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The last decade has seen a large increase in the use of 'structured' methods of software development. They grew out of
their predecessors, which consisted of a toolkit of techniques with little method of how and when to apply them.
Methods such as Yourdon Structured Analysis1 and SSADM2 provide means of managing the complexity of large
systems. They provide techniques and associated procedures for the development of such systems. In parallel with this,
and almost entirely independently, formal specification languages and methods have been developed. Both approaches
have their strengths and weaknesses. Recently it has been recognised that benefits can be gained from integrating the
two.

A number of researchers have reported progress towards the successful integration of formal and structured methods.
This paper reports on a selection of this work. The aim in each case has been to develop specifications which are both
structured and formal, and so combine the proven advantages of both approaches. We believe that such integrated
methods remove some of the 'culture shock ' associated with the introduction of mathematically formal languages, and
make their use more acceptable to managers and engineers in software development organisations. There is some
evidence for the feasibility and cost-effectiveness of this approach when used in an industrial setting; developers at Rolls
Royce Associates3 have reported the successful combined use of VDM and Yourdon.

Work has also started on the integration of formal notations and graphical techniques for Object-Oriented Analysis
and Design, but this is all at a very early stage and little has been reported formally.

Received June 1992

1. STRENGTHS AND WEAKNESSES OF
STRUCTURED AND FORMAL
METHODS

Structured analysis methods use techniques such as
Entity Relationship Modelling (ERM), Data Flow
Diagrams (DFD) and State Transistion Diagrams (STD)
to represent the static and dynamic properties of systems.
These are usually underpinned by a Data Dictionary,
which will contain information such as the attributes
associated with a particular entity in the ERM and the
attributes associated with data flows on the DFD. These
methods provide not only techniques but a structured
approach to the development process. They are good for
analysing and structuring systems and are relatively
easily understood by the customer. They also have the
advantage of being well tried and understood and are
used by the more conscientious developers of systems.
However, some of the techniques lack formality. In
particular, because of the variety of notations (diagrams
and text) used it is not possible to reason about
specifications.

Formal notations have the advantage that they can be
reasoned about. They are concise and unambiguous. One
major drawback is that they lack structure and thus
make it difficult to manage the development of large
systems. Most so-called formal 'methods' offer little
more than a mathematically based notation and a
modelling technique. The use of such notations and
techniques must be situated within a software devel-
opment method.

The advantages of the two approaches would seem to

*To whom correspondence should be addressed.

be complimentary. Structured methods assist in the
management of size and complexity and provide a means
to structure a specification. Formal notations provide a
means by which developers can make precise, unam-
biguous statements about systems, and use those state-
ments as a basis for reasoning about the system.

2. APPROACHES TO INTEGRATION

There are several possible approaches to integrating
structured methods and formal notations. The first is to
use the two side by side and not attempt to show any
formal link. Approaches of this kind include that used at
Rolls Royce & Associates3 and proposed by the SAZ
project,4 the first of which will be outlined below. The
second is to formalise the link between the structured
notations and the target formal notation. This is the
approach proposed by Goldsmith5 and taken by Tse,6

France & Docker,7 Semmens & Allen,8 Larsen el a/.,10

Redmond-Pyle & Josephs11 and Fencott et al.12 all of
which are outlined below. Rose has done work on JSD
and Z which is to be reported on in his forthcoming
thesis.13

Much of the work has focused on Yourdon Structured
Analysis (and related methods such as deMarco29 and
SA),20 perhaps because this is more often used on non-
DP systems than other structured methods such as
SSADM and its relatives. However, Redmond-Pyle &
Josephs have done work on LBMS SE, which is related
to SSADM, and there has been some (unpublished) work
at BT37 which has been applied mainly to DP systems.

There is also the question of which type of formal
notation to use. The approaches we discuss fall into three
categories: model-based specification, algebraic specifi-
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INTEGRATED STRUCTURED ANALYSIS AND FORMAL SPECIFICATION TECHNIQUES

cation and process algebra. We will discuss each sep-
arately.

3. MODEL-BASED SPECIFICATION
TECHNIQUES
Research relating to the integration of structured analysis
and model-based specification techniques began in the
late eighties. The first proposals were made by Gold-
smith,5 who proposed the integration of Yourdon1 and
VDM,14 and Bryant,15 who proposed the integration of
SSADM and Z.16 Practical pilot studies were being
undertaken at Rolls Royce & Associates using Yourdon
and VDM. The earliest detailed work was reported at the
1990 Z User Group Workshop,17 where Semmens &
Allen8 and Randell18-19 presented their work. These both
dealt with the translation of structured notations into Z.

Integration takes two forms. There is the relatively
loose approach taken by Rolls Royce, where Yourdon
and VDM are used side by side, and the more formal
approach of performing a direct translation of the
structured notations into the target language, thus
providing a formal semantics for the diagrams.

In the following sections the work at Rolls Royce, that
of Larsen et ah, of Semmens & Allen and Redmond-Pyle
& Josephs will be outlined.

3.1 Yourdon/VDM (Rolls Royce)

The approach taken at Rolls Royce & Associates3

involves using a Yourdon-based analysis to capture the
structure of the requirements. The structure of the
specification is that of Yourdon, but the detailed process
specifications and the data structures are described in
VDM, with explanatory English text. Care is taken that
implicit specification is used; this ensures that the
specification states what is to be done rather than how.

This approach has utilised the power and usability of
the analysis method to ensure that complete and
consistent requirements are captured. The structured
method makes it easier to capture the essential details of
what is wanted rather than how to do it. The precision
and rigour of the formal language contributes to this at
the detailed level by imposing discipline on the analysis.
The designers need to be able to read the formal
specification, but the usability of the structured specifi-
cation means that this is much easier to do.

The approach was found to be cost-effective even in
non-critical projects. The slight increase in the estimates
for producing the specification was recovered in reducing
the contingency in the development costs from then on.
In critical projects program proving was made easier by
the close mapping of the structure of the specification
and the code. Modularity also made the proving of parts
of a system feasible.

They have found that structured methods make formal
specifications much more approachable. They recognise
that in requirements capture it is not practical to work
from the top down; that structured methods allow
analysts to iterate between top-down, bottom-up and
middle-out, gradually improving the analysis until it is
complete and can be presented in a top-down fashion;
and that used in conjunction with structured methods,
formal methods provide much-needed discipline and
clarity, and can be introduced without major restaffing

or retraining, and without increasing costs. Whether or
not the final software is to be proved, they believe that
the formal specification justifies itself in the quality and
maintainability of the system.

3.2 SA/SD and VDM
Researchers at TU Delft propose a method SAVDM.10

This method provides the graphical notations from
SA/SD,20 the methodological guidelines from the SA
phase of SA/SD and the formal aspects of VDM. The
combined method, illustrated in Fig. 1, comprises the
following steps.

(1) Analyse the problem and develop a context
diagram, representing the system boundaries.

(2) Decompose the context diagram by splitting the
high-level data transformer into several lower-level data
transformers. Each of these data transformers is subse-
quently decomposed until an acceptably complete hi-
erarchy of DFDs has been produced.

(3) Provide type information for all data stores and
data flows. This type information may be supplied either
textually, by means of VDM domain definitions or, if
they are more complex, graphically by means of entity-
relationship diagrams. It is now possible to (auto-
matically) derive a first VDM specification. (The level 0
VDM specification.) This document is considered to be a
secondary document, of little use to the designer, but
which can be used to perform a consistency check on the
system specified so far. It essentially gives a semantics to
the hierarchy of DFDs.

(4) Complete the analysis phase by specifying all
primitive data transformers. These specifications are
called mini-specifications and must be described either as
function or operations definitions in VDM. It is now
possible to (automatically) generate a VDM specification
where the mini-specifications are taken into account.
(The level 1 VDM specification.)

(5) For each DFD containing two or more data
transformers, control information must be provided
defining the order in which the data transformers should
be combined. Again it is possible to (automatically)
generate a VDM specification using the control in-
formation provided in this step. (The level 2 VDM
specification.) It is also now possible to generate
(automatically) level 1 structure charts for the designed
system.

(6) Refine the mini-specifications into explicit function
and operation definitions. It is now possible to generate
(automatically) a textual representation of the design in
the form of a VDM specification. (The level 3 VDM
specification.) At the same time it is possible to generate
a level 2 structure chart description.

(7) Optimise the formal specification. In this (optional)
step the level 3 VDM specification is changed so that it
better reflects the non-functional requirements of the
problem to be solved. (The level 4 VDM specification.)
Structure charts which also reflect these changes can be
constructed as well. (The level 3 structure charts.)

3.3 Yourdon and Z

Semmens and Allen8-9 have done extensive work on
integrating Yourdon and Z. The approach they have
taken is to define a formal syntax, in Z, for the diagrams
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Figure 1. An overview of SVDM.

and data dictionary. This formal syntax together with a
set of well-formedness rules provides the specification for
a Yourdon tool which comprises the graphical notations
(ERD, DFD and STD) and an underlying data dic-
tionary. They have defined functions (in Z) mapping the
Z representations of the diagrams to type definitions,
state and operation schemas. The formal specification of
the system state is generated automatically from the
diagrams and the underlying data dictionary, as are the

signatures of the operation schemas. A prototype tool21

is being built which incorporates the Yourdon techniques
and the translation rules which generate the (partial) Z
specification. The developer then adds pre- and post-
conditions to the operation schemas, which are then
syntax- and type-checked. The tool will eventually
incorporate a proof assistant enabling a completely
formal development to proceed.

An example of the relationship between the dia-
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grammatic representation and the Z representation is
shown below.

Manual
N

Manual = @MANNO + TITLE + SUBJECT
User == @USERNO +NAME + LOCATION

Figure 2. Entity relationship diagram and data dictionary.

Z Basic types are denned for each distinct attribute
type:

[MANNO, TITLE, SUBJECT]
[USERNO, NAME]
[LOCATION]

Schemas define the entitytypes:

r- Manual
manno: MANNO
title .TITLE
subject-.SUBJECT

_ User
userno: USERNO
name: NAME
location: LOCA TION

Data store schemas represent the instances of each
entity, and include an injection from the entity type to its
key attribute (unique identifier):

,_ ManuaLds
manualset: P Manual
manual-id:

Manual +-> MANNO
dom manual-id = manualset
Vw: manual'set #

manual-id{ni) = m.manno

, User^ds
user set: P User
user-id:

User -H. USERNO
dom user-id = userset
Vu: userset #

user_id(u) = u.usemo

The relationships are declared

.Loaned-tO-ds
I loaned-to: Manual +-> User

The complete state is then:

,_ Manual Loans
Manual-ds
User-ds
Loaned-to^ds
dom loaned_to ^ manualset
ran loaned^to £ userset

If there are any additional constraints on the state they
can be added to the entity, data store or state schemas.

Operations schema signatures are generated from the
DFD, which provides an operation name, the names of
the updated data stores and the names of data flows. The
type of the data flow is first specified using a schema.

Manlnput
title .TITLE
subject: SUBJECT

^AddManual
AManualLoans
Euser^ds
ELoaned-tO-ds
man-input?: Manlnput

Pre- and post-conditions are then added by the developer.
The main elements of the method incorporating the
transformation from Yourdon to Z are illustrated in
Fig. 3.

Informal requirements

ERD

Constraints
on data

DD

DFD

Event
list

Operation
schema

signatures

Pre- and
post-

conditions

Z
operations

Figure 3. Combining Yourdon and Z for system specification.

3.4 SE/Z
Work on the integration of LBMS SE and Z11 takes as its
starting point the assumption that the use of structured
methods as a front end to formal development is a useful
approach. They have also examined the scope for
enrichment of a structured method by integrating it with
a formal notation. The two main aspects of enrichment
considered are - enrichment of the method's represent-
ational ability (i.e. the notations and their meaning) and
enrichment of its transformational ability (i.e. the
development process).

The basic mapping of the entity relationship model
used in SE is similar to that used by Semmens and Allen,
and described above. However, the translation is done at
a slightly earlier stage in the development process, before
any decisions about which attribute(s) will form the
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primary key. An abstract identifier is used for each
entity. So using the example of a user entity above,

[No,Name,Location]
, User Record

user No: No
userName: Name
location: Location

a table schema is defined:

[Use rid]
, User Table

known User: F Userld
table User: UserId'++ UserRecord
knownUser = dom tableUser

Database operations are then defined using operations
schemas.

What has been done to take the specification constructs
used in structured methods (e.g. entity, one-to-many
relationship) and use them as building blocks of a Z
specification. This is seen as directly analogous to the
way that the standard building blocks in the math-
ematical toolkit (functions, sequences, etc.) are used in Z.
To integrate these additional specification constructs
they have defined a library of Z generics.22 These generic
schemas define the common semantics of each type of
construct.

3.4.1 Enrichment of representation

Natural extensions have been made to the existing
specification constructs. Entity invariants, which in most
structured specifications are no more than natural
language comments, can be captured formally. The
subtyping mechanism used in many structured methods
is not in any sense rigorous. The use of a formal notation
allows their semantics to be defined precisely, which in
turn has led to the development of a richer graphical
notation which can be used with the confidence that it is
semantically sound.

3.4.2 Enrichment of the development process

Four possible ways of enriching the development process
are being researched:

• derivation of preconditions
• derivation of consequences
• data refinement
• consequentional operation refinement

4. ALGEBRAIC SPECIFICATION
TECHNIQUES
4.1 Introduction

Research related to the integration of the structured
analysis (SA) method and algebraic specification tech-
niques started on two fronts in the early to mid-eighties.
The work of Tse6 was aimed primarily at providing a
common formal framework for structured methods,
including the SA method, to facilitate the translation of
artifacts among the methods. On the other hand, the
work of Docker and France724'26'25 focused on providing
an integrated prototyping and formal specification

framework for SA tools to create a flexible and formal
specification environment based on SA.

Tse's emphasis on the ability to translate specification
products across methods meant that his work focused
more on the syntactic structure of specification artifacts,
while France and Docker's emphasis on formally stating
and investigating behavioural properties modelled by SA
artifacts meant that their work focused more on the
semantic aspects of SA artifacts. In fact, the algebraic
characterisation of the syntax of data flow diagrams
(DFDs) presented in France24 is close to Tse's algebraic
characterisation of DFD structure (there are differences
in the notations used), but the characterisation itself
plays a very insignificant part in the specification
framework of France and Docker.

In the next section we discuss the work of France and
Docker. This is followed by a brief overview of Tse's
approach.

4.2 Formally specifying the semantics of DFDs with
algebraic specifications

In this section we describe two frameworks for associating
DFDs with formal specifications characterising their
behaviour, developed as part of the research carried out
by France and Docker. One framework supports the
formal specification of sequential systems26 while the
other also supports the formal specification of non-
sequential systems.26 Both frameworks facilitate formal
investigation of application properties, and provide bases
for formal decomposition and refinement, and formal
verification. The framework supporting the specification
of sequential systems is more suited to formally specifying
requirements, since one is not too concerned about the
details of interactions among processing components at
that stage. The other framework is suited to the
specification of designs, especially designs of complex
systems. In what follows a DFD associated with a formal
specification is called a semantically Extended DFD
(ExtDFD). We conclude with a brief account of a tool
SAME (Structured Analysis Modelling Environment),
which provides a front end to the formal system.

4.2.1 Specifying the semantics of sequential systems

In the framework supporting the formal specification of
sequential systems, a DFD is interpreted as a system of
atomic operations accessing instances of shared data
structures, where shared data structures are depicted by
data stores, and atomic operations by data transforms.
The specification characterising the intended semantics
of a DFD in this framework is called an Atomic-level
Specification (ASpec). An ExtDFD in this framework is
thus a DFD associated with an ASpec characterising its
intended semantics. We shall use the DFD in Fig. 4 to
illustrate the specification technique outlined below.

The ASpec of a DFD consists of two parts: a data
domain definition part and an operation specification
part. The data domain definition part is made up of three
parts (see Fig. 5).

Data definition. This part contains type definitions for
all data elements depicted in the DFD. The data definition
part is analogous to the data dictionary of SA. Type
definitions are stated in a data description (DD) language
which provides functions for constructing data types

604 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/600/352763 by guest on 10 April 2024



INTEGRATED STRUCTURED ANALYSIS AND FORMAL SPECIFICATION TECHNIQUES

AVCOPY
Set of available
library copies

LASTBORR
Set of copy/last borrower

tuples

Lff
Libr

copy/borr ^

P
• Checkout

copy

It
COPY/BORR

Set of copy/borrower
tuples

BORROWER
set of

borrowers

Figure 4. Example DFD for borrowing a library book.

Data descriptions

(for data flows and
data store contents)

Operation

specifications

U

S

E

R

Figure 5. Components in specifying the semantics of sequential systems.

from elementary and pre-defined, parameterised data
types. Each type definition is actually an (hierarchical)
algebraic specification which defines the type in terms of
operations that create and manipulate instances of the
type defined. The input/output effects of data transforms
are expressed solely in terms of the operations defined in
the type definitions. An (partial) example of an algebraic
specification corresponding to a type definition is given
in Fig. 6.

Global state definition. This part consists of declar-
ations of the data structures associated with the data
stores in the DFD. An instance of the data structure
associated with a data store is called a state of the data
store. France uses sets to model data stores, thus a state
of a data store is simply a set whose elements represent

Data specification is set
Using NatNum
With parameter data (sort data)
sort set
Constructors
Q-.^set
insert: data set -»• set
Operations
count: set -»• natnum
— Counts number of elements in a set.

Operation axioms

Figure 6. Algebraic specification associated with the pre-defined
type set.
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A data store state specification. The data store
COPY I BO RR stores 2-tuples of sort copy/borr =
(.copy, borrower}, where copy is the type of a library book
copy and borrower is the type of a library borrower.
COPY/BORR: set{copy / bor)

Access Operations
Signature

get: set(copy/borr) borrower->•set(copy)
—Returns the copies currently checked out by a
borrower.

Axioms
For all c: copy/borr; S:set(copy/borr); b: borrower

\.get(<d,b) = Q
2. c-borrower = b => get(insert(c, S),b) =
lnsert{c • copy,get(S, b))
3. c • borrower =f= b => get(insert(c, S), b) = get(S, b)

Figure 7. State specification for a data store.

the contents of the data store. This part also contains
definitions of the states associated with external entities
whose behaviour affects how the application responds to
its stimuli. State definitions are representations of
algebraic specifications which define states in terms of
operations that create and manipulate their instances.
State modifications by data transforms must be expressed
solely in terms of the operations in these specifications.
An example of a state specification for a data store is
given in Fig. 7.

Global state constraints. This part stipulates the
relationships that must be maintained among the states
of data stores and specified external entities. The
constraints are stated in first-order predicate logic.

A global state of a DFD is a set consisting exactly of
a state for each data store depicted in the DFD and for
each external entity associated with states in the global
state definition part. A global state that satisfies the
global state constraints is said to be valid, otherwise it is
said to be invalid.

The operation specification part of an ASpec consists
of specifications called OSpecs, each uniquely associated
with an operation depicted by a data transform. An
OSpec characterises the desired pre- and post-conditions
of an operation, and is analogous to a process
specification in SA.29 The pre- and post-conditions
stipulated by an OSpec determine the effect a data
transform has on the global state of a DFD. An example
of an OSpec is given in Fig. 7.

An OSpec is said to be consistent with respect to the
global constraints of an ASpec if and only if pre-
conditions do not preclude all valid global states, and an
execution starting in a valid global state ends in a valid
global state. This consistency condition is formally stated
in Ref. 25. Details of how the above framework can be
used to verify refinements of ASpecs can also be found
there.

4.2.2 Specifying the semantics of non-sequential systems

In the framework supporting the specification of non-
sequential systems, DFDs with control extensions,
similar to those used in Refs 27 and 28, are associated
with algebraic specifications characterising their be-

The OSpec for a 'checkout copy' operation in a library
application is given below.
OSpec CheckOutCopy

input
c: copy/borr; A VCOP Yin: set(copy); BORRO WERin:

set(borrower); LAST BO RRin:sel{copy/borr); COPY/
BORRin: set(copy/borr)
output

A VCOPY0Ul: set(copy); LASTBORRout: set(copy/
borr); COP Y/BORRout: set{copy/borr)
Operation I/O definition
c • copy e A VCOP Yin, c- borrower e BORRO WERin,
counl{get(COPY/BORRin, c-borrower)) < max =>

C0PY/BORR0ut = insert(c, COPY/BORRln),
A VCOPY0Ul = delete(A VCOPY(n, c • copy),
LASTBORRoul = updatelb{LASTBORRtn,c)
Precondition. The copy to be checked out (c-copy)

must be available for checkout, the borrower
(c- borrower) must be a registered borrower, and the
number of copies currently checked out by the borrower
must be strictly less than max.
Postcondition. The input c is stored in COPY/BORR,
the copy checked out {c-copy) is made unavailable, and
the 'last borrower' relation for the copy is updated to
reflect the new last borrower of the checked-out copy.

Figure 8. An Ospec for the data transform CheckOutCopy.

haviour. In this framework a control-extended DFD is
interpreted as a system of communicating processes
(which can also be viewed as a single process), where a
process is an entity defined by a set of states and events,
and a class of behaviours. The behaviour of a process is
defined by a state transition system, which is characterised
by an algebraic specification, using a technique developed
by Astesiano et al.30 The form of an algebraic specific-
ation characterizing a process's state transition system
(called an algebraic state transition system or ASTS) is
given below:

Transition Specification is SpecName
State Specification is StateSpec
Label Specification is LabelSpec

Transition relation is _-*_: state label state
Transition axioms Axioms

where StateSpec is the name of an algebraic specification
defining the states of the process, LabelSpec is the name
of the algebraic specification defining the labels of the
transition and Axioms are first-order axioms of the form

i

C=> s^Sp where s(,s} are states defined in StateSpec,
and / is a label defined in LabelSpec.

The semantics of a control-extended DFD (C-DFD)
are characterised by an ASTS created in a bottom-up
manner from ASTSs characterizing the semantics of
individual DFD components in the following way (see
Figure 9, where TS1 to TS4 are ASTSs).

(1) Derive ASTSs characterising the behaviour of
each C-DFD component from specifier-supplied descrip-
tions. The resulting sets of ASTSs together with the C-
DFD is called the Basic Interpreted C-DFD.

(2) Derive an ASTS characterising the synchronous
interactions that can take place among C-DFD com-
ponents from the Basic Interpreted C-DFD. This ASTS
is called the Synchronous Interaction Specification (SIS).
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Component
transition
specifications

Synchronous
interaction
specification

Data descriptions

Transform specifications

State transition diagrams

Data store/asynchronous
flow specification schemas

Synchronised interaction

criteria

Other interaction criteria

U

S

E

R

Figure 9. Components in specifying the semantics of non-sequential systems.

The SIS together with the C-DFD is called the Basic
ExtDFD.

(3) Derive an ASTS characterising the permissible
time-dependent relationships among the synchronous
interactions specified in the SIS from the Basic ExtDFD.
The resulting ASTS is called the Behavioural Specific-
ation (BS).

In phase 1 of the specification generation method,
ASTSs characterising semantic models of C-DFD com-
ponents are created from specifier-supplied descriptions
and specification schemas. The specifier-supplied de-
scriptions are analogous to the traditional structured
analysis (SA) data dictionary definitions and data
transform specifications.2029 For data flow and data
store components, specification schemas are instantiated
with algebraic specifications derived from the specifier's
descriptions of transmitted or stored data to produce
algebraic specifications characterising their structure and
data access behaviour.

In phase 2 it is determined which process actions
defined in phase 1 are to be synchronised. For example,
a read from a data store action of a data transform must
be synchronised with a read action of the data store. A
specification defining the effects of synchronous transi-
tions, that is, transitions caused by synchronising actions,
is derived from the data and control relationships
depicted in the control-extended DFD, using rules which
state what type of interactions depicted in a control-
extended DFD result in synchronous transitions. The
ASTS resulting from this phase consists of transition
axioms that define the effect of synchronised events. For

'i b

example, given that the transitions pl-*-p'l, ...p^p] can
take place in an application state </?„ ...,pt,p}JrX, ...,/?„>,
the synchronized effect of the actions labelled lx, ...,lp is
defined by the axiom:

•>P),P)+

In phase 3 constraints on when the synchronous
interactions can take place are specified. The ASTS
derived in this step (the BS) is an extension of the ASTS
derived in phase 2, where the extensions concern
definitions of the effects of actions represented by parallel
action labels. A more detailed account of the activities in
each phase can be found in Ref. 26.

4.2.3 SAME (Structured Analysis Modelling
Environment)

The research of Docker and France extends beyond a
formal interpretation of structured analysis. SAME
provides a front end to the formal system which provides:

• the graphical specification of DFDs;
• the definition of data;
• an executable dictionary (repository) which stores the

DFDs and data definitions, and allows the execution
of application models (as prototypes);

• the definition and execution of incomplete models;
• a 'soft-fail' environment, in which errors are trapped

and analysed and in which the user is generally able to
correct the error and continue from the point of
failure.

The major feature of SAME have been described in some
detail elsewhere,31 and will not be discussed further here.
The models defined in SAME can be translated into the
formal specifications outlined in this paper. Effort is
currently being spent on this translation, and on the
reporting back of the essential details of the results of the
translation through the SAME interface.

4.3 Tse's unifying framework for structured analysis

To facilitate translation of products among structured
systems development models, Tse developed a unifying
formal framework for the models. The framework is
based on an abstract model which captures the common
structures of the structured methods. This unifying
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model is the initial-term algebra of an algebraic specifi-
cation characterising the common structures. Structured
development models can then be translated to the
unifying model, which in turn can be translated to other
structured systems models (via the unique homomor-
phism property of initial algebras), thus effecting
translation among the models.

In his work Tse focuses on three structured de-
velopment tools, DeMarco type date flow diagrams,29

Yourdon Structure Charts (SCs)32 and Jackson's Struc-
ture Text (JST).33

5. PROCESS ALGEBRAS
Some work has been done on the integration of structured
methods and process algebras. Some research at Oxford36

has looked at JSD34 and CSP, while recent work at
Teesside Polytechnic has examined the link between
Yourdon and CCS. It is the second of these which we will
describe.

5.1 Yourdon/CCS

An integrated method using Yourdon and CCS for the
specification of real-time systems has been developed at
Teesside Polytechnic.12

The method proceeds thus.
(1) Derive context diagram. In the case of real-time

systems the externals will tend to be devices which are
controlled by the system rather than people who interact
with the system. Externals may also, of course, include
other systems.

(2) Derive system properties in English. In order to
(automatically) check the formal model against the
requirements it is necessary to formalise the requirements
themselves. To achieve this, desirable properties of the
system are identified from the user and user requirements.

(3) Specify system properties formally, the required
properties are then translated into Hennessey-Milner
logic, which is supported by the concurrency workbench.
This step also continues to define the vocabulary for the
intercommunication components which was begun in
step 2.

(4) Derive DFD explosions. Break the transforms
down into as many levels as necessary. It is helpful if the
data and control aspects of the system can be separated
without compromising the model. The behaviour of the

data transforms can be defined either during this step or
the next one. It is possible, by allocating a control
transform to each device (a device controller), to develop
Ward/Mellor data and control flow diagrams which are
equivalent to CCS flow graphs (see Ref. 12 for a detailed
discussion of this approach).

(5) Derive State Transition diagrams. There should in
fact be two STDs for each control transform, one for the
active state initiated by the enable action and the other
for the inactive state initiated by the disable. In practice
the inactive state is defined by implication.

(6) Convert STDs to CCS. This is done automatically,
but some constructs produce complex alternative
behaviours. It may be necessary to manually refine some
agents; ideally this would be done via the STDs to
maintain the continuity and revisability of the entire
model.

The behaviour of a Ward/Mellor control transform is
defined as an STD. This diagram documents, for each
state the transform can attain, the event flows it will
respond to (transitions), the event flows it will create
(actions) and the states it will attain as a result. Similarly,
in CCS an agent's behaviour is defined as the possible
sequences of input and output actions it may take part in
and the agent(s) it will become as a result.

An example of the translation of an STD into CCS is
given in Fig. 10. There is one CCS agent for each state in
the STD and one for the STD itself. The latter agent is
required to handle the enable signal (the unlabelled
arrow) which every control transform must have.

(7) Check functioning of model. Ensure that the
model can behave in the desired manner. This entails
using the Concurrency Workbench to find deadlocks and
to animate the model in various ways.

(8) Change model. Any changes required to get the
model to function as required must be performed on the
structured model. At best this means changing the flow
in an STD (step 5) and at worst soliciting new
requirements from the customer (step 1).

(9) Check properties against model. When it has been
established that the model can behave as required, use
the Concurrency Workbench to validate the model
against the properties expressed formally in HML.
Changes may again result from this step.

The work at Teesside is continuing, and they are
exploring the possible use of LOTOS35 in place of CCS.
They are also working on the interface between their own
structured methods tool 'Ascent' and the Concurrency
Workbench so as to underpin the method.

y

z \

\

A

V
B

\
X

z

C

def

Example STD = enable.A

A =' x.B+y.C

B - y.i.A

C^x.z.A

Figure 10. Example translation of an STD into CCS.
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6. OTHER RELATED RESEARCH
Work at BT3? has led to the development of a rigorous
review technique where the products of structured
analysis are transformed into a formal system
specification. This transformation process has been used
to review a number of relatively complex specifications.
The process reveals many errors in the structured
specification which have not been found during the
normal review process. It is hoped to publish the results
of this work in the near future.

The problem of comprehending large formal specifi-
cations is being looked at by some researchers. Graphical
notations are being developed which correspond to the
detailed structure of the formal specification. These
notations are being developed for VDM using Software
Through Pictures38 and for Z by Randell.18

7. CONCLUSION
This paper has outlined some of the current approaches
to integrating structured methods of software devel-
opment with formal notations. Most of this research is at
a relatively early stage, although there is evidence that
the approach is workable. The integration of structured
methods and formal notations aims to overcome some of
the problems encountered when formally specifying large
systems. Users of structured methods have found that
without tool support the methods become unmanageable.
It would therefore seem evident that if the integrated
methods discussed here are to be of practical use on large
systems, tools are essential. Many of the researchers are
aware of this, and we can soon expect to see reports and
demonstrations of their efforts.
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Book Review

ALAN C. GILLIES
The Integration of Expert Systems into Main-
stream Software
Chapman & Hall, 1991. £19.95. ISBN 0-412-
39930-X.

The various branches of computer science
have developed distinct subcultures which are,
in part, defined by the programming languages
that they favour and their styles of design and
development. The profession of systems pro-
grammer arises from the need to bridge the
gap between the subculture of operating
systems developers and that of application
programmers. If database systems had had
their roots in artificial intelligence, there would
be a similar niche for programmers who could
work across the Lisp-Cobol fault line. But it is
the real gap between the subcultures of expert
systems and software engineering that pro-
vides the subject matter of Alan Gillies' book.

It recommends three strategies for bridging
this gap. One is a modified version of the
technique described in T. DeMarco's Struc-
tured Analysis and Systems Specification.
This is referred to as 'structured integrated

expert system methodology' and aims to
involve the disciplines of software engineering
during the knowledge-acquisition phase of
developing a system. The second strategy,
called 'data centred design', is proposed for
systems in which a database and a knowledge-
based system mutually interact in use but
which may be developed, at least, partly,
independently of each other. The final strategy,
'prototyping and porting', is succinctly de-
scribed by its name.

Although these strategies are supported by
case studies, their initial exposition is quite
brief. They seem plausible enough, but no
justification for them is offered and no
alternative reviewed. Space in the book which
could have been used for this purpose is
devoted to introductory treatments of expert
systems, software engineering and human-
computer interaction. This seems to me to be
a mistake; and I am not sure that the author,
who is a lecturer in the Information Tech-
nology Institute of the University of Salford,
has succeeded in his aim of producing a
suitable 'teaching text' for BSc and MSc
students. Such students need a rather more

comprehensive understanding of these topics
than can be provided in single chapters before
they study the problems of software inte-
gration.

But if the book is weak because it includes
too much introductory material, its strength
lies in its generous use of extended examples.
Three chapters are devoted to case studies:
one is concerned with a system to automate
photoelastic stress analysis, a second case
study describes a military decision support
system and the final case study is an 'expert
database system', which handles PAYE
problems. These are clearly written in un-
pretentious language and contain references to
source material.

Until some happy future time when the
various branches of computer science are
unified by an all-embracing theory, there will
be a demand for books like Alan Gillies' which
attempts to help those forced to deal sim-
ultaneously with more than one computing
subculture.

R. E. COOLEY
Canterbury

Announcement

21-23 MAY 1993

PDK '93, International Workshop on
Processing Declarative Knowledge -
Representation and Implementation
Methods - Yorktown Heights, New York,
U.S.A.

The PDK workshops aim to provide a forum
for discussing the practical and theoretical
aspects of processing declarative knowledge.
A main topic of interest is the trade-off
between the need for efficient processing and
the desire for meaningful and modular speci-
fications. Work that addresses linguistic, sem-
antic and processing issues in an integrated
fashion is specially welcome.

The first PDK workshop was held in
Kaiserslautern, Germany, and gathered re-
searchers and practitioners from the areas of
AI, Logic Programming and Databases. For
our next workshop in 1993 we are inviting
contributions on theoretical ideas, practical
techniques, and the development of systems or
software tools in the area of knowledge-based
systems.

Topics of interest include but are not limited
to:
• extensions and variations of declarative

programming paradigms (e.g. logic, rule-
based, constraint and object-oriented pro-
gramming);

• reasoning methods for dealing with dis-
junctions, constraints, probabilities, etc.;

• architectures for default, causal, abductive
and temporal reasoning;

• studies of processing algorithms for com-
plexity-expressivity and completeness-
soundness trade-offs.

Abstracts submission

Please submit four (4) copies of an abstract of
up to 10 pages, written in English, by 5
January 1993 (not via email or fax).

The abstracts should accurately represent
the theme of the proposed presentation during
the workshop: synthesis of important previous
results, new significant results or directions,
descriptions of ongoing research projects,
design, implementation and applications of
software tools and systems.

After the workshop is held we shall consider

publication of full papers in a special issue of
the Annals of Mathematics and Artificial
Intelligence.

Authors will be notified of acceptance or
rejection of submitted abstracts by 20
February 1993.

Please direct contributions to the following
address:

PDK '93, c/o W. Zadrozny, IBM Research,
T. J. Watson Research Center, 30 Saw Mill
River Road (route 9A), Hawthorne, NY
10532, USA.

Conference Chair

Wlodek Zadrozny, IBM Yorktown Heights,
wlodzlg; watson. ibm. com.

Program Co-chairs:

Hector Geffner, Universidad Simon Bolivar,
Caracas, and IBM Yorktown Heights,
hgeffner@conicit.ve. Jean-Louis Lassez, IBM
Yorktown Heights, jll@watson. ibm.com.
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