
AI Multilanguage System McPOPLOG: The Power of
Communication Between its Subsystems*

I. BRUHA

Department of Computer Science and Systems, McMasler University, Hamilton, Canada, L8S 4K1

There have been several attempts to combine the programming language Prolog with procedural programming
languages. One practical and useful solution is to combine the programming languages Prolog and POP-11 to one
environment called POPLOG. The author of this paper has implemented a version of the AI multilanguage environment
POPLOG, called McPOPLOG (McMaster version of POPLOG). This paper firstly describes the chief attributes of
the implemented system McPOPLOG, and then focuses on the communication means between POP-11 and Prolog in
McPOPLOG.

Received March 1988, revised September 1992

1. INTRODUCTION
There have been several attempts to combine the
programming language Prolog with procedural pro-
gramming languages as Modula,1 LISP, e.g. LOGLISP,2

QLOG,3 POP-11, i.e. POPLOG.4 The multilanguage
system POPLOG, developed at Sussex University, U.K.,
is an adequate environment for software problems that
require utilising both procedural and declarative pro-
gramming techniques. It involves incremental compilers
for POP-11, Prolog, Common LISP and standard ML.

The author of this paper has developed and imple-
mented a completely new version of POPLOG
(McMaster version of POPLOG, McPOPLOG),56 that
is portable to any 32-bit machine and allows straight-
forward communication means between both languages.
Section 2 of the paper describes the fundamental
differences between Sussex POPLOG and McPOPLOG,
and briefly introduces the way of constructing the Prolog
compiler of McPOPLOG in terms of POP-11 data
structures and control techniques. Section 3 describes the
communication means between POP-11 and Prolog in
McPOPLOG.

If the reader is not familiar with POP-11, he/she can
look at it as a list processing language, like LISP.
However, POP-11 exhibits a Pascal-like (or Algol-like)
well-structured syntax, has a large set of various data
structures including records, vectors, strings, arrays,
lists, closures, etc., and involves many non-standard
control structures such as processes, backtracking,
pattern matching, database processing, macro facility,
and so on.

To understand the POP-11 programs introduced here
we should know only:

vars x, y;
/•declaration of POP-11 variables x, y
*/

e ->x;
/•value of the expression e is assigned
to the variable x */
e =>
/•value of the expression e is printed

and preceded by ** */

* This research has been supported by NSERC research grant
A8034.

member(a,xl)
/•POP-11 standard function that returns

true iff a is an element of the list xl

*/
xl <> yi
/•operation for concatenation of the

two lists*/
function f(x,y);
end;
/•declaration of the function f with */

/• formals x , y •/
function g(x) => r;

/* V
end;
/•explicit result r of the function g

is declared • /

2. FEW WORDS ABOUT McPOPLOG

We have followed the idea of joining the two high-level
AI programming languages Prolog and POP-11 into one
system, but unlike the Sussex version of POPLOG our
guiding principles, were the following.

(i) The multilanguage system should support those
structures, procedures, and control techniques that are
important to ,4/projects only; in other words, we did not
want to create a system language that would solve system
tasks as efficiently as, for example, C does.

(ii) Our version is to be a very simple system with a
reasonably small number of standard facilities, with as
few memory requirements as possible.

Here are the fundamental attributes of McPOPLOG,
together with the principal differences between the Sussex
version and ours.

(1) The entire McPOPLOG is written in C rather than
in POP-11. The system is very compact, since the Prolog
subsystem utilizes only standard POP-11 data structures
and control mechanisms without any change. Mc-
POPLOG is portable to any 32-bit machine, only the
code generator must be rewritten.

(2) As a consequence of its compactness and the
above motto, our version became much smaller (75 kB
vs. Sussex's 650 kB), thus it can run on much smaller
computer systems, and is commercially much cheaper.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 625

40 CPJ 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/625/352834 by guest on 10 April 2024

I. BRUHA

Our version is about two to three times faster.
(3) It has straightforward communication means

between both languages (POP-11 and Prolog, see Section
3).

(4) The POP-11 subset has been substantially simpli-
fied by returning partly to the Edinburgh's POP-2,7

taking new features of Sussex's POP-118 that are
important to AI projects, not to system tasks (it involves
less than 250 reserved words, i.e. keywords, built-in
functions and system variables). Furthermore, if there
was any ambiguity or a misconception we tried to solve
it in a Prolog or C style. For example, the operation for list
matching in our version is an extension of the operation
equivalence = (as in Prolog). Some utilities have been
added, e.g. besides the continuation backtracking our
POP-11 provides the state-saving backtracking. On the
other hand, our version comprises only the most
necessary input/output routines, and the syntax pro-
cedures are available to a superuser only since, in our
experience, the macro facility is sufficient for generating
a new syntax.

(5) The Prolog subset is equivalent to the Edinburgh
standard version. The Prolog grammar rules are optional.
LISP (more precisely, a subset of Common LISP) is
optional, too.

(6) McPOPLOG, following the above motto, does not
involve any screen editor. We have found that most users
are not willing to learn a new editor and they prefer to
call their favourite editor from within McPOPLOG. The
help facility is optional. There are no window facilities.
On the other hand, this simplifies the installation of
McPOPLOG, since it does not require any change of the
environment.

(7) The user can partly configurate the system, e.g.
he/she can form just the POP-11 system with or without
backtracking, processes and the like.

The implementation of the Prolog subsystem of
McPOPLOG is described in detail in Ref. 6. Here we will
briefly review the way of constructing the Prolog compiler
of McPOPLOG in terms of POP-11 data structures and
control techniques.

First of all, it should be noticed that Prolog terms of
McPOPLOG are implemented as the following POP-11
items:5-8 Prolog constants as POP-11 numbers or words;
Prolog variables as POP-11 references; Prolog structures
as POP-11 vectors; but the Prolog lists are the same as
POP-11 ones.

The implementation of the Prolog compiler of Mc-
POPLOG follows the principal ideas of the Sussex
version,4 but it comprises some additional structures and
differs (perhaps) at the level of detailed implementation
techniques.

Following the ideas of Ref. 4, our version uses the
continuation backtracking as a most suitable vehicle for
the Prolog's inference engine, including closures (partly
applied functions) and the function-unwinding (chaining)
mechanism. The utility of function-unwinding is also
used for implementing the 'cut' operator.

Similarly, Prolog variables are implemented as POP-
11 references, since it is the simplest representation that
is able to process matching of two or more un-instantiated
Prolog variables. See Ref. 4 for details.

Prolog predicates are translated to POP-11 functions
with the continuation. However, the fundamental routine
for unification is written as an ordinary POP-11 function

without any continuation, returning t rue (fa l se) if
its two arguments match (do not match). This saves time
as well as memory requirements.

The mechanism of instantiating Prolog variables
uses an auxiliary stack for storing instantiated Prolog
variables (so-called Prolog variable stack). If a Prolog
variable is instantiated it is pushed on to the Prolog
variable stack. When a branching point of the back-
tracking is reached the system remembers the current
offset of the Prolog variable stack. If a fail occurs, the
system re-uninstantiates all Prolog variables that have
been instantiated after the branching point has been
encountered. The Prolog variable stack is implemented
as a POP-11 vector

3. COMMUNICATION BETWEEN POP-11
AND PROLOG

3.1 Top level

There are the following means of communicaiton.
(i) Both POP-11 and Prolog are dialogue, interactive

languages, and the user of McPOPLOG can com-
municate with either subsystem at the top level (when
typing on to the terminal, or when a source file is
compiled).

(ii) The user can call POP-11 functions from Prolog
and vice versa; this inter-language communication can
be done to any depth.

When the user is at the top level of the McPOPLOG
system, the prompt : is displayed and the system expects
any POP-11 statement or any Prolog question. If a text
begins with ? — this ? — is recognized as the operator of
a Prolog question, otherwise it is considered as a POP-11
statement. Therefore, typing in ? — followed by a Prolog
question will activate the Prolog subsystem. For example,

: member(2, [1 2 3]) =>
/*P0P-ii statement: is 2 a member of*/
/*the list [12 3] ? •/
** true
/•answer of POP-11 subsystem*/
: ?- read(X), write(X), nl.
/•Prolog question*/
| maria.
/•term read by read(X)*/
maria
/•printed by Prolog's write(X) •/
X = maria
/•instantiated variable displayed*/
yes
/•answer of Prolog subsystem*/

/•prompt of McPOPLOG is waiting for*/
/•next statement and/or question*/

Prolog clauses can be asserted into the Prolog database
at the top level using the standard procedure consul t -
(user) or [use r] .

POP-11 statements and Prolog questions and clauses
can also be used together in a file. For example, let the file
f red. p contain

function a lpha (x ,y) ;
sqrt(x*x + y*y)

end;
/•POP-11 function*/
?— [user].

626 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/625/352834 by guest on 10 April 2024

AI MULTILANGUAGE SYSTEM McPOPLOG

/•compile the following Prolog
clauses*/
member(X, [X]] L]).
member(X, [_] T]) :- member(X, T).
?- end.
/*end of Prolog source subfile*/
function beta(x,y);

s q r t (x • y)
end;
/•POP-11 funct ion*/

When compiling the above file using the POP-11
statement compile (' f red. p '); one will get the
compiled POP-11 functions alpha , be ta and assert the
above Prolog clauses for the procedure member into the
Prolog database.

3.2 Calling POP-11 functions from Prolog

The user of McPOPLOG can call any POP-11 function
from within Prolog. For that purpose, semantics of the
standard Prolog operator i s has been extended within
the system McPOPLOG, and two additional unary
procedures popval , p o p v a l f a i l have been supplied.

popval(P) evaluates the Prolog term P as a POP-11
expression. The expression P must not return any result.
This goal succeeds only once.

p o p v a l f a i l (P) evaluates the Prolog term P as a
POP-11 expression; one result must be returned, and if it
is POP-1 l's f a l s e it is interpreted as a f a i l of the
given goal. This goal succeeds only once.

X i s P evaluates the Prolog term P as a POP-11
expression and unifies the result with X ; P must return
just one result.

The Prolog term P in the above procedures (popval,
p o p v a l f a i l , i s) is written in Prolog syntax because
it is the Prolog compiler that reads this text. However, it
is evaluated as a POP-11 expression. Here are the rules
for POP-11 evaluation of Prolog terms (the rules (iii), (iv)
will be explained later):

(i) if P is a constant (or an instantiated Prolog
variable), the constant (value of the Prolog variable) is
pushed on to the POP-11 user stack;

(ii) if P is an unstantiated Prolog variable its POP-11
representation (a reference) is pushed on to the POP-11
user stack (see the representation of Prolog terms as
POP-11 items);

(iii) c lo su re (P), where P is a Prolog term, is
evaluated by pushing P on to the POP-11 user stack;

(iv) V — > A, where V is an instantiated Prolog variable
and A is a Prolog atom, is evaluated as follows: the value
attached to the Prolog variable V is assigned to POP-11
variable A;

(v) Prolog structure f (PI, , Pn) where f is
n-ary functor and PI to Pn are Prolog terms, is evaluated
as follows: firstly PI to Pn are evaluated as POP-11
expressions and then the POP-11 function f is called.

(vi) Prolog structure PI op P2 where op is an infix
Prolog operation and PI , P2 are Prolog terms, is
evaluated as follows: PI , P2 are evaluated as POP-11
expressions and then the POP-11 operation op is called.
Similarly for prefix and postfix operations.
Thus the POP-11 evaluation of Prolog term P matches
the standard evaluation of POP-11 expressions in
programming language POP-11.8

Note: the POP-11 evaluation of Prolog term P does not
affect the POP-11 user stack because popval (P) must
not return any result; P of p o p v a l f a i l returns just one
result that is popped from the stack, and its value decides
the success or failure of the goal; in case of X i s P the
value of P is popped from the stack and unified with X.
If POP-11 evaluation of any Prolog term does not return
the required number of results, a run-time error occurs.

Example. Define the Prolog procedure
conca t (Ll ,L2 ,L3)

(L3 is a concatenation of the lists LI, L2) for the
istantiated LI and L2. We will use the standard POP-11
operation <> for lists concatenation:
? - op(33,xfy, <>).
/*POP-11 ope ra t ion <> d e c l a r e d as a
Prolog operation, McPOPLOG's is has
precedence 40 */

concat(Ll,L2,L3): - L3 is LI <> L2.

Now
?- concat([1, 2], [a,b], R).
R = [1, 2, a, b]
yes

However, the question
9 — c o n c a t ([1 , 2] , [a a (l) , b b] , R).

would cause an error since the entire argument [1 ,2]
<> [a a (l) , b b] would be considered as a POP-11
expression so that a non-existing POP-11 function aa
would be called with the argument 1 . To prevent a
subexpression of an argument of the procedures popval,
p o p v a l f a i l , i s from being considered as a POP-11
expression one has to close it using the functor c l o su re
as follows:
concat(Ll,L2, L3) :- L3 is closure(Ll)

<> closure(L2).

Now LI , L2 are considered as Prolog terms rather than
POP-11 exprssions, see rule (iii). Thus

? - concat([1 , 2] , [a a (l) , b b] , R).
R = [1 , 2, a a (l) , bb]
yes

will return expected results.
Example. Consider Prolog procedure member (X, L) :

X is an element of the list L . If the procedure is used only
for instantiated X and L , then - in some cases - it could
be defined in terms of the standard POP-11 function
member:

member(X,L) : —
popvalfail(member(closure(X),
closure(L))).

To process a value of a POP-11 variable within a
Prolog program the standard POP-11 function valof
(value of a variable) has to be used:

: vars l i s t ;
/*delare a POP-11 variable*/
: [10 9 a ab aaa 0] —>list;
/ •assign the given l i s t to i t * /

/*now sort l i s t by Prolog's sort * /

If we wrote

?— List is l i s t , sor t (Lis t ,S) .

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 627

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/625/352834 by guest on 10 April 2024

I. BRUHA

the Prolog variable List would be instantiated to the
atom l i s t . To introduce a value of the POP-11 variable
l i s t , we must do:

: ? - List is v a l o f (l i s t) , sor t (Lis t ,S) ,
write (S), nl.

[0, 9, 10, a, aaa, ab]
/•printed by write(S), nl */
List = [10, 9, a, ab, aaa, 0]
S = [0, 9, 10, a, aaa, ab]
/•instantiated variables displayed*/
yes

The evaluation of va lo f is embodied in the rule (v).
A POP-11 expression in popval , p o p v a l f a i l , i s

can also contain an assignment to a POP-11 variable,
using the POP-11 operator — > , see rule (iv).

Example.
: vars list, sorted;
: [10 9 a ab aaa 0] ->list;
/*sort list by Prolog's sort */

: ?— List is valof(list),
sort(List,S), popval(S —>sorted).

/•result of sort assigned to */
/* P0P-11 variable sorted */
List = [10, 9, a, ab, aaa, 0]
S = [0, 9, 10, a, aaa, ab]
yes
: sorted =>
/*P0P-ll variable sorted is the */
/* sorted list*/
** [0 9 10 a aaa ab]

Thus, thanks to va lo f and — > we can use POP-11
variables as inputs to Prolog programs, as well as outputs
for storing results.

3.3 Prolog called by POP-11 functions

Similarly, any POP-11 function can call a Prolog program
by introducing a Prolog question in its body. When a
Prolog question is executed within a POP-11 function the
Prolog subsystem does not wait for user's replies; but
returns t rue (f a l se) as a result, if the Prolog question
has succeeded (has failed); all Prolog variables in the
Prolog question will retain their values when returning
from the Prolog question to the POP-11 function so that
they can be processed as any other POP-11 variable.

Example. Define POP-11 function so r t (l i s t) using
the standard Prolog procedure sor t (LI, L2) :

function s o r t (l i s t) => R;
/ * R i s e x p l i c i t r e s u l t of function*/
?— L i s t i s v a l o f (l i s t) , s o r t (L i s t , R) .
/* R retains its value from Prolog */
/* question*/
end;
Now, the POP-11 expression so r t ([10 9 ab aaa 0])
yields

[0 9 10 a aaa ab]

Example. Define POP-11 function member2 (x, 1)
using the Prolog procedure member (X, L) denned as

member(X, [X|_]).
member(X, [_|T]) : - member(X,T).

i s v a l o f (l) ,

One solution is:

function member2(x,1);
if (? - X i s valof(x) , L i s v a l o f (l) ,
member(X,L).) then true
else false
endif

end;

We can also utilise directly a result returned by the
Prolog question:

function member2(x,1);
? - X is valof(x) , L
member(X, L).

end;

That's it! If the goal member (X, L) succeeds then true
is returned, otherwise false . Thus true / false
becomes the result of the POP-11 function member2 .

4. CONCLUSION

It was not straightforward procedure to compare both
versions of McPOPLOG because we had at disposal the
executable (binary) file of the Sussex McPOPLOG and
Ref. 4 only (not a source file, nor any detailed
information). Therefore we have run both simple
questions like

? - member(100, [1 , 2 , 3 ,
?— functor (T,aa, 100).

. , 100]) .

and complex tasks like 'N queens' problem, Waltz
algorithm of scene analysis, an expert system shell, etc.
We have found that the timings depend on the percentage
of calls of standard and user-defined procedures. As a
result of the comparison of both actual implementations
of POPLOG (McPOPLOG, version 1.2, and Sussex
POPLOG, version 11) we have found out that the
McPOPLOG is about 3 times faster in compilation and
twice as fast in execution.

We can see that the communication between POP-11
and Prolog in the McMaster version of POPLOG
(McPOPLOG) is quite straightforward and simple.
Neither programming language has been changed, so a
user not familiar with POP-11 can use the Prolog subset
only, and vice versa. Only three new predicates (popval,
p o p v a l f a i l , c losure) have been added to the
Prolog subset, and semantics of Prolog operator i s have
been slightly extended.

Numerous programs written in McPOPLOG at Mc-
Master University so far (e.g. decision-supporting system
for diagnostics in neurology, an expert system shell,
structural learning system with a statistical support) have
indicated that the communicaiton means of McPOPLOG
as discussed above are quite adequate.

Further work in this area can include the following
directions.

(1) Both POP-11 and Prolog have their pattern-
matching mechanisms and databases. It would be useful
if both subsystems could share the same database.
However, such a facility would enormously extend the
set of the communication routines between the two
subsystems.

(2) Both languages have their backtracking mech-
anisms, and at present they cannot communicate, i.e. a
POP-11 function cannot explictly fail a Prolog goal, and

628 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/625/352834 by guest on 10 April 2024

AI MULTILANGUAGE SYSTEM McPOPLOG

vice versa. However, the communication between the
POP-11 's backtracking and the Prolog's one would
increase the power of the ensire system. For example, the
POP-11 function

func ion collect(X,G) => Result;
nil —>Result;
if (?- call(G).) then
append(X,Result) —>Result;

/*add X to the list Result */
fail

/* ... would fail the goal G •/

endif
end;

would return the list Result of all the objects X so that
the Prolog goal G would be satisfied (i.e. it is an analogy
to f inda l l (X , G, Resul t)). This extension seems to
be promising, and no new procedure or predicate will
have to be added to the McPOPLOG system.

The McPOPLOG runs currently on VAX systems and
on systems based on the Motorola 68000 processor.
Detailed information on the system can be obtained
from the author.

REFERENCES
1. C. Muller, Modula-Prolog: a software development tool.

IEEE Software, pp. 39^5 (Nov. 1986).
2. J. A. Robinson and E. E. Sibert, LOGLISP: an alternative

to Prolog. In Machine Intelligence 10. Ellis Horwood, New
York (1982).

3. H. J. Komowski, QLOG - the programming environment
for Prolog in LISP. In Logic Programming, edited K. L.
Clark and S. Tarnlund. Academic Press, New York (1982).

4. C. Mellish and S. Hardy, Integrating Prolog in the POP-
LOG environment. In Implementations of Prolog, edited
J. A. Campbell. Ellis Horwood, New York (1984).

5. I. Bruha, Reference Manual of McMaster POPLOG.

Technical report 87-03. McMaster University, Department
of Computer Science and Systems (1987).
I. Bruha, Compact Implementation of Prolog as a Part of
the Environment of McMaster POPLOG. Technical report
87-05, McMaster University, Department of Science and
Systems (1987).
R. Burstall, D. Collins and R. Popplestone, Programming
in POP-2. Edinburgh University Press (1971).
R. Barrett, A. Ramsay and A. Sloman, POP-II -a Prac-
tical Language for Artificial Intelligence. Ellis Horwood,
New York (1985).

Book Review

CD-ROMS in Print: an International Guide to
CD-ROM, CD-I, CDTV & Electronic Book
Products
Meckler, London 1992. ISBN 0891-8198,
ISSN 0-88736-780-1. Print edition, £40;
CD-ROM edition, £59; joint price, £79.

We are all now familiar with the music CD,
and there can be few in the computing
profession who are not also familiar with the
CD-ROM (compact disc read only memory)
as a means of storage for large quantities of
data. Over the past decade the rapid ap-
pearance of one standard reference book after
another in CD-ROM format is having a
significant impact on the librarian's approach
both to collection development and exploi-
tation. CD-ROMs allow not only the storage
of large amounts of data within a very small
space (e.g. the 3-volume set of Kompass UK
reduced to one 4.72" disc), but also allow
multiple access to that data through the
sophisticated search software available on
many CDs. The type and range of CD-ROMs
is now huge - dictionaries, encyclopedias,
directories, catalogues, abstracting public-
ations, financial records, statistical data, works
of literature, children's books...many of
which will allow you to search the entire
database, to sort, download and even analyse
the data presented. They can make
commercially produced databases, normally

available on-line, readily accessible to a public
readership without the need for complex dial-
up telecommunications links. Unfortunately
CD-ROMs do not offer a cheap option. Prices
do not appear to have come down with greater
use, as initially expected. Inevitably a CD-
ROM will cost several times the price of an
equivalent printed copy, and in addition a
workstation is needed in order to 'read1 the
'automated' book.

Now in its fifth year, the 1992 edition of
CD-ROMs in Print provides details of nearly
3000 commercially available titles, compared
with the 300 listed in 1989. The print edition
comprises an alphabetical listing of titles. In
each case six sections of data are given: title;
data provider, publisher and distributor
details; compatible drives; disc software and
computer hardware/software requirements;
pricing structure; brief description of the
product. The information can be approached
through a series of indexes covering data
provider, publisher, distributor, software pro-
vider and subject. The latter is extremely
useful for anyone seeking to identify products
within a specific subject field, although the
subject headings used are rather broad. The
subject 'Computer Software' lists some 180
diverse titles. The data has been collected over
the past 12 months from information provided
by publishers and software houses.

The CD-ROM version contains identical

data, organised into 2 linked files - a titles file,
comprising description, compatibility,
software/hardware requirements and pricing
structure; and a companies file providing
details of information and software providers.
Each file can be searched through a number of
searchable index fields or through a global
index. The search software is easy to use, with
search options presented on the screen. The
software allows single-concept searches such
as finding all CDs on a particular subject, or
retrieving details of a specific CD-ROM title.
In addition, complex searching, combining a
number of concepts, is easily undertaken for
more specific requirements like a German
dictionary or a chemistry CD that runs on a
Macintosh. This CD-ROM itself demonstrates
the flexibility of the medium, allowing the type
of multi-concept searching not available
through the single-concept indexes of the print
version.

Whether in print or CD-ROM format, CD-
ROMs in Print provides a comprehensive
source of information on currently available
titles and, as with previous editions, will prove
to be an indispensable tool in identifying titles
and checking source data.

J. MAK
London

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 629

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/625/352834 by guest on 10 April 2024

