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Hybrid number systems (HNSs) represent a natural generalisation of weighted and residue number systems. In HNSs,
an integer is represented by using both weighted and residue notations; their mathematical properties, which have been
investigated in depth, are strongly dependent on the ratio of the residue to the weighted range of the representation. It
is apparent that varying the residue-to-weighted-range ratio should enable us to optimise the mathematical
performances of these systems.

This paper shows that adding flexibility to hybrid systems is very simple. A general procedure is proposed whose
complexity is the same as the well-known mixed radix converting algorithm. A VLSI architecture is presented and its
area-time performances are evaluated.
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1. INTRODUCTION
There are two basic approaches facing problems con-
cerning fast numerical information processing. The first
consists in devising methods which enhance time per-
formances of binary, weighted mathematics; the second
approach involves the application of different number
systems such as residue systems.

When applied in computer mathematics, both weighted
number systems (WNSs) and residue number systems
(RNSs) exhibit several drawbacks. In fact, WNSs are
very time consuming, owing to the mutual dependence of
their digits in computations involving addition and
multiplication. On the other hand, RNSs, which allow
fast addition and multiplication, require lengthy and
heavy procedures whenever the knowledge of the number
magnitude is necessary to carry out operations such as
comparison, sign detection or division.12

Since the early 1960s,1011195 some different number
systems have been proposed in attempts to retain the
modular properties of RNSs without completely losing
the explicit knowledge of number magnitude of WNSs.
More recently,136 starting from the premise that WNSs
and RNSs can be considered opposite solutions to the
problem of representing numbers, a more general
definition of number systems, namely, hybrid number
systems (HNSs), has been proposed. This includes RNSs
and WNSs as particular cases. These systems represent
integers by means of two separate parts (a residue and a
weighted part) which may be operated in parallel. Their
mathematical properties have been investigated3 and
have been found to be strongly dependent on the ratio of
the residue range to the weighted range of the rep-
resentation.

There are no serious difficulties in moving, according
to particular applications, the residue-to-weighted-range
ratio in HNSs. This additional./fe;d6////y, or, equivalently,
the ability to perform a generalised number system
conversion, may prove very useful in optimising time
performances.

For the sake of completeness, the HNSs definition will

* This research has been supported by the National Program on
Solid-State Electronics and Devices of the Italian National Research
Council.

be recalled in Section 2. Section 3 will analyse the
problem of the generalised conversion and a unified
procedure will be presented for expanding either the
residue or the weighted part in a HNS notation. Finally,
according to VLSI theory assumptions, Section 4 will
propose and evaluate the logical design of a structure
implementing both expansions.

2. HYBRID NUMBER SYSTEMS
In general, a number system can be defined as:

(i) choosing an ordered set of positive integers {mx,
m2,..-,mn}, which are referred to as the radices of
the system;

(ii) specifying a law relating any integer I to a
set of digits {xvx2,...,xn}, where, in general,
0 ̂  x, < m(. In addition, a one-to-one corre-
spondence is to be guaranteed between integers
belonging to a given interval and the corre-
sponding representations.

Any known number system, which enables integers to
be represented by finite sequences of symbols, is based
upon the following identity, holding for an arbitrary X
and an arbitrary positive integer /z:

The number system which will be considered here3

assumes that, for a given fi, \X\/1 and [X/fi\ are given
different representations. More specifically, it is supposed
that |X\ll is represented in a residue system of pairwise
prime moduli (the radices of the residue system) {m^ m2,
...,mt} and [X/fi\ is represented in a weighted system of
radices {mt+l,mt+2,...,mn). It is essential to realise that
WNSs and RNSs become special cases of HNSs, with
t = 0 and t = n, respectively.

HNSs exhibit features which are intermediate between
that of residue and weighted systems,3 namely:

- the ability, as in residue systems, of performing fast
and partially carry-free addition and multiplication;

- the possibility, as in weighted systems, of performing
easy magnitude comparison, sign and overflow
detection and division.
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Therefore, hybrid systems may represent a satisfactory
trade-off allowing faster computation time compared
with conventional number systems.1'6 More specifically,
addition and multiplication become faster by reducing
the weighted part; further, operations such as sign
detection, magnitude comparison or division are es-
sentially based upon the weighted part of the rep-
resentation. A very attractive goal should be the ability
of moving (i.e. of making flexible) the representation
without additional time costs. Of course, this is im-
possible; however, in this paper, it will be shown that
adding flexibility to HNSs is very simple and the
procedure which is required is very similar to a mixed
radix conversion.12

3. ADDING FLEXIBILITY TO HYBRID
NUMBER SYSTEMS

Let j , m2,..., mt, mt+l, mt+2, ...,

be the radices of a HNS. Without any substantial loss of
generality, it will be assumed that radices are pairwise
prime integers and are ordered increasingly, i.e. mt < irij
for 1 < (' <j ^n. Moreover, recalling Identity (1)

1 n

H = I! mt and P = Tl m(

The expansion is easily obtained supposing that the
overall residue part Rx of the representation is to be
converted in the associate mixed radix number system. In
fact:

Rx = a1 .+at_s
JL

lmn

a

and, from equation (2):

X = a1 + a2m1+a3m1m2 +... + at_s

ft

i + at-s+i^r
mr.

f f
+ al_s+i-rmt_s+1 + at_s+3 — mt_s+l w(_s+m mr.

Comparing with (3), it follows:

W* = at_s+1 + a(_s+2w(_s+1+a(_s+

will indicate the residue and the weighted ranges,
respectively.

Any integer X will be given the representation:

A = , Wx)

where Rx = lA"̂  = (xu x2 , . . . , xt) is represented in the
RNS of moduli \mx, m2,..., mt} and Wx = [X/fi\ = {xt+l,
xt+2,...,xn} is expressed in the WNS of radices {mt+l,
mt+2,...,mn}.

Substituting in equation (1), obtains

X=Rx+fiWx. (2)

3.1 Expanding the weighted part of the representation

Let {mvm2,...,mt} be the set of moduli of the residue
part of the representation and suppose we wish to
convert moduli mt_s+vml_s+2,...,mt_1,ml,s^t, as ad-
ditional radices of the weighted part. The residue and
weighted ranges will become, respectively:

, = - P* =
mm

mt = PmR

with mR = rn{.

As a consequence, equation (1) will take the form

and the number X will be given the representation:

y = IR* W*\ — i v* r* v* v* v* v*\
A — \JXX> " XI l A i ' -*2 s • • • > -*t ) A(+i> At+2' • • • ' An>-

From equation (T):

W* —
x ~

m.

R*

(20

(3)

fi
In conclusion:

x* = x, for i=\,...,t —

x* = at for t — s+l,...,t

xf = x, for / = t + 1, . . . , n t

(50

Example 1

In the HNS of radices mx = 5, m2 = 7, m3 = mt = 8,
mt = mt+1 = 9, mb = 11, w6 = mn = 13, consider integer
X= {1,0,6,3,2,1) = 33726 and suppose we wish to
extend the weighted part of the representation to include
moduli m2 = 7 and m3 = 8. To derive the new repre-
sentation, the residue part is converted in the associate
mixed radix system to find weighted digits x* (of weight
m,) and x* (of weight ml.m2). It is found:

ml = 5 m2= 1 m% = 8
Rx-\R 1 0

— 1
6
1

ay = xr = x* = 1

5 J|7

6
3

4
—

5
5

1
4

5
7

= Xt ~

3 a, = x* = 3

and the representation in the new HNS is: {1,4,3,3,2,1}.
In fact:

x* + 5;c{4,3,3,2,1} = 1
+ 5(4 + 3.7 + 3.7.8 + 2 .7 .8 .9+ 1.7.8.9.11} = 33 726.
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3.2 Expanding the residue part of the representation

In the hybrid system of radices {m1,m2,...,mt,mt+1,...,
mn) where {mx,m2,...,raj are the moduli of the residue
part, suppose that radices ra(+1,...,mt+g,s ^n — t, are to
be considered as additional moduli. The residue and
weighted ranges will become, respectively:

P s

fi** = fimw and P** = — where mw = Ft mM

and equation (1) will take the form:

(1")

The new number system, as re-defined by preceding
assumptions, will represent integer A'as:

y-.<}>** J**\ — SY** Y** Y** v**
** **

where

and wr = *•? =

(2")

(3')

From equation (3'), it is shown that the new weighted
part is expressed by the most significant (n — t — s) digits
of the original representation:

(x** r** Y**\ — ix x x \
l -^+s+H -vJ+s+2' • • • ' •*» I l-*(+s+l' •/V<+«+2; • • • ' -*n/-

Moreover, from equations (2) and (2"):

which is equivalent to:

= Rx+fiWx-nmw W*x* =

-nmw
\ \ = RX+M \\-\\

or, in other terms:

(4')

Computing Rx* from equation (4') requires a base
extension of Rx from the range n to the new residue
range fimw. In addition, the residue representation of
/i\ [X/fi\ \m , in the range fxmw is required; as the last term
is a multiple of /i, it is sufficient to compute residue digits
modra(+1, ...,mt+s, i.e. recalling that

= xt+l + xt+2 ra(+1 + . . . + xt+s IT mt+(,

it follows that fA[X/n\\mw is represented as

xt+l ft mod mt+y,

xt+2fimt+1 modm(+2,

xl+2 fimt+1 + xt+3 fiml+1 ml+2 mod ra(+3.

Again, the expanding procedure is equivalent to a
mixed radix conversion in a residue system with t+s
moduli. To prove this, suppose that the procedure of
expanding the residue representation is performed step
by step, i.e. suppose first that radix mt+1 is to be assumed

as an additional modulus of the residue part. To this
purpose, residue digits {xx,x2,...,xj are to be extended
to mt+1 and, after t standard base extension steps, it will
be obtained, modw(+1:

and, recalling that:12

the extended digit, mod mt+l, will become, from equation
(4'):

x*+* = - fik1-^ + xt+1 ft mod ml+1. (5")
Before iterating the above procedure, assume that the
first / standard base extension steps have been con-
currently performed modmt+l,...,mt+s, thus obtaining:

ui) ut) un un ((.\

Now, suppose that radix mt+2 is to be converted as a
residue modulus. Again, a base extension is necessary
starting from residue digits {xl,xl,...,xt,x?$ and, after
t steps, the following terms are obtained modulo w(+1,

1
M i" t+i t

Next, the (/+ l)th step will give, modulo mt+2: (6')

m

and, in general, modulo mt+i:

/ = 2 , 3 *. (7)

The (/ + 2)th residue digit will be easily found observing
that equation (4') holds in the form:

mt+]

and
(4")

mn,/mt+

with

mwlmt+

modm,+2,

mod mt+z.

As a conclusion:

= xt+1 n + xt+2jimt+l - fik?l2.

Similarly, to find x**3, it will be obtained, after (t+\)
steps:

( k^f t+l xt+2)
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and, next, the (/ + 2)th step will produce, mod mt+i:

(7')

(5")

and

= Hxl+l+fimt+lxl+i+fimt+1mt^2xt+3-nk

In general, it can be concluded:
( -1

x**t =nX\ mt+vixt+i-k?£-l))mo&mt+i
u - l

f -1

where n mt+u = 1 for i = 1
u- l

and

7 = 1 , . . . , 5 - 1 ( = 7 + 1 , . . . , 5 . (7")

Above relations show that obtaining residue digits x*+*(,
i = 1,.. . , s corresponds to performing a mixed radix
conversion where, after the tth step, the values which are
to be subtracted to ki

t'+/~l) are the weighted digits xt+j

of the original representation. This enables the same
structure to be employed for both residue and weighted
part expansions.

Example 2

In the same HNS of Example 1, consider X = {1,0,6,3,
2,1} = 33726 and assume that radices mt+1 = m4 = 9,
mt+2 = mb = 11 are to be used as additional moduli of the
residue part. This assumption defines a new HNS where
the residue part has moduli {m^ m2, m3, m4, m5} whereas
the weighted part has the single radix m6. From equation
(3'), it follows:

|JT|mi = x** = x, = l , m m i = *?* = *2 = 0.

\X\mt = x** =x3 = 6, W*x* = xf = x6 = 1.

To obtain the remaining digits of/?**, 1-JfL, is extended to
the new residue range /xmw.

m, = 5 m2 = 7 m3 = 8 m4 = 9 m5 = 11

. 1 0 6 0 0
Kx \Kxh _ 1 1 1 1

[fj-llfl
x%

-^l-ll — II5*7J ||.5*7j|(

6
3

4
—

5
5

1
4

5
7

3
—

8
2

7
4

3
4

3
3

0
8

10
9

2
4

9
8

6
3

3
7

The procedure goes on by considering the original
weighted digit x, = 3.

— 3-x.

x** = x** =

^4) = 2

and, according to equation (5"), it obtains:

-0) = 3 mod 9

M{xh - 2) = 0 mod 11

and the representation of X in the new hybrid system
becomes: {1,0,6,3,0,1}. In fact:

{1,0,6,3,0,1} = {1,0,6,3,0}
+ 1.(5.7.8.9.11) = 6006 + 27720 = 33726.

In conclusion, it is worth noting for both Cases 3.1 and
3.2 that the only digits which are altered when expanding
an HNS representation are those corresponding to the
radices of the system which change their original
meaning.

4. THE PROPOSED ARCHITECTURE

In the previous sections, it has been shown that the
expansion of the weighted and the residue part of a HNS
representation can be carried out by means of two
procedures which essentially perform the same sequence
of operations of a mixed radix conversion. Namely,
given a HNS of radices {ml,...,mt,mt+x,...,m^, the
weighted expansion executes (/—I) adding-multiplying
steps starting from residue digits xv...,xt whereas
expanding the residue part requires a 0-input in the
weighted digits to be converted and terminates after
(t + s) steps, where 5 is the number of residue digits to be
added. As a consequence, a single device is able to carry
out both extension processes and is very similar to a
mixed radix converter.6

The proposed architecture (see Fig. 1) consists of
(«— 1) processing units connected through a bus L. Two
n-bit registers S and S' store the current and the expected
state of the number system; the actual expansion is
derived from 5 and S'. More precisely, the rth bit
bs{i){bs(i)) of S(S') is set to' 1' if the rth radix is a residue
modulus and '0 ' otherwise. A digit has to be converted
if its current and expected states are different. Thus, the
ith radix moves from the weighted to the residue part if
bs(i) A bs{i) = 1 and from the residue to the weighted
part if bs(i) A bs.(i) = 1.

Unit t/((2 ^ / ^ ri), corresponding to the /th radix,
calculates mod mt sums and products of two operands
and has two associated combinational blocks /, and Tt
and a local ROM storing i constant values. The first
{i— 1) cells contain the modm, multiplicative inverses of
the moduli associated with units Ut,..., U^ whereas the
/th cell stores the mod m, product of moduli m^..., m(_x.
Note that the first digit coincides for both representations
and cannot be altered in extension processes.12 Thus Ux
reduces to a register RESULTj and to a gate GATEj
sending x, to L.

Let us indicate with hKf and k\w) the input from 7( and
the output of unit Ut at the wth step, respectively.
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clock

*.(«)

|RESULT,| stop (/) o—| RESULT ]̂

Figure 1.

stop («) o—JRESULTj

Depending on bs(i) and on the wth step of the procedure,
/( selects:

h\l) = xt if bs(i) = 1 and w = 1

h™ = 0 if bs(i) = 0 and w = 1

/,{«" = k\w-v if iv ^ 2

and £/, calculates the value k(
(
w) = (h\w)-tlw))(l/mj

mod mt. The other operand f Jw) is received from L, which
carries the output of block Tw. In general, a block 7J send
to L, at the yth cycle, the value k]1~l) if bs(j) = 1 or xj if
*SO) = o.

Whenever the z'th digit is moving from one to another
representation, it is seen, from (5') and (5"), that unit U,
outputs the correct result after (/—I) steps if weighted
part is to be extended and after / steps in the other case.
However, the proposed architecture assumes that Ut can
perform the overall procedure provided that the proper
output is stored in RESULTj according to the following
condition:
stop (0 = ((w = 1) A bs(i) A bs.(i) V (w =

Assuming that RESULT, registers are initially loaded
with the original representation {x1,x2,...,xt,xt+1,
xt+2,...,xn}, the above condition guarantees that only
the digits to be converted are altered. In fact, whenever
a digit x( is to be unchanged, bs(i) = bs.(i) and stop
(i) = 0 for any w.

4.1 VLSI complexity figures
Evaluating the VLSI complexity of the proposed struc-
ture is rather simple. In fact, the overall architecture
consists of a single row of processing units performing
modular additions and multiplications.

Binary and modm adders and multipliers have been
extensively traited by several authors.2'4i7iS For the sake
of simplicity, let us recall the major results which have
been obtained for adders and multipliers in terms of
upper bounds. All the proposed layouts are based upon
a pipelined computation scheme, where operands are
sliced into a number of strings of equal length.

Referring to adders, it has been shown7 that binary
addition can be performed by means of structures
exhibiting the following area and time complexities:

where b is the total number of bits of the operands and
T represents the number of strings into which the
operands are divided.

Similarly, for binary multipliers,8 it has been shown
that:

The same results are obtained when mod m adders and
multipliers are considered, i.e. whenever non-binary,
weighted or residue mathematics is to be performed.24

Referring to adders, and denoting by logw the bit
length of a digit, it has been shown that:4

AM =
logw logw

whereas, for multipliers2-

= 0 ( T W ^ ) . (8)

(9)
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J L °Q¥
o(r^)J[^^L\ fc=H

mod m}

Multiplier

I'/"',L
•••

|i/'".-iL.

i-nm,im<

Figure 2.

and the time which is required to perform a single mixed
radix converting step:

(ii)

To conclude, the overall structure of Fig. 1 exhibits area

OVT> A = 0[n_z^x{:z^ + nT]] ( 1 2 )

and has the following time requirements:

(13)

From equations (8) and (9) and referring to Fig. 2, it
is possible to derive the area occupancy of the rth unit Ut:

(10)

where

j = t if the weighted part is to be extended

and j=t + s in the other case.
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Announcement

18-19 JUNE 1993

FEG1S '93: Far East Workshop on
Geographic Information Systems, Singapore

The Workshop

FEGIS '93 focuses specifically on the de-
velopment and application of geographic
information systems (GISs). The workshop is
timely, as many large-scale GIS projects have
recently been initiated in this region and there
is increased concern for more efficient and

interoperable GISs. This workshop provides a
rare and important occasion for applied
researchers, GIS developers and users to share
their experiences, their problems and results.
In particular, sessions for large-scale GIS
projects (by invitation) undertaken in this
region are planned.

Tutorials and exhibitions

FEGIS '93 is to be held in conjunction with
SSD '93, the 3rd International Symposium on
Large Spatial Databases (23-25 June 1993).

Tutorials are scheduled for SSD '93 and
FEGIS '93 on 21-22 June 1993. Industrial
exhibitions will be held from 17 to 25 June
1993. For further information on the sym-
posium, please contact the secretariat.

Secretariat

Siew Foong, Ho, Department of Information
Systems and Computer Science, National
University of Singapore, Lower Kent Ridge,
Singapore 0511. Email: hosffenusvm.bitnet.
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