Formal Specification of a Data Dictionary for an Extended ER

Data Model

V.MISIC,*' D. VELASEVIC! anp B. LAZAREVIC?

1 School of Electrical Engineering and Computer Science, ® School of Organization Sciences, University of Belgrade, Belgrade, Yugoslavia

A formal definition of the data dictionary for an extended entity-relationship data model is described. Extensions should
allow greater semantic expressiveness and more precise modelling, while retaining ease of use, intuitiveness and
flexibility. Basic concepts of the model are formally defined using the Z notation, and an enhanced graphical notation is
also proposed. Furthermore, a simple transformation of the extended ER schema to a relational one is formally

described as well.

Received March 1992, revised May 1992

1. INTRODUCTION

Formal methods are widely used in the specification
phase of the software design cycle. The use of math-
ematically based techniques for description of system
structure and behaviour was necessitated by the sheer
size and complexity of modern software systems, which
could not be handled by classical structured program-
ming and design techniques. The ability to specify system
properties in a precise and rigorous way, and to effectively
prove that it satisfies its requirements, has been invaluable
in the design and implementation of many software and
hardware systems, regardless of their size.* * ¢ A number
of formal specification techniques have been proposed
thus far, most of them based on some well-developed
mathematical notation.’® Among these, the most popular
are Z,'' and VDM ,?® which has even been recommended
to become the official standard for software system
specification.!

Data modelling at the conceptual level has always
been a major part of database design, and of the design
of information systems in general. A data model is a set
of conceptual tools for describing relevant properties of
the system under consideration, and it consists of three
distinct, yet closely interrelated parts: a notation for data
structure description, a set of constraints that data values
must satisfy in order to be considered valid, and a set of
operations for data update and retrieval.®!? Many
different data models have been proposed thus far, but
only a few of them enjoy widespread acceptance. The
relational model is undoubtedly one of the most popular,
thanks to its simple structure and firm mathematical
foundation, and many relational database management
systems are commercially available. However, techniques
for relational database design (including normalisation
and normal forms) are not very well integrated with
other system analysis and design methodologies, such as
many variants of structured analysis, and relational
simplicity is not always appropriate for accurate mod-
elling of real-world concepts. Hence, other modelling
techniques are used for modelling at the conceptual level,
and later transformed to the relational model for
implementation.

Most often, these techniques are based on Chen’s

* To whom correspondence should be addressed.

entity-relationship (ER) model, or some variant thereof.?
Indeed, many of the so-called semantic data models’
and, more recently, object models,'® are rather close in
spirit to the ER model. However, despite its apparent
versatility and intuitiveness, some authors still consider
the ER model to be just a diagramming technique, and
not a data model at all, their main objection being that
too much emphasis is put on the structure component,
while lacking elaborate integrity constraints and op-
eration definition. (This is the case with most other
models, however.) Attempts have been made to enhance
the basic ER model with dynamic concepts of operations,
transactions and integrity constraints; some initial results
in that direction have been reported elsewhere, for
example in Ref. 9.

Another area of research would be to establish a
formal basis for the ER model concepts, using modern
formal specification techniques. The use of such tech-
niques could provide a formal basis for a description of
a complete data model at the conceptual level: not only
the data structures, but a wide class of integrity
constraints and update and retrieval operations as well.
Furthermore, by integrating the model with dynamic
integrity concepts, we could build a model at the external
(user) level also, and allow specification of structure and
behaviour of complex user-level objects. Part of this
research deals with the formal specification of the
extended entity-relationship (XER) data model. Z no-
tation is used throughout, mainly because of its elegance
and simplicity, and because its mathematical foundation
—typed set theory—is well suited for specification of
basic concepts of the XER data model. As the time of
writing, the formal description of structural integrity
constraints and update operations is almost complete,
and we are finishing the definition of complex objects
and applications. However, in this paper we present only
the data dictionary component, due mainly to space
limitations ; other results will be published in forthcoming
papers.

This paper is organised as follows: in Section 2 we
present some preliminary definitions, and Sections 3 and
4 explain some basic concepts (objects and their
relationships) of the XER model. In each case, a brief
informal explanation precedes formal definitions, and
illustrative examples serve to clarify the ideas presented.
(Remember that mathematical theories must make use of

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 611

39-2

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

V.MISIC, D. VELASEVIC AND B. LAZAREVIC

axioms which are just stated, and cannot be proved by
means of that theory.) A detailed formal definition of
various types of attribute is given in Section 5. Details of
transformation from XER to relational model are given
in Section 6, and the final section contains some
conclusions and directions for further research. A short
appendix contains a brief summary of the Z symbols
used in the paper.

In addition, since data structure modelling with ER
diagrams was one of the main reasons for the popularity
of the ER model, we propose a graphical notation for the
XER model. Brief descriptions of the symbols used may
be found in the text.

2. BASICS OF THE MODEL

As noted in the introduction, the XER model is based on
the well-known entity-relationship data model,? with
certain additional concepts intended to provide enhanced
semantic expressiveness.® ? All elements of the model are
subsets of the basic set of

[CONCEPTS]

which need not be defined any further, as is customary in
Z specifications. We will also make use of a set of
variable-length strings, referred to as

[TEXT]

The elements of the TEXT set will often be used for error
reporting and similar purposes. These basic definitions
will be referred to as Model schema, although they do
not belong to any schema in the usual Z sense.® !

The CONCEPTS set includes persons, organisations,
things, their properties, roles, relations, dependencies,
links, events; in short, everything perceivable and
distinguishable in the system we are modelling. (This
system is sometimes called the universe of discourse.)
Terms like ‘entity’ or ‘object’ are sometimes used, but
we will reserve these for specific concepts, as will be seen
shortly. The most significant types of concepts are the
following:

e Entities are concepts representing perceivable things
like persons, organisations, events and the like. In a
‘university’ database, distinct entities might be students,
faculties, departments, courses, rooms, laboratories,
hours, and other things relevant for our database.
Similar entities may be grouped into entity sets or types
(e.g. Student, Course), in which case all such entities
are considered to be instances of a particular type.
Throughout the paper we shall refer to sets of entities as
entity types, and to singular entities as instances of their
respective entity types. Entity sets will be depicted with
rectangles, with inscribed name of the entity type.

e Attributes are concepts which denote properties of one
or more entity types (e.g. Name of a Student, Rank of
a Faculty member, Course_Id of a Course). Each
entity instance has a set of values corresponding to these
properties; the values either denote the way in which a
particular property is maintained (i.e. qualitative
measure), or the degree to which the property is fulfilled
(i.e. quantitative measure). The set of values allowed for
any particular attribute is referred to as its domain. Some
graphical notations denote attributes with ovals,® but at
the expense of clarity; we will not show attributes on
diagrams.

e Two or more entity instances (of same or different
types) may be related by (participate in, form) an
association, each of them having a distinct role.
Associations formed by instances of entities of identical
types in identical roles may be grouped in association
sets (or types). Some associations have proprietary
attributes (e.g. entities of the Student type and entities
of the Course type might form the Exam association
type, with Date and Grade attributes), while others
have no attributes. Associations are depicted with ovals,
sometimes inscribed within a rectangle (for reasons to be
explained later). The name of the association type is
written either within the oval, or in its immediate
vicinity.

Entities and associations will be referred to as objects,
since they are perceivable objects in the schema. The
distinction between entities and associations is not quite
sharp, since objects may exist that are both at the same
time: associations formed by some entities may form (i.e.
participate in) other associations, and thus, strictly
speaking, behave as if they were entities themselves. An
example of this type of behaviour will be shown later.

The following properties, then, hold:

Entities « CONCEPTS
Associations ¢ CONCEPTS
Attributes ¢ CONCEPTS
Objects = Entities U Associations

where < stands for ‘proper subset of’, and U is the
familiar set union operator.

3. OBJECTS
3.1 Entities and associations

Formal definition of objects (entities and associations) is
based on the concept of roles: each role ‘starts’ from an
entity and “ends’ in an association. In order to represent
the relation between roles and entities, and roles and
associations, we introduce two Dbinary relations:
MappedTo and FormedBy. The former shows the ‘source’
entity from which a given role ‘starts’, while the latter
shows the ‘destination’ (association) where the given
role ‘ends’. Note that each association must represent
the ‘destination’ for at least two roles (and maybe more
than two), while each role must ‘end’ in exactly one
association —roles with dangling ends must not exist.
Therefore, binary, ternary, ...,associations are allowed
(although higher-order associations are quite unlikely).
These definitions may be formally defined with the
RoleModel schema:*

RoleModel
[Model
MappedTo: CONCEPTS — CONCEPTS
FormedBy: CONCEPTS «~ CONCEPTS

Roles = {x:CONCEPTS|(3y:Objects o
(x— y)e MappedTo)}
V x:Roles - (3, y: Associations e
(x> y)e FormedBy)
ran FormedBy = Associations
MappedTo = Roles — Objects
FormedBy = Roles - Associations

* Some properties of Z schemas are cited in the appendix.

612 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

A DATA DICTIONARY FOR AN EXTENDED ER DATA MODEL

Student

Attends mttended_By

Course

Figure 1. Forming an association.

An example is shown in Fig. 1, where Student and
Course are entities linked by an association. As noted
before, entity sets are depicted with rectangles, while
associations are denoted with ovals. Association (and
sometimes even role) names may be omitted from the
diagrams, in cases where no ambiguity can result. Roles
are graphically represented with directed lines, and role
names are chosen to reflect their nature, e.g. a Student
Attends a Course, and a Course is Attended_By a
Student, respectively; this association might be named
Stud_Course. Therefore, the following expressions
hold:

Student € Entities

Course € Entities

Stud_Course € Associations

(Attendst—> Student) € MappedTo
(Attended_By» Course) € MappedTo
(Attends— Stud_Course) € FormedBy
(Attended_ By Stud _Course) € FormedBy

which may be also written as

Student = MappedTo (Attends)

Course = MappedTo (Attended_By)
Stud_Course = FormedBy (Attends)
Stud_Course = FormedBy (Attended_By)

Note that an object may participate more than once in
a single association, but in different roles, as shown in
Fig. 2. In this case role names are mandatory, in order to
be able to distinguish between roles. It may happen that
aCourse Requires another Course as a prerequisite,
in which case the latter is Required_By the former.
This association might be named Pre_Requisite.

For the present, we cannot claim that all objects (or

Course

Requires Required_By

Figure 2. Association may be formed by a single entity.

even entities) belong to the range of the MappedTo
relation; a more detailed definition will be given later.

3.2 Cycles in object definitions

As noted before, associations may form other associ-
ations (Fig. 3), in which case the symbol for association
is inscribed within a rectangle, to stress the fact that this
particular association exhibits entity behaviour. For
example, although Stud._Course is an association
formed by Student and Course, it behaves like an
entity when participating in another association, which
might be termed Hour. This makes more precise
modelling of some real-world concepts possible; un-
fortunately, the same holds for circular definitions (e.g.
an association may form itself). The circular definition
might be either direct or indirect, via zero or more
intermediate associations. It is beyond the scope of this
paper to discuss methods to prevent circular definitions
from appearing; it will suffice to show how such
definitions can be detected directly from the model. In
order to accomplish this, we will define a binary relation
Forming, thus establishing a link between entities and
associations in which they participate.

— ModelF
RoleModel
Forming: CONCEPTS — CONCEPTS

Forming = {(x+y)| xe Associations A
yeObjects A 3z: Roles @
((z+ x)€ FormedBy A (z+— y)€ MappedTo)}

which may be written in a compact, but somewhat
opaque form as

Forming = FormedBy~3 MappedTo

Special symbols ~ and g denote the inverse of a relation
and relational composition, respectively ; the meaning of
these may be deduced easily by comparing the two
definitions of the Forming relation.

The following schema expresses the fact that circular
definitions are not allowed:

— N oRoleCycles
ModelF

Vx: Associations e (x+— x) ¢ Forming*

where R* denotes the transitive closure of the relation

R An additional success-reporting schema may also be

defined:

— RoleCycleSuccess
report!: TEXT

report! = ’No cycles in role definition”

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 613

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

v.MIS1C, D. VELASEVIC AND B. LAZAREVIC

Stud_Course

Attends
Student

Attended_By

Course

Held_In

-j‘ Occupied_By

Room

Figure 3. An association may form other associations.

Names ending in an exclamation mark denote output
variables, as is customary in Z specifications.® !

If no circular definitions are detected, we should report
success:

NoRoleCycles A RoleCycleSuccess

However, if such definition is found, we must signal its
presence to the user:

RoleCycleFound

ModelF

report!: TEXT

(3x: Associations e (x+— x) € Forming™* A
report! = Cycle found in role definition!”

Previous schemas may be combined to give the
following schema:

RoleCycleCheck = (NoRoleCycles A
RoleCycleSuccess) v RoleCycleFound

which may be written in its entirety as:

__RoleCycleCheck
ModelF
report!: TEXT

((Vx: Associations e (x+— x) ¢ Forming®) A

report! ="’ No cycles in role definition™)

\

(3x: Associations e (x> x) € Forming* A
report! = >’ Cycle found in role definition!”)

3.3 Cardinality

The role concept (Subsection 3.1) has an additional
property, its cardinality, which may be defined as an
ordered pair (/b, ub) with the following components:

e Each instance of the entity MappedTo the role must
participate in at least /b instances of the association
FormedBy that particular role. /b is called the lower
cardinality bound.

e Each instance of the entity MappedTo the role may
participate in at most ub (the upper cardinality bound)
instances of the association FormedBy that role.

The lower bound may be 0,1,...,0or k, where &k is a
known integer, while the upper bound may be 1,2,...,%
(a known integer), or an unknown integer M. Obviously,
the lower bound must not exceed the upper one; at most
they may have equal values. Most frequently, cardinality
pairs are (0,1), (0, M), (1,1), or (1, M), although other
combinations may appear as well. The definition of
cardinality is expressed with the following schema:

__RoleCardinality
RoleModel
Bounds:N x (N, U {M})
Cardinality: CONCEPTS + Bounds
Vx:Roles @ (3, y: Cardinality e first y = x)
Y(L, g):Cardinality e

(Le Roles = (second g = M V second g = first g))

N and N, denote the set of natural numbers with and
without zero, respectively; x is the familiar Cartesian
product operator.

The true meaning of cardinality constraints cannot be
defined at the object (model) level; it has to be expressed
at the data level, where object instances are considered.
For instance,

o Cardinality(Requires) =(0,3) means that no
Course may require more than three other Courses
as Pre_Requisites; since the lower bound is zero,
some Courses may exist that do not require any
other Course as a Pre_Requisite.

e Cardinality(Required_By) = (0, M) means that each
Course may be required by many other Courses as
a Pre_Requisite; since the lower bound is zero,
some Courses may exist that are not required by any
other Course as Pre_Requisites.

e Cardinality(Held_In) =(1,1) means that each
Stud_Course must be Held_In at least one Room,
and no more than one Room; in other words, it must
be Held_1In exactly one Room.

e Cardinality(Attends) =(4,6) means that each
Student must Attend at least four Courses, but
no more than six of them.

614 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

A DATA DICTIONARY FOR AN EXTENDED ER DATA MODEL

4. SPECIAL RELATIONSHIPS

Besides associations, objects may be related in other
ways, which will be discussed in more detail in this
section.

4.1 Generalisation and specialisation

One of the possible relationships between objects is the
generalisation/specialisation, which relates one object
type termed a supertype, and one or more object types,
denoted as subtypes. Each instance of a subtype object has
a corresponding instance of its super-type object, €.g.
each instance of Professorisalsoa Facul ty member.
The classification criterion is a separate concept in our
model, since any object may have zero, one or more
groups of distinct subtypes, each group corresponding to
a different classification criterion. The supertype object
type is considered to be a generalisation of its subtypes,
while subtype object types might be viewed as special-
isations of their supertype. However, for clarity of
presentation we shall introduce the classification criterion
as a separate concept, and define generalisation and
specialisation as binary relations between objects and
appropriate criteria. These properties may be expressed
with the following schema:

__GenSpecModel
Model
Generalisation: CONCEPTS «— CONCEPTS
Specialisation: CONCEPTS < CONCEPTS
Criteria = {x:CONCEPTS)

(3 y: Objects o (x> y) € Generalisation)}
SubTypes = {x: Entities |

(A y:Criteria @ (y+— € Specialisation)}
Vx:Criteria e

(3, y: Objects - (x> y) € Generalisation
Vx:Criteria @

(3 y:SubTypes - (x+— y)€ Specialisation

An example of the generalisation/specialisation re-
lationship is shown in Fig. 4, where the criterion symbol
is a half-circle, and subtypes are depicted with rectangles
with an oblique line in the upper left corner. Gen-
eralisation relationship is depicted with an undirected
line from the supertype entity to the criterion, while
specialisation relationships are denoted with directed
lines from the criterion to its subtype entities. The
example shown in Fig. 4 may be formally expressed with
the following:

Positione Criteria

Faculty € Objects

Assistants e Objects

Professors € Objects

(Positionw» Faculty) € Generalisation
(Position— Assistants) € Specialisation
(Position» Professors) e Specialisation

which may also be written as

Faculty = Generalisation (Position)
Assistants = Specialisation (Position)
Professors = Specialisation (Position)

Note that each Criterion connects a supertype object
type with one or more SubType object types, which in
turn means that Generalisation is a total function from

Faculty

Position

/

Assistants Professors

Figure 4. Generalisation/specialisation relationship.

Criteria to Entities. On the other hand, the inverse of
Specialisation is a total surjection (i.e. a total mapping
from SubTypes onto Criteria):

Generalisation = Criteria— Entities
Specialisation~ = SubTypes — Criteria

Circular definitions are prohibited here as well; prior
to formulating the appropriate schema, we will define the
SuperType function as:

__ ModelS

GenSpecModel

SuperType: CONCEPTS « CONCEPTS
SuperType = Specialisation™3 Generalisation

dom SuperType = SubTypes

A schema similar to RoleCycleCheck will check for
possible circular definitions:

__GenSpecCycleCheck
ModelS
report": TEXT

((Vx:SubTypes o (x+— x) ¢ SuperType*) A
report! = No cycles in gen/spec definition™)

\%
((3x: SubTypes @ (x> x) € SuperType*) A
report! = "’ Cycle found in gen/spec definition!”)

As is the case with Roles, each Criterion should have
an associated cardinality pair, which may be interpreted
as information about the exclusivity and optionality of
the relationship.

If the lower bound /b is zero, the specialisation is
optional, and instances of the supertype object may or
may not have related instance(s) of any of the subtype
objects. If Ib = 1, the specialisation is mandatory, and
each instance of the supertype object must have at least
one related subtype instance. Values of /b greater than 1
do not make much sense anyway; if they appear to be
needed, it might mean that our model is not correct, and
additional concepts are to be introduced.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 615

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

V.MI181C, D. VELASEVIC AND B. LAZAREVIC

As for the upper bound ub, the value of 1 means that
each instance of the supertype object is related to at most
one instance of any of its subtypes. In that case, we say
that the specialisation is of exclusive variety, and
instances of different subtypes are related to disjoint
subsets of supertype instances. If ub is greater than 1, any
instance of the supertype object may have one or more
related subtype instances. Note that these instances must
belong to distinct subtype objects, and ub cannot exceed
the total number of distinct subtypes of that particular
criterion. We say that the specialisation is non-exclusive,
and supertype instances corresponding to instances of its
subtypes form overlapping subsets.

These properties may be formalised as follows:

GenSpecCardinality
GenSpecModel
SubTypeCount: CONCEPTS + N
Vx:Criteria e (3, y: Cardinality - firsty = x)
Vy:Criteria e
SubTypeCount(y) =
#{z: SubTypes|(z+> y) € Specialisation}
dom SubTypeCount = Criteria
Y(C, ug:Cardinality e
(CeCriteria =
(first ge{0,1} A
second ge{1..SubTypeCount(C)} A
second g = first g))

The symbol # stands for the count of elements in a set.

In the previous example, Cardinality (Position) =
(0, 1) (i.e. the specialisation is optional and exclusive) has
the following meaning:

e the lower bound of 0 means that a Facul ty member
may exist without being either a Professor or an
Assistant, while

e the upper bound of 1 means that each Faculty
member may be a Professor, or an Assistant,
but not both at the same time.

We might also distinguish between Facul ty members
according to their Sex, and let them be specialised as
Females and Males (note that the diagram would be
practically the same as that in Fig. 4). In this case, the
Cardinality of this Criterion would be (1,1): i.e. each
Faculty member must be either Female or Male, but
not both at the same time.

4.2 Identification dependence

Another type of relationship is the identification de-
pendence, which relates exactly two object types;
instances of the dependent type cannot be distinguished
without knowing the instance(s) of the object type they
depend on. The identification-dependent object type is
called characteristic, or weak entity type, and the object
type it depends on is sometimes called its superordinate.
For example, a StreetAddress is a weak entity, since
it is dependent on the Town entity: i.e. a Street-
Address is not a complete address without the in-
formation provided by the Town entity. Theidentification
dependence relationship and WeakType entities have
special graphical symbols, as shown in Fig. 5. Weak
entity rectangles have double edges, while the identi-
fication dependence is depicted with a directed line from

University

N

Departments

Figure 5. Identification dependence link.

the superordinate to the weak entity; a large triangle
(pointing to the weak entity) is positioned somewhere
along the line.

Formal representation of these objects and their
relationships requires a separate binary relation,
DependentOn, similar to Forming or SuperType relations:

— IdDepModel
Model
DependentOn: CONCEPTS < CONCEPTS

DependentOn = {x+ y|
x€ Objects A ye WeakTypes}
Vw: WeakTypes o
(3, u: Objects @ w = DependentOn(u))

From the second predicate we may conclude that the
inverse of DependentOn is a total function from
WeakTypes to Objects, since each weak entity must
depend on some other object.

From Fig. 5, the following expressions hold:

University € Entities
Department € WeakTypes
(Universitym Department) € DependentOn

Circular definitions are forbidden here as well:

_1dDepCycleCheck
IdDepModel
report!: TEXT

((Vx: WeakTypes o (x> x) ¢ DependentOn*) A
report! = ”No cycles in id.dep. definition””)

\"
((3x: Weak Types @ (x+— x) € DependentOn*) A
report! = 7 Cycle found in id.dep. definition!”’)

As is the case with other relationship types, identi-
fication dependence may have an associated cardinality.
In this case, cardinality bounds denote minimum and
maximum number of weak entity instances that can be
related to a single instance of the superordinate object.

616 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

A DATA DICTIONARY FOR AN EXTENDED ER DATA MODEL

IdDepCardinality
IdDepModel
Bounds:N x (N, U {M})
Cardinality: CONCEPTS + Bounds
Vx:DependentOn e (3, y: Cardinality e first y = X)
V(W,g): Cardinality e

(W e DependentOn = (second g = M v

second g = first g))

For example, the following expression means that each
University must have no less than two Depart-
ments (there is no upper bound):

Cardinality (University+» Department)
=(2, M)

Since each weak entity instance corresponds to exactly
one superordinate object instance, the inverse cardinality
is always (1,1), e.g. each Department belongs to
exactly one University.

In conclusion, since cardinality is defined for concepts
of Roles, Criteria and DependentOn only, we may
conclude that the following holds:

dom Cardinality = Roles U Criteria U DependentOn

4.3 Some final notes on objects

Finally, we can give a more complete definition of the
Entities concept. Intuitively, entities could be understood
as objects which exist by themselves, unlike associations
(which require other objects to form them). However,
isolated entities are not relevant for modelling, and only
objects which are related to other objects may be
considered entities. Relationships include Roles, Criteria
and DependentOn relationships, and the following holds:

Entities = ran Forming U
dom SuperType U ran SuperType U
dom DependentOn U ran DependentOn

This definition includes even Associations which form
other Associations.

Some objects (Associations, SubTypes and Weak Types)
exist only in conjunction with other objects; they will be
termed DependentObjects and defined as

DependentObjects = Associations) WeakTypes U
SubTypes

while objects (or, strictly speaking, entities) which do not
depend on other objects are called Kernel objects:

Kernels = Objects\ DependentObjects

It may be easily concluded that all object types defined
thus far are mutually disjoint.

We will also make use of a binary relation which
would link dependent objects with the objects they
depend on:

Dependence = Forming U SuperType U DependentOn

Note that all cycle checks shown so far did not account
for cycles formed by relationships of different types. The
following schema will account for such cycles:

CycleCheck
Model F
ModelS
IdDepModel

report!: TEXT

((Vx: DependentObjects o (x> x) & Dependence*) A
report! = "’ No circular definitions found ™)

\Y

((3x: DependentObjects o (x+— x) € Dependence*) A
report = Circular definition found!”)

Obviously, the CycleCheck schema is a generalisation
of the previously defined schemas: RoleCycleCheck,
GenSpecCycleCheck and IdDepCycleCheck.

5. ATTRIBUTES

Attributes are named properties, which objects in each
object type have in common. Each object instance has
some properties, for which the values provide qualitative
information (description), or sometimes a quantitative
measure. In our model, attributes are CONCEPTS in
their own right, just like objects, roles and others, but
different from any of them. For instance, attributes of
the Student object type might be her/his name, address,
phone number, student ID, and grade; the Course
object type may be characterised by its name and code.
For different object types, attributes may appear in
different capacities (or roles, but the use of this term
could create confusion). For example, each kernel entity
must have one or more KeyAttributes, the values of
which uniquely determine instances of that entity:

ModelK
Identifies: CONCEPTS « Attributes
KeyAttributes = {x: Attributes |

(3y: Objects o (y+— x)€ Identifies)}
dom Identifies = Kernels

Students may be identified by their student IDs,
while Universities may be identified by their names.
Identification means that any possible (valid) value of the
student ID may belong to no more than one instance of
the Student object. It is also possible for an object to
have two or more KeyArtributes. However, most
DependentObjects have no KeyAttributes of their own,
their instances being identifiable through instances of
their respective superordinate entities. This is true for
Associations and SubType entities, and (to some extent)
for WeakTypes. In fact, instances of WeakType entities
may be identified in part through instances of the
superordinate entity, and in part by values of some of
their own attributes. These attributes are denoted as
PartialKeys, and they provide identification only within
a subset of weak entity instances: subset formed by those
instances corresponding to a single instance of the
superordinate entity. Consider, for example, entities of
the Employee type, and weak entities representing their
Dependants (e.g. spouses, children, etc.). Employees
have the SSN (Social Security Number) as their Key-
Attribute, and the dependent person’s Name might be
used as their PartialKey. In that case, different entities of
the Dependants type are allowed to have identical Names,
and the SSN value of the appropriate superordinate
entity instance is required for identification (provided, of
course, that no employee has two or more dependants
with identical names). PartialKeys are defined with the
following schema:

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 617

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

V.MISIC, D. VELASEVIC AND B. LAZAREVIC

_ ModelP
Discriminates: CONCEPTS «— Attributes
PartialKeys = {x: Attributes |

(3y: Objects o (y— x) € Discriminates)}
dom Discriminates = Weak Types

All other attributes are descriptive, and any object
type may have zero, one, or more of these:

_ ModelD
Describes: CONCEPTS — Attributes

Descriptors = {x: Attributes |
(3y: Objects o (y+—> x) € Describes)}
dom Describes = Objects

Note that the domain of the Describes relation is a
subset of Objects, since some Objects (associations, to be
precise) may exist without having any descriptive
attributes.

All of the aforementioned attribute types are subtypes
of Attributes. We will assume that these subsets are
mutually disjoint, and that each attribute must belong to
exactly one of these subsets. Therefore, the last three
schemas may be combined to give

AttributeModel = ModelK A ModelP n ModelD
and the following properties hold:

Descriptors < Attributes

KeyAttributes = Attributes

PartialKeys = Attributes

{KeyAttributes, PartialKeys, Descriptors)
partitions Attributes

We will also make use of the following relation:
LinkedTo = Identifies U Discriminates \) Describes

For simplicity, we will also introduce the constraint that
each attribute must be linked to exactly one object type.
This condition is not too restrictive, since it can easily be
satisfied through renaming, if necessary.

V(x3, y1)s (Xas Vo) LinkedTo e (y, = ;) =>(x, = Xp)

Attribute values are elements of the corresponding
domains, which may be considered as sets of allowed
attribute values. In practice, it suffices to consider
domains as elementary data types available, e.g. short
and long integers, fixed-length character strings, floating-
point numbers and the like, including special imple-
mentation-dependent data and time formats. However,
these definitions may easily be extended to include
structured data values like arrays, structures, lists, stacks,
binary trees, and others as well.

Note that this definition is general enough to include
even derived attributes; they are not explicitly mentioned,
but neither are they prohibited. This is one of the topics
to be investigated in further research.

Some of the domains require other information, i.e.
whether null values are permitted or not. If an object
instance has a null value for an attribute, it means that
no value exists for that attribute, either because the
proper value is as yet unknown, or because that property
does not apply to that object. For example, when a
Student registers for a Course, her/his Grade is
unknown at the moment, but we must make provision
for its value; it will become known as soon as she/he
passes the appropriate exam.

The second case (null values as inapplicable property)
may be eliminated by proper use of the generalisation/
specialisation relationship. Namely, if a property (i.e. an
attribute) does not apply to some instances of an object,
a new specialisation criterion should be introduced,
together with at least two subtype entities. Then, all
instances to which a particular property applies should
be grouped into one subtype object, while instances of
other subtype objeci(s) will not have that attribute at all.
For example, some, but not all, Employees have the
property TypingSpeed (and the appropriate attribute).
In order to avoid null values for this attribute, we can
introduce a JobTitle criterion, and partition all
instances of Employees into two groups, or SubTypes:
Secretaries, to which the TypingSpeed property
applies, and Research Assistants, to which it does
not apply.

Not all attnibutes tolerate null values. In particular,
since one null value cannot be distinguished from the
other, each KeyAttribute or PartialKey attribute must
have a value, and, hence, null values are allowed for
Descriptors only. This is reflected in the following
schema:

__ NullsModel
NullsAllowed: Attributes + B

Vx:Descriptors @ NullsAllowed(x) € {true, false}

6. RELATIONAL IMPLEMENTATION

Most modern database management systems are based
on the relational model. One possible realisation of our
object model would utilise a commercially available
relational database system. Therefore, it might be
interesting to show the schema transformation from our
model to the relational form. But first, a brief formal
definition of the basic concepts of the relational model is
in order. This definition will closely parallel the definition
of our model, so as to facilitate the transformation, but
without loss of generality.

A relational schema is a set of relations, each with a
number of named attributes. A relation instance consists
of a set of tuples, whose components correspond to the
relation attributes. The primary key of a relation is a
subset of its attributes for which the following properties
hold:

(1) Unigueness. For each possible value of the key
attributes, there can be at most one tuple with that value.
In other words, the value of the key attribute(s) must be
unique.

(2) Minimality. No attribute can be excluded from the
key without losing the uniqueness property (i.e. no
proper subset has that property).

Other attributes are considered descriptive, and they
may have duplicate values, or even no value (i.e. a null
value). Note that a relation may exist without descriptive
attributes — if all of its attributes constitute its key.

_ RelationalModel
Attribute Model
Relations: CONCEPTS
RelationAttributes : Relations < Attributes
RelationKey : Relations — Attributes

Vx:Relations e (Ay: Atiributes o
(x+— y) € RelationKey)

618 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

A DATA DICTIONARY FOR AN EXTENDED ER DATA MODEL

Vx: Relations; y: Attributes @
(x— y)e RelationKey =
(x> y) ¢ RelationAttributes) A
((x+ y)€ RelationAttributes =
(x> y)¢ RelationKey)

The second property just forbids any attribute appearing
as both key and descriptive attribute in the same relation.

It should be noted that we are not interested in why
some attribute is part of the key; we are simply interested
in whether an attribute is part of the key or not. Full
formal description of the relational model, including
functional, multivalued and other dependencies, is
beyond the scope of this paper; normal forms which are
the basis of relational model design will not be discussed
either.

Rules for transformation of the XER model to a
relational one will be presented now. A uniform solution
would be to transform each object (entity or association)
to a separate relation, whose attributes will be determined
soon. This correspondence is described by the following
schema:

__TransformModel
RelationalModel
XER2RM :CONCEPTS —~ CONCEPTS

Relations = {y: CONCEPTS|

(3, x: Objects o (x+> y) € XER2RM)}
Vx:Objects @

(3, y: Relations - (x+— y)e XER2RM)
Y(xy, ¥1), (X5, ¥5) : XER2ZRM @y, = y, = X, = X,

These predicates mean that the XER2RM relation is, in
fact, a bijection (a mapping which is both 1-1 and onto),
since each Object has a corresponding Relation and vice
versa, and, in addition, different Objects correspond to
different Relations. The same statement may be given in
a concise manner:

XER2RM = Objects »» Relations

Since both Relations and Objects are CONCEPTS, we
might impose a condition that their names differ by, say,
a unique prefix:

Vx:Objects; y: Relations e (x— y) e
XER2ZRM =y ="R_""x

The symbol ~ stands for string concatenation.**

As is the case with other formal definitions, the
TransformModel schema just states that each object has
an associated relation; it provides no description of the
actual transformation process. However, if we substitute
iteration (e.g. foreach or other similar construct) for
universal quantifiers (v...) and set comprehension
{...1...}), and assignment for the equals sign ‘=, the
appropriate algorithm could be easily arrived at.

It remains to allocate Attributes of Objects to their
appropriate Relations. Allocation is rather straightfor-
ward for Descriptors: they are simply inherited from the
object in question, and linked to the corresponding
Relation via RelationAttributes.

Relational Attributes

TransformModel
AttributeModel

Vx:Objects; y: Descriptors; z. Relations e
((x+—> y)e Describes A (x+— z)e XER2RM)
= (z+ y)€ RelationAttributes

In order to determine key attributes of relations, one
must consider a number of different cases. The simplest
one is when the object is a kernel entity : its Key Attributes
will become RelationKeys of the corresponding relation,
and that is all there is to it. On the other hand, relations
corresponding to DependentObjects inherit key attributes
from relations corresponding to objects they depend on.
For example, key attributes of relations linked to objects
which participate in an association will become
RelationKeys of the relation linked to that association.
Or, if the relation corresponds to a SubType entity, the
keys of the relation associated to its supertype object will
become its RelationKeys. Finally, keys of the relation
associated to a WeakType entity are obtained as keys of
the relation corresponding to its superordinate object,
combined with its own PartialKeys. However, the real
problem lies in the fact that a DependentObject may
depend on some other DependentObject, and it is not
always easy to determine which key attributes are to be
inherited.

Note that we have already defined the Dependence
relation, which links a dependent object with the object(s)
it depends on. Since these objects may themselves depend
on other objects, we have also used the transitive closure
of that relation, Dependence*, to find out all objects (on
all levels) that a given dependent object depends on. For
each dependent object, the objects it depends on will be
arranged in the form of an inverted tree; the root of the
dependency tree will be the object itself, its nodes will be
the objects it depends on, and branches would be
relationships of either Forming, SuperType or
DependentOn variety. All leaves, i.e. nodes which do not
depend on any other objects, must belong to the Kernel
entities.

As for key attributes, note that only Kernel entities
have proprietary keys, and WeakTypes have partial
keys; Associations and SubTypes have no key attributes
of their own. Therefore, key attributes for a given
dependent object could be obtained as the union of
KeyAttributes of all Kernel entities, and PartialKeys of all
Weak Types, that belong to the dependency tree defined
by the Dependence® relation. However, in order to
account for proprietary PartialKeys, we must use the
reflexive-transitive closure, Dependence*, which includes
not only the usual transitive closure, but the identity
relation as well.

__RelationalKeys
TransformModel
AttributeModel

VYx:0bjects; y:Kernels;
z: Identifiers; u: Relations e
((y+— 2) € Identifies A
(x> y)e Dependence* A
(x> u)e XER2RM)
= (u+>z) € RelationKeys
Vx:Objects; y: WeakTypes;
z: Discriminators; u: Relations e
((y+> 2z) e Discriminates A
(x> y)e Dependence* A
(x—u)e XER2RM)
= (ur z) € RelationKeys
As a result of the use of reflexive-transitive closure, we

were able to make our schema as general as possible: it
includes even the case of Kernel entities.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 619

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

v.MISIC, D. VELASEVIC AND B. LAZAREVIC

Stud_Course

—————(Lecture

Dependent

Student
Teacher_Course
Faculty p—— -—
Professor IAssistant]

Course Room

Pre_Requisite

Figure 6. Example XER model.

Table 1. Attributes of the example XER model

Objects KeyAttributes PartialKeys Descriptors
Faculty SSN — FName
FAddress
Professor — — Rank
PhD
Assistant — — YearsExperience
Dependent — DName Relationship
Age
Course Course_Id — CName
Credits
RefText
Pre_Requisite — — —
Teacher_Course — — Hours
Student Student_Id — SName
SAddress
Stud_-Course — -— Grade
Room RoomNo — NoSeats
Lecture — — Hour

The RelationKeys relation may be rearranged to read

RelationKeys & XER2RM ™~ Dependence*g
tifies U Discriminates)

(Iden-

With this in mind, we could rewrite the last predicate
of the Relational Attributes schema as

RelationAttributes = XER2RM~g Describes

Note that the inverse of the XEFR2RM relation is a
binary function, since XER2RM is, in fact, a surjection.

As an example, consider the XER model shown in Fig.
6, parts of which have already been presented in the
paper, and its associated attributes, summarised for
convenience in Table 1. After the transformations
described above are performed, we obtain the equivalent
relational schema with the appropriate attributes, as
shown in Table 2. Note that relations which correspond
to DependentObjects have inherited key attributes from
all objects they depend on. For example, Stud_Course
depends on Student and Course, and Lecture

620 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

A DATA DICTIONARY FOR AN EXTENDED ER DATA MODEL

Table 2. Relational attributes of the example model

Relations RelationKeys RelationAttributes
R_Faculty SSN FName
FAddress
R_Professor SSN FName
FAddress
Rank
PhD
R_Assistant SSN FName
FAddress
YearsExperience
R_Dependent SSN Relationship
DName Age
R _Course Course_Id CName
Credits
RefText
R_Pre_Requisite Course_Id_Requires —
Course_Id_Required_By
R_Teacher_Course SSN Hours
Course_Id
R_Student Student_Id SName
SAddress
R_Stud_Course Stud_Id Grade
Course_Id
R_Room RoomNo NoSeats
R_Lecture RoomNo Hour
Stud_1Id

Course_Id

depends on Student.Course (i.e. on Student and
Course) and Room; therefore, their KeyAttributes
appear as RelationKeys of the R_Stud_Course and
R_Lecture relations.

The Table also reveals a potential problem which we
have not discussed as yet. Note that RelationKeys of the
R_Pre_Requisite relation contain two instances of
the Course_Id attribute, which is perfectly legal;
remember that the Course object participates in the
Pre_Requisite association in two different Roles.
However, the names of these attribute instances must
differ, since the RelationKeys relation cannot contain
more than a single maplet of the form

R_Pre_Requisiter—»Course_Id

RelationKeys is a proper set, not a bag, and multiple
instances of a single element are not allowed. This case
might be handled by augmenting the name of either
attribute instance (or both of them) with the name(s) of
the appropriate mapping(s), so as to make these names
different, as shown in Table 2.

7. FINAL REMARKS

A synopsis of data dictionary for an extended entity-
relationship data model is presented using the well-
known Z notation. Various concepts of the model are
formally defined, and some of their properties are derived.

The data dictionary comprises various object types,
including entities of different kinds, and their relation-
ships. The relationships are not limited to common
associations, but include generalisation/specialisation
relationships and identification dependence as well.
Different attribute types and their relationships with
objects are also discussed. Finally, we have shown that
the XER model may easily be transformed to a relational
model, in order to implement it; a formal specification of
this transformation is also presented. In all cases, the use
of formal specification techniques contributes to the
clarity and conciseness of specifications, and enables
formal derivation of model properties to be performed
easily.

Obviously, the work reported is but a beginning of
formal development of an extended ER data model,
since it includes just the description of the model
structure. Indeed, such a formal description of the XER
model is almost complete at the time of this writing, and
it includes update and retrieval operations, and integrity
constraints. Attribute domains, entity integrity (i.e.
uniqueness based on defined keys), and structural
integrity constraints are covered. A methodology for
definition of structure and behaviour of complex objects,
corresponding to external user views, would exploit the
benefits of semantic expressiveness and formal founda-
tions of the XER model. However, these results will be
the subject of another paper.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 621

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

Vv.MISIC, D. VELASEVIC AND B. LAZAREVIC

APPENDIX: Z NOTATION USED

Z is a specification language based on weakly typed set
algebra; a detailed description of the notation is given in
Ref 11. We will present only a brief informal overview, in
order to clarify the notation which indeed may not be
easy to follow at first.

Most common mathematical symbols retain their
meaning in Z specifications, e.g. notation for numbers (N
and N,), first-order logic operations (A.V.=) and
quantifiers (¥, 3, 3, — “there exists exactly one’,). Set
relations and operations, such as € and ¢ for membership
and its negation, < and < for ‘subset of” and ‘proper
subset of’, and U, n, \ and x, for union, intersection,
set difference and Cartesian product, are also provided.
Set comprehension allows definition of sets with arbitrary
characteristics, e.g.

Roles = {x: CONCEPTS|
(3y: Objects @ (x+— y)e MappedTo)}

It should be read as: Roles is the set of all elements x of
the CONCEPTS set, such that there exists some element
y from the Objects set with the property that the maplet
x+— y (or the ordered pair (x, y)) belongs to the MappedTo
relation.

Z has a multitude of symbols for denoting various
binary relations and functions. 4 « B stands for a binary
relation R, i.e. a set of pairs (a, b) such that ae 4 and
be B. The set of as which appear as first components of
pairs in R form its domain, dom R, and the set of bs
which appear as second components form its range or
co-domain ran R. The inverse of a relation, R~, is a set
of pairs (b, a); i.e. the components have swapped places.
Components of a given pair may be extracted with the
aid of the functions first and second.

Relations in which no element of the first set appears
more than once are called functions, which is written as
F = A+ Bor, sometimes, as B = F(A). If all elements of
the first set appear in the function, the function is a total
one, otherwise it is partial. A function F= A+ B is an
injection, A B, if different bs correspond to different

REFERENCES

1. BSI, VDM Specification Language: Proto-Standard.
IST/5/50 (1989).

2. P.P. Chen, The entity-relationship model - toward a
unified view of data. ACM Transactions on Database
Systems, 1(1), 9-36 (1976).

3. R. ElMasri and S. B. Navathe, Fundamenials of Database
Systems. Benjamin/Cummings, Redwood City, CA
(1989).

4. D. Garlan, The role of formal reusable frameworks. In
Proceedings of ACM SIGSOFT Workshop on Formal
Methods in Software Development, edited M. Moriconi,
pp. 42—44. Napa, CA (1990).

5. A. Hall, Seven myths of formal methods. IEEE Software 7
(5), 11-19 (1990).

6. 1. Hayes, (ed.), Specification Case Studies. Prentice-Hall,
Hemel Hempstead (1987).

7. R. Hull and R. King, Semantic database modelling:

as (this is also termed a 1-1 mapping); it is a surjection,
A»>— B, if the entire B set is its range (this mapping is
onto). Injections and surjection may be total as well; a
total injective surjection is termed a bijection, or a total
mapping which is both 1-1 and onto.

A named Z schema defines some properties, or
invariants; it consists of a declaration part (where
variables of various types are defined) and a predicate
part, where properties of these variables (i.e. predicates
in which they take part) are formally defined, and it may
be read as: given these declarations...,the following
predicates... hold. The schema may also describe an
operation, in which case the predicate part includes both
the precondition and the postcondition of the operation.
Schemas are a convenient way of enhancing the
readability of specifications, and of structuring them,
albeit at a very rudimentary level. Schemas may be
combined using logical connectives ‘and’, ‘or’ and
‘not’; various other schema-combining operators (under
the common name of schema calculus) are available as
well. Furthermore, a schema may include one or more
other schemas in its declaration part, e.g.

__ModelF
RoleModel
Forming: CONCEPTS « CONCEPTS

Forming = FormedBy~ 3 MappedTo

in which case the declarations and predicates of the
included schema(s) are merged with the declarations and
predicates, respectively, of the main one.

A detailed account of the Z notation is beyond the
scope of this Appendix, and the interested reader may
consult the excellent texts available.® !

Acknowledgements

The authors gratefully acknowledge the comments of the
anonymous reviewers, which considerably improved the
readability of the paper, and the kind donation of the
oz.sty IATEX style by Paul King of University of
Queensland, Australia.

survey, applications, and research issues. ACM Computing
Surveys, 19 (3), 201-260 (1987).

8. C. B.Jones, Systematic Software Development Using VDM,
2nd edn. Prentice-Hall, Hemel Hempstead (1990).

9. B. Lazarevi¢ and V. Misi¢, Extending the entity-relation-
ship model to capture dynamic behaviour. European
Journal of Information Systems, 1(2), 95-106 (1991).

10. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W.
Lorensen, Object-Oriented Modeling and Design. Prentice-
Hall, Englewood Cliffs, NJ (1991).

11. J. M. Spivey, The Z Notation: A Reference Manual.
Prentice-Hall, Hemel Hempstead (1989).

12. J. D. Ullman, An Introduction to Databases and Knowledge
Bases, vol. 1. Computer Science Press, Rockville, MD
(1989).

13. J. M. Wing, A specifier’s introduction to formal methods.
Computer, 23 (9), 8-24 (1990).

622 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

$202 I4dy 0} uo 1senb Aq 86/ZG¢€/L 19/9/GE/e101ME/|Ulod/Wwo0 dno olwepeoe//:sdiy wolj papeojumoq

