
METHODS

The aim in this section is to give a very brief overview of
the nature of different types of formal methods in order
to illustrate their characteristics and to try to substantiate
some of the general points made above. Due to limitations
on space, the analysis is inevitably somewhat superficial,
so references are given to texts which give more
comprehensive tutorial treatments of the methods dis-
cussed.

A.I Model-oriented specification

The Z specification language is based on set theory and

first-order predicate calculus. A distinguishing feature of
Z is the use of schemas and the schema calculus. Schemas
are 'modules' of specifications, and the schema calculus
gives a way of linking the modules to build up complex
specifications from simple parts in a clear and elegant
manner. Z was originated by J.-R. Abrial and has
subsequently been developed by a number of staff at the
Programming Research Group in Oxford. Some
examples of the use of the language can be found in
Hayes,23 and a more definitive discussion of the language
is given by Spivey.69

We shall assume that the reader is familiar with the Z
notation and will therefore concentrate on a detailed
example which shows the specification of some safety-
relevant properties.

592 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

A. 1.1 Safety example

Our intention is to show the behaviour for a thresholding
device such as might be used in temperature monitoring,
where it is necessary to compare the values from a number
of temperature sensors, to reject values which are out of
tolerance and to calculate an average of the values which
are within tolerance. Such a function might be useful in
many situations, for example process monitoring, but it
is not based on any specific system or device.

We first introduce some basic definitions for repre-
senting sensor properties.

[Sensor]

The parachuted type Sensor represents the set of all
sensors known about in the monitoring system.

upper, lower, bound, spread: M

lower < upper
spread < upper — lower
bound < spread

The data items upper and lower represent the limits on
legal values for the sensors: any values outside the range
lower.. upper indicate that the sensor has failed. The item
bound is a limit on the difference between two successive
values from a sensor representing the maximum allowable
rate of change of value reported by the sensor. If any pair
of successive values from a sensor are different by more
than this bound, this will also be taken as evidence that
the sensor has failed. Finally, spread represents the
allowable divergence between any two functioning
sensors. If some values do disagree by more than the
allowed spread their values are ignored, but the sensors
are not assumed to have failed (this is intended to deal
with cases where noise, etc. may affect values tem-
porarily). The constraints represent the natural relation-
ships amongst these data items. In practice we would
need to specify the exact values to be used.

We now define a number of data types corresponding
to the range of allowable values, the rate of change of
sensor values and the coherence of the data values from
the complete set of sensors. These are simply used as
results from functions which evaluate the above checks
on data validity. The first is used for checks on range:

status ••••= legal \ illegal

The second is concerned with allowable rates of change
of sensor value:

rate •— sensible \fast

The third is used for assessing data coherence:

coherence ••— ok \ out

We are now in a position to define functions which
evaluate the checks on data validity identified above. The
choice of types for the functions is determined by
convenience in representing state, see below. The function
valid evaluates the range check on data validity and
assigns the value legal or illegal to the result as
appropriate:

valid :M -* status

(n ^ lower An ^ upper -•
(n < lower V n > upper ••

• validn = legal) A
• validn = illegal)

We have used implication here dealing with each case
separately. As the terms before the implication are
mutually exclusive there is no ambiguity in the definition
of the function.

The function for evaluating legal rate transitions is
very similar to the check on absolute sensor value, but
clearly needs to check pairs of values:

rate-ok : rate
\/n\,n2:N9

((nl — «2 ^ bound -
(nl — ril > bound -

> rate__ok(n\, nl) = sensible) A
• rate_ok(n 1, nl) = fast))

The coherence of a set of values is determined in a similar
way, but here we use an equivalence between the
function delivering ok and the condition when the data
set is acceptable — in this way the behaviour of the
function when the data is not coherent is defined implicitly
as the only possibility is for it to deliver the value out,
signifying that the values are incoherent.

coherent: seq N -» coherence

Vs: seq M •
(Vid\: dom s •

'iidl:doms*sid\—sidl
coherent s = ok

spread)•

However, it will not be enough to check coherence and
we will have to find a sequence representing those values
which are coherent. In doing this we may need to discard
mappings from a sequence which contains incoherent
values to create one containing only coherent values.
However, simply discarding arbitrary values might render
the result an illegal sequence, e.g. the domain might be 1,
2, 4, which is illegal as 3 is missing (remember that
sequences map from an initial segment of the natural
numbers). We therefore need a function to turn arbitrary
pairs of numbers into a sequence:

mk_seq: (H -f* H) -*• seq N

Vpairs: N -f* N •
(3map, res: seq N | map Ipairs = res A

%-res = # pairs •
mkseq pairs = res)

The above function, mk^seq, has the required property
as the mapping sequence, map, converts pairs to a
sequence and the constraints on the size of the result
constrain map not to discard any elements of the
function pairs. We can now use this function in calculating
a sequence of coherent sensor values:

co_seq:seq I -seq

q | #
(3s\: M ¥* N | coherent(mkseq s\) = ok A s\ a s

coherent(mkseq sT) = ok A si a s •
(4M2 ^ #s\)ocoseqs = mk_seqs\)

The function finds the biggest subset of the sequence
given as a parameter which is coherent (or one of them
if there is more than one of the same size). This is done
by ensuring (via the third quantifier) that any other
coherent subset is no bigger than the one already found.
If there is more than one coherent set of the same size, an

38

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 593

CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

arbitrary one will be chosen. Note that since a data value
is always coherent with itself the function will, at worst,
deliver a sequence of only one element. In this case, and
with equal-size sets with more than one element, the
function is non-deterministic and we do not know which
element(s) it will pick (this seems to be reasonable as we
have no way of knowing which is the 'best' value if there
is no agreement between the values). This specification is
not entirely straightforward, but this is probably a good
illustration of the value of formal methods - it is very
easy to see how an implementor given only an informal
specification might implement such a function in-
correctly.

We now have a rather simpler function, which
calculates the average value from a sequence. Since the
values are integers the average will only be approximate.
We have chosen to specify the bounds on legal average
values rather than to indicate that the average should be
rounded up or rounded down. This leaves freedom to the
system designers and implementors. The definition uses a
function sum (we omit its definition here because it is
straightforward) that computes the sum of the elements
of a sequence.

average: seq N ~> M

Vsens: seq M •
(((# sens) * (average sens)) < ((sum sens) + (# sens)) A
((# sens) * (average sens)) > ((sum sens) — (# sens)))

We have now completed the preliminaries and can define
the system itself by introducing the state and some
operations on the state.

We introduce an object to represent the sensors in the
system. If we were wishing to produce a complete
specification we would need to deal with the way in
which the sensor values changed, but for our present
purposes the intention is that the function sensors
represents the current values of the sensors.

sensors: Sensor -> N

The state of the computer system checking the sensor
values can be broken down into two parts. The parts are
treated separately to simplify the specification (see
below).

First, we have a pair of functions which contain the
latest values read from the sensors and stored in the
system (new_values) and the previous set of readings
(old-values). There is no invariant as the only property of
interest would relate to the 'freshness' of the data and,
within this example, we are ignoring timing (we will
return to this point later).

SENS-History
old-values: Sensor -> ft
new-values: Sensor -> I

The second part of the state is concerned with the
computer's model of which sensors are functioning
correctly, and which are not. The set failed indicates
those sensors which the computer system believes to have
failed and check^set indicates the current set of values,
drawn from the stored sensor values, which the computer
is going to use to calculate the average sensor value, i.e.
those that come from working sensors and which are
deemed to be coherent.

^SENS_State
failed: P Sensor
check^set: set N

(dom checkset) ^ # Sensor — #failed

The invariant states that the number of values to be used
as the basis of the check (calculated by an averaging
mechanism) can never exceed the number of working
sensors. Note that the number might be less than the
number of working sensors due to coherence problems.

We can now define the first aspect of the operations to
be performed by the system. Here we define the operation
which reads the sensor values and updates the (short)
history of values retained by the system. The definition is
fairly straightforward, and we see the value of treating
the state in two parts as the SENSState and
SENS^History change values at different times (in all
cases, not just this one).

Read-. Sensors
ASENS-History
ESENSState

new_values' = sensors
old^values' = new_values

We now consider the checks on sensor data validity. We
first consider the overall limits on sensor values. The
schema calculates which sensors (if any) which have now
failed as new^fail - despite the name this might include
sensors that were previously known to have failed. The
set new_fail is ' added' to the set failed. Changes to
cfieckset are not specified - this does not matter as we
will specify how the value of check^set is calculated later.

Check_Limits
ESENS-History
ASENSState

lnew^.fail: P Sensor •
{s: Sensor \ valid(new^values s) = illegal} =

new-fail A
failed' = failed U new _fail

Here we say that the set new_fail is exactly the set of
Sensors for which the function valid yields illegal (this is
read rather like a quantified expression). Note that if a
Sensor previously deemed to have failed gives a sensible
reading we do not automatically reinstate it. This reflects
an attitude that a failed sensor may drift and occasionally
give legal, but erroneous, values and so its values should
be ignored until it is explicitly reinstated. In this
specification fragment we do not deal with reinstatement
operations.

The rates of change of the sensor values are calculated
in a similar manner.

r_Check_Rate
ESENS-History
ASENSState

3new-.fail: P Sensor •
{s: Sensor \

rate_ok(old-values s, new_values s) =fasi} =
new_fail A

failed' — failed U new-fail

594 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

We can now determine the set of values which will be
used for the check. Note that we do not discard sensors
just because they are in disagreement with others - this
allows us to discard noisy readings which probably were
caused by noise without discarding the sensor. Again, in
a full specification we might care to record a history of
disagreeing sensors and to discard them after too many
disagreements.

t-Define-Check^Set
ESENS-History
ASENSState

failed = failed'
(3map: seq Sensor; values: Sensor -P> H \

values = failed <j new^values A ran map =
dom values m

check-set' = coseqirnap \ values))

The operation for defining the sensor value to be delivered
is now straightforward, being defined by calculating the
average of the checkset. In addition we deliver the size
of the check-set as a measure of confidence in the
accuracy of the value.

^_Calc-. Value
ESENS-History
ZSENSState
val\:M
size!: M

vail = average check^set
sizel = &checkset

We can now define the complete operation of a single
checking cycle for the system, assuming that the checks
are executed periodically. This is done by the following
schema calculus expression:

Check-Cycle ^ Check_Limits%
Check-Rate % Define_Check_Set ° Calc_ Value

The forward relational composition between schemas is
similar to that between functions except that it maps
states to states, not results to parameters. Thus the after
state of Check_Limits becomes the before state of
Check-Rate, and so on. Note that the ordering of the
operations is the same as the order of their definition.
This is no accident as it helps to explain their
behaviour - but note that it was much easier to under-
stand the operation ' piecemeal' than it would have been
if we had presented the complete predicate for the total
operation 'in one piece'.

Clearly there are potentially other operations of
interest for such a system but, hopefully, the above gives
a clear definition of at least some of the requisite
functionality, i.e. the basic checking mechanisms.

A.1.2 Commentary

We will comment in detail on the effectiveness of such
specification techniques in Section 4; however, it is
worthwhile drawing out one point here. In systems like
the (hypothetical) one described above time is a very
important property and we would probably want to
specify the frequency with which the sensor values are
checked, and the length of time needed to carry out the
checks. There is no built-in notion of time within Z, so

there is no pre-defined way of doing this. However, it is
possible to extend the Z language with notions of time,
and we could have expressed timing constraints if we so
wished.

The next notation which we shall consider is much
more strongly oriented towards specifying temporal
properties of systems.

A.2 Logic specification

As indicated above, there are many logics that can be
used in specifications. For our purposes it is interesting
to illustrate the logic developed as part of the Alvey
FOREST project49 and known as MAL - standing for
Modal Action Logic. The logic is deontic, that means it
includes notions of permission and obligation. MAL
specifications are concerned with agents and actions, so
it is possible to specify, for example, that some agent is
obliged to carry out some action. Coupled with a
temporal capability this gives the ability, in principle, to
state that some action must be carried out within a given
interval. This is intuitively appealing, as it is close to the
basic notions of safety in many cases, e.g. nuclear trips
and other shutdown systems. For the sake of simplicity
we only consider simple deontic specifications here and
do not address the temporal issues.

The available specification logics are very different in
form, although all embody the capability of making
inferences about (permitted) behaviour from the basis of
what has been specified. Thus the following example
should be viewed as being illustrative, not representative.

A.2.1 Simple MAL specifications

MAL is a layered logic, that is, it is built up by adding
more sophisticated logical frameworks over a basis of
first-order predicate calculus (the same underlying basis
as found in Z). The layers and their uses as follows.

(1) First-order predicate logic for specifying the static
properties of data and other entities being modelled.

(2) A modal logic for expressing the effects of
performing operations.

(3) A deontic logic for expressing permission and
obligation for carrying out actions.

(4) Action combinators for constructing larger actions
from smaller ones.

(5) A temporal logic for expressing timing constraints.
Our simple examples will largely be concerned with the
first three layers.

Assuming that the reader is now familiar with the
simple first-order logic concepts through the treatment of
Z, we can start to explain the second layer, the action
logic. In the action logic we can specify axioms of the
form:

precondition => [action, agent] postcondition

This is very similar to the Z concepts except that there is
an explicit identification of the agent which engages in
some action. The axiom means that, if the precondition
holds and the agent carries out the action, the
postcondition holds. A benefit of the logic is that we can
make deductions about logical possibilities.

Even the simple modal basis allows us to express
interesting properties and to deduce relevant facts about

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 595
38-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

sequences of operations. However, the deontic com-
ponent offers much greater expressive, power. The two
basic constructions are:

obl(action, agent)
per(action, agent)

The permission operator, per, simply says that the agent
may do the action, whereas the obligation operator, obi,
says that the agent must do the identified action next
(although there is no time limit without the temporal
component).

Having given this elementary introduction to the basic
MAL concepts (excluding operation combination and
timing) we can now give a simple example of a MAL
specification.

A.2.2 An example of a MAL specification

The specification is structured into sections introducing
agents, data types including types for the predicates used
in the specifications, and variables, which also include
definition of the actions which can be undertaken by the
agents. There is a specification checking and proof
system for MAL, and our example is presented in the
syntax used by the MAL tools so that we can also
illustrate the use of one of the tools. However, it should
be stressed that this is only a partial specification
intended for pedagogical purposes, not to give a complete
problem specification.

The specification is intended to represent the structure
of agents and the actions of the agents for a triple
modular redundant implementation of a trip system
where each of the triplicated channels reads input from
six temperature sensors. The output from the three
channels goes via a voter to a simplex actuator. In MAL
we have chosen to model each of the basic hardware
components as an agent — this is the natural approach as
the hardware components are the only entities which can
engage in actions. It is intended that the example be
viewed as defining a computational structure in which
the threshold calculations described in Z in the previous
sections might be appropriate, i.e. they might represent
the functionality implemented in the channels.

In MAL we first introduce the basic entities for the
specifications, i.e. the agents and data items to be
manipulated, together with (types of) predicates which
represent the actions engaged in by the agents. There is
also identification of other predicates which simply
represent properties of the system.

We first introduce four types (sorts in FOREST's
terminology) for agents.

AGENT
Sensor, Channel, Voter, Actuator

These agents, or rather agent types, represent the four
major units in the trip system. The connections between
these components will become apparent through the
axioms presented earlier.

The data section now introduces two basic data types
representing the main data elements that pass between
the hardware components (agents) and defines the set of
sensors and channels, together with the voter and
actuator. We have chosen to have six sensors, 51-56,
although this is a rather arbitrary decision (choosing a
different number would not have affected the example in

a significant way). We also define two predicates
representing 'calculations' carried out by the system,
namely in-limits and majority, but only give their types,
in the sense of stating the data over which they are
defined, rather than stating their properties in predicate
calculus. These predicates are, however, conceptually
similar to the operations defined in the Z specification
shown above. The three predicates: available, assessed
and all-assessed are necessary to specify data flow
through the components of the system and various
synchronisation properties. Finally the predicates; read-
ing, assess, arbitrate, reset and closedown, define actions
which can be undertaken by the agents.

DATA
temp, threshold;

51, 52, 53, 54, 55, 56-*Sensor;
C\, C2, d -+Channel;
KH> Voter;
A -*• Actuator;

available: Sensor x temp;
Assessed: Channel x threshold;
in-limits: temp x temp x temp x temp x temp x temp;
signal: threshold;
majority: threshold x threshold x threshold
all-assessed:;

(Sensor) reading: temp;
(Channel) assess: temp x temp x temp x

temp x temp x temp x threshold;
(Voter) arbitrate: threshold x threshold x threshold;
(Voter) reset;
(Actuator) closedown;

The predicates are intended to have intuitively obvious
interpretations. Available indicates the availability of a
new reading from the temperature sensor. Assessed
indicates that a channel has made an assessment and has
a threshold value (perhaps indicating that the tem-
perature is outside the allowed limits) available. Both are
true when data is available. The predicate all-assessed is
true when all of the channels have made an assessment,
i.e. when 'assessed' is true for each channel. These
predicates are necessary to define the synchronisation
and flow of control between the various system
components (agents).

In-limits is a predicate representing an evaluation over
six temperature values to assess whether or not they are
within the specified limits - this is, in effect, the predicate
evaluated by each channel. It is true when the temperatures
are outside the permitted range. Signal is true when an
out-of-range temperature set is signalled from the channel
to the voter. Majority is the analogue of the predicate
in-limits evaluated by the voter.

The action reading delivers a temperature value from
a sensor. Assess evaluates a set of six temperature
readings and determines whether or not they (according
to some averaging calculation) exceed the allowed
threshold value - and signal a threshold value if this is
the case. Arbitrate is a similar function to assess dealing
with the threshold signals coming from the three
channels, and closedown represents the action of shutting
down the reactor, e.g. dropping the rods. Finally reset
enables the system to start reading temperature values
again; it is slightly arbitrary that reset is deemed to be an
action of the voter, but this reflects a view that once the

596 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

voter receives the inputs from the channels the previous
values are no longer needed. In practice a rather looser
synchronisation may be appropriate.

We now introduce variables which enable us to state
the axioms and define the semantics of the operations in
which the agent types can engage. The temperature and
threshold values with a numerical component represent
the outputs from the sensors and from the channels
respectively. The identifiers introduced in the data section
are also available for use in the axioms defining the
system behaviour and clearly refer to parts of the
physical system.

VARIABLES
s: Sensor
c: Channel,
t, tl, tl, t3, tA, tS, t6:temp,
I, II, 12, B.threshold;

END

We can now specify the axioms which define the required
behaviour of the system. The basic aim is to show the
flow of data and control through the system, culminating
in denning when the reactor is closed down. The axioms
fall naturally into groups. We first state the axioms in
each group, then give an interpretation of their meaning.

/* Axioms for the trip system*/
/* Axiom 1 */
alLassessed => obl(reset, V);
/* Axiom 2*/
[reset, V]\alLassessed & \available{S\, t\) &

\available{S2, tl) & \available (53, t3) &
\available(SA, tA) &
\available(S5, tS) & \available(S6, t6) & \as-
sessed(C\, I) &
\assessed(C2, I) & \assessed(C3, I);

/* Axiom 3 */
FORALL s:Sensor{FORALL f.temp

{\available(s, i) => obl(reading(t), s)));
/* Axiom 4 */
FORALL s:Sensor(FORALL f.temp

([reading(t), s]available(s, t)));
/* Axiom 5*/
FORALL c:Channel([assess(t\, tl, tl, tA, t5, t6, I), c]

assessed(c, /));
I* Axiom 6*/
alLassessed<- FORALL c: Channel(assessed(c, /));

The above group of axioms is largely concerned with
sequencing of the actions for the system as a whole.
Axiom 1 says that when the alLassessed predicate is true,
i.e. when all channels have assessed the input tem-
peratures, the voter is obliged to carry out the reset
action. Axiom 2 says that the consequence of carrying
out the reset action is that no data is available from the
sensors and that the assessed predicate reflecting the state
of the channels is false for each channel (note: that'! ' is
used for ->).

Axiom 3 says that all the sensors are obliged to read
their associated temperatures when their output is not
available. Axiom A says that after a sensor has engaged
in the reading action the predicate available is true for
the associated datum, indicating that it may be used by
three channels carrying out the assessment. Axiom 5

represents a similar condition to Axiom 3 for the channels,
and Axiom 6 says that alLassessed is true when all the
channels have made their assessments.

None of the above axioms is very remarkable - they
simply define the 'natural' sequencing of operations
through the system. We can now consider the axioms
that represent the channel behaviour:

/* Axiom 7 */
EXISTS tl: temp(EXISTS tl: tempiEXISTS t3: tempi
EXISTS t4: tempiEXISTS t5: tempiEXISTS td: tempi

FORALL c:Channel(EXISTS l:threshold(
available(S\, tl) & available(S2, tl) &

available(S3, t3) &
available(S4, tA) & available(S5, tS) &

available(S6, ?6) &
\assessed(c, I) =>

obl(assess(tl, tl, t3, tA, t5, t6, I), c)))))))));

/* Axiom 8 */
EXISTS tl: tempiEXISTS t2: temp{EXISTS t3: tempi
EXISTS tA: tempiEXISTS t5: tempiEXISTS t6: tempi

FORALL c.Channeli
EXISTS I: threshold^

UnJimitsitl, tl, /3, tA, t5, /6)=>
[assessitl, tl, t3, tA, t5, t6, I), c]

signalil)))))))));

The axioms here are rather clumsy due to the need to
introduce variables for the temperature readings which
pass between the sensors and the channels. Unfortunately
the MAL checker only allows single variables for each
quantified statement, hence the need for the deeply
nested existential quantifiers.

Axiom 1 says that when all the sensors have produced
data values (temperature readings), all the channels must
assess the values and produce a threshold signal. In
practice it would probably be appropriate to specify that
the action occurs when a subset of the data is available
or after some timeout has occurred. Additionally there
may be a need to specify synchronisation between the
channels, i.e. that the channels work in 'lock-step'. For
the sake of simplicity we have not addressed such issues.

Axiom 8 states that if the temperature values are not in
limits the threshold value produced by each channel
makes the predicate signal true, indicating the out-of-
limits temperature values to the voter. It should be noted
that we have not said how the predicate inJimits is
defined, so we do not have a full definition of system
behaviour.

Finally, we have the axioms defining the operations of
the voter and actuator.

/* Axiom 9 */
EXISTS II: thresholdiEXISTS 12:threshold

iEXISTS 13: threshold
iassessedicl, II) & assessedic2, 12) &

assessedic3, 13)
=>obliarbitrateill, 12, 13), V))));

I* Axiom 10*/
EXISTS II:thresholdiEXISTS I2:threshold{

signalill) & signalil2) & II! = 12 =>
[arbitrate^, 12, 13), V\obliclosedown, A)));

Axiom 9 says that the voter is obliged to carry out an
arbitration when all the channels have produced values
for assessment. Note that we cannot use the predicate

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 597

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

L. M. BARROCA AND J. A. McDERMID

High-level
operation 0 High level

Retrieve

0
Retrieve

0 Low level

Low-level
operation

Figure 1. Relationship between before and after states.

all-assessed because we wish to identify that the values
/1,12 and /3 are actually used as a basis of the arbitration,
i.e. we are identifying the flow of data from the channels
to the voter.

Finally, Axiom 10 says that if any two of the three
channels indicate that the temperatures are outside their
set limits the closedown action must occur. The speci-
fication here is a little artificial as the redundancy and
voting is only useful if the channels might ' see' different
temperature values (perhaps due to synchronisation
problems) or the channels may fail. Again for simplicity
in illustrating the use of MAL we have not included such
details here.

In principle we should prove that the specification has
certain consistency properties, e.g. that it does not
require one agent to carry out two actions at once (the
semantics of obligation is that the agent must do the
obliged action next). Also we can derive properties of
interest from the specification - for instance it ought to
be possible to show that the temperature values going
out of range implies that the actuator is obliged to carry
out the closedown action. The FOREST project has
developed some tools, including a proof assistant, for
investigating such properties.

With the MAL approach it is worth stressing that we
have not only been able to specify required behaviour
but, using an animator, we have shown that the system
has the expected behaviour in defined circumstances.
Thus simulation (and other forms of'animation') can be
an aid to validation of specifications.

A.3 Refinement

Space does not permit us to illustrate a complete
refinement here, so our intention is to give a more
detailed, but not too technical, discussion of the nature
of refinement in order to clarify the concept. Our
description essentially deals with refinement in the
context of model-based specification - conceptually
similar but technically different approaches are used with
other formalisms, e.g. algebraic specifications.

Refinement covers both guidelines on how to proceed
from a high-level to a low-level specification, and rules
for verifying (checking) that this has been done in a
consistent manner. It is normal to specify both data
which will be stored within a computer system and
operations which will modify or transform the data.
Thus refinement rules have to deal both with refining
data and with refining operations.

With data objects, the primary requirement for the
verification rules is to show that all data which can be
unambiguously represented at the high level can similarly
be represented at the low level. This is usually referred to
as adequacy. For example, a high-level specification may
include the concept of a set, and a lower-level specification
may choose to implement the set as a list. It is normal to
define a function or relation which maps the values
between the two levels. Demonstration of adequacy thus
means showing that the relation or function gives an
unambiguous mapping between the levels. In our
(somewhat simplified) example this amounts to showing
that every set can be represented as a list, and vice versa
for every list that can be generated as the representation
of a set.

The function or relation between the levels is given
different names in different methods, but it is perhaps
most commonly called a retrieve function, as it can be
thought of as retrieving the high-level values from their
low-level representation. In general there will not be a
one-to-one mapping between the levels, and it may be
possible to represent more values at the low level than at
the high level. For example, integers in the range 1 to 10
in a specification might be represented by full (machine-
processable) integers in a program or lower-level speci-
fication. Further values at the high level may be
represented in more than one way at the low level -
indeed, this is the case in our simple set example.

With functions/operations the requirement is to show
that the operations at each level do the same thing - albeit
after allowing for mapping between the data objects at
each level. This is usually referred to as satisfaction. The
concept of satisfaction can most readily be illustrated by
considering a diagram relating states before and after an
operation.

Imagine starting with a low-level value, C, and
mapping it to a high-level value A before applying the
high-level operation to arrive at value B. It would also be
possible to carry out the low-level operation first, then to
map from D to B. Satisfaction requires that each route
leads to the establishment of the same value at B.

There are in fact many different definitions of
refinement, although many of them are conceptually
similar (but not identical) to the form illustrated above.

In practice refinement rules typically incorporate a set
of proof obligations, which are criteria which must be met
if a refinement is to be valid - more strictly the obligations
are theorems which have to be proved to show adequacy
and satisfaction.

There are, in general, differences in the amount of
detail between two levels of specification, so verifying the
proof obligations cannot show that the specifications are
equivalent - merely that they are non-contradictory. This
is essentially the point we were making earlier when we
were drawing the distinction between the pairs;
verification/validation and synthetic/analytic reasoning.
More significantly, there is a considerable amount of
freedom in defining a set of refinement rules, e.g. in the
way they treat non-determinism, and this has led to
many sets of refinement rules being developed, each with
its own strengths and weaknesses. This does not mean
that some techniques are right, and that others are
wrong, rather that they have different areas of ap-
plicability.

We have illustrated the concepts of refinement in the

598 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

FORMAL METHODS AND SAFETY CRITICAL SYSTEMS

context of model-oriented specification. With the other
approaches to formal specification the technical details
of refinement are different from that of model-oriented
specification, but the spirit is the same - verifying that we
are adding detail, or otherwise enriching specifications,
in a manner which is consistent with the initial
specification.

Our brief discussion has also focused largely on the
verification aspects of refinement, and not on the
guidelines for proceeding from a high-level to a low-level
specification. Typically these guidelines will (or should)
cover issues of functional decomposition, and also
consider non-functional properties of systems. That is,
the guidelines should recognise that non-functional issues
such as performance, reliability and so on, can drive the
refinement process. Unfortunately current refinement
approaches do not deal adequately with such issues so,
for example, there are no refinement rules which deal
adequately with fault tolerance - an approach would
need to show that the fault models plus fault recovery
mechanisms at one level' satisfied' the/auk models at the
next higher level. This remains an area of research.

A.4 Summary and comparison of approaches

There are a wide variety of types of formal methods, each
with different characteristics, which means that general-
isations about formal methods may be more misleading
than helpful. It is also rather difficult to appreciate what
the methods are like in use from simple definitions and
descriptions - by way of analogy, consider how difficult
it is to appreciate the utility of a programming language
without trying it out on a few problems. This is why we
have taken the trouble to give fairly extensive examples
of two rather different types of formal method. We are
now in a position to make some comparisons, although
we steer clear of value judgements regarding utility.

First, we can now see clearly that the two methods
enable us to do quite different things. Z enabled us to
give quite detailed specifications of the required be-
haviour of the actions to be carried out in the system, but
was rather poor at modelling communication and has no
way of representing concurrency. In contrast, MAL is
much clearer about system structure - including potential
for parallel execution - and communication, although it
is relatively weak at defining functionality. MAL allows
us to make statements about timing behaviour, whereas
Z does not.

Some of the above differences are partly a reflection of
the way in which we have used the notations. For

example it is possible to specify timing in Z,10 but we
believe we have accurately characterised the 'natural'
way to use the core specification languages in each case.
Thus we must conclude that different methods have quite
different expressive powers.

Second, we believe that it is quite difficult to use the
techniques outside their natural domains. This does not
mean to say it is impossible; as we indicated above, it is
possible to extend the techniques to deal with additional
properties of systems but it is not entirely straight-
forward - for example adding a deontic component to Z
would be quite difficult, especially when it came to
defining the semantics for the extended notation.
However, since the methods illustrate different facets of
systems they can be used together - assuming we can
map adequately between the notations. Thus we believe
that it is both possible and beneficial to use an eclectic
approach to specification, although this is rarely, if ever,
done in practice.

Third, the mathematics, although valuable for its
precision, does not stand on its own. In the example it
was essential to use prose to define what it was that the
specifications were meant to relate to — ' in the real world'.
It is always necessary to support formal specifications
with prose and, without this, we have no way of knowing
what the specifications mean. More technically we know
what they mean in terms of the underlying logic, but we
do not know what they mean in relation to the systems
we hope to build. This is a general property of formal
approaches, not just a characteristic of our examples, but
one which we hope is adequately borne out by the
examples.

Fourth, there is considerable difference in the con-
ciseness or verbosity of the notations. Again, this is
partly an effect of the examples chosen and the way the
problems have been addressed. This is important as
conciseness influences intelligibility, although there is not
a simple relation. Extremely terse and extremely verbose
notations may be equally hard to read and, ideally, we
require concise notations so we do not have much to
read, but which are still as easy to read as ordinary
english prose. This is, of course, a difficult compromise to
achieve - and we shall leave the reader to draw his own
conclusions about which, if any, of the two notations
used above satisfy this requirement.

Finally, it is important to stress the point that the
methods are genuinely different in their capabilities and
any generalisations about formal methods (other than
this one!) may be quite misleading and inappropriate to
some particular class of method.

Announcement

l^» JUNE 1993

Sixth International Conference on Industrial
and Engineering Applications of Artificial
Intelligence and Expert Systems IEA/
AIE-93), The City Chambers, Edinburgh,
Scotland

This is sponsored by the International Society
of Applied Intelligence in cooperation with
major international organisations and uni-
versities, including ACM/SIGART, AAAI,
IEEE Computer Society, ECCAI, CSCSAI,
IAKE, INNS, JSAI, and Southwest Texas
State University. For further information,

contact Dr Moonis Ali, General Chair,
IEA/AIE-93, Department of Computer
Science, Southwest Texas State University,
San Marcos, TX 78666-4616, U.S.A. Tele-
phone: (512) 245-3409; Fax (512) 245-3804;
E-mail: MA04(SiSWTEXAS. BITNET.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 599

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/579/352745 by guest on 09 April 2024

