1.J.DAVIS

Time (usfkey)

24 95 26 27 28 29 200 211 212 213 214 215 216
Total keys sorted
Figure 11. Time to Quicksort a 64-byte key.

6. CONCLUSIONS

This paper has presented an efficient implementation of
the historical radix sort algorithm, and has shown that
this implementation of a radix sort is superior to the
more widely used Quicksort. In almost all experiments
the radix sort was considerably faster than Quicksort,
regardless of the number of keys being sorted, the size of
these keys, and the contents of these keys. Out of a total
of 312 different tests, Quicksort performed nominally
better in only 5 tests, none of which involved sorting
more than 64 keys.

There are cases where our radix sort should not be
used. The partitioning is not stable, which may be

REFERENCES

1. Programmer’s reference manual. In UNIX System V
Release 3. AT&T (1986).

2. D. C. 8. Allison and M. T. Noga, Usort: an efficient hybrid
of distributive partitioning sorting. BIT 22, 135-139 (1982).

3. J.-L. Baer and Y.-B. Lin, Improving quicksort perform-
ance with a codeword data structure. IEEE Transactions on
Software Engineering 15 (5), 622-631 (1989).

4. C. M. Davidson, Quicksort revisited. /EEE Transactions
on Software Engineering 14 (10), 14801481 (1988).

5. I J. Davis, The MSQ database system. HLSUA Forum
XLIII Proceedings, pp. 764768 (5-8 October 1986).

6. 1. J. Davis, The development of MSQ at Wilfrid Laurier.
Honeywell Bulletin 5 (8), 6-20 (1987).

7. W. Dobosiewicz, Sorting by distributive partitioning. /n-
Sformation Processing Letters 7 (1), 1-6 (1978).

8. W. Dobosiewicz, The practical significance of D. P. sort
revisited. Information Processing Letters 8 (4), 170-172
(1979).

9. G. H. Gonnet, Handbook of Algorithms and Data Struc-
tures. Addison-Wesley, London (1984).

significant in some applications. When performing
external sorting, or in other applications where the cost
of exchanging keys (or pointers to keys) is high, our
algorithm can be expected to behave poorly. In appli-
cations where very little memory is available, the small
amount of memory used by our radix sort might be
viewed as excessive. In very critical applications, or those
known to sort only a limited number of keys, other sort
algorithms may be preferred. Finally, when sort keys
cannot be divided into smaller keys having decreasing
significance, no radix sort can be used.

Our radix sort can be used to sort text, binary values,
and floating point values, in ascending or descending
sequences, by merely employing encoding schemes which
result in keys having the desired collating sequence. Our
radix sort can also sort variable-length keys, if minor
modifications are made to it. It would therefore be
appropriate to consider using this sort in most practical
applications.

Acknowledgements

I would very much like to thank Dr H. Bezner for
motivating the study presented above, and for sub-
sequently encouraging me to write this paper. I would
also like to thank Dr D. J. Taylor for his continued
interest in my research activities, and for his assistance in
the production of this paper.

This research was funded by Wilfrid Laurier Uni-
versity. The production of this paper was funded, in part,
by the Natural Sciences and Engineering Research
Council of Canada, under grant A3078.

10. C. A. R. Hoare, Quicksort. Computer Journal § (1), 10-15
(1962).

11. D.E. Knuth, Sorting and searching. In The Art of
Computer Programming, p. 499. Addison-Wesley, Reading,
Mass. (1973).

12. R. Loeser, Some performance tests on quicksort and
descendants. Comm. ACM 17 (3), 143-152 (1974).

13. J. Rohrich, A hybrid of quicksort with O(nlogn) com-
plexity. Information Processing Letters 14 (3), 119-123
(1982).

14. R. S. Scowen, Algorithm 271, Quickersort. Comm. ACM 9
(5), 354 (1966).

15. R. Sedgewick, The analysis of quicksort programs. Acta
Informatica 7, 327-355 (1977).

16. F. Suraweera and J. M. Al-Anzy, Analysis of a modified
address calculation sorting algorithm. The Computer
Journal 31 (6), 561-563 (1988).

17. M. H. VanEmden, Algorithm 402, gsort. Comm. ACM 13
(11), 693-694 (1970).

Announcement

18-20 APRIL 1993.

RIDE-IMS °93 Third International
Workshop on Research Issues in Data
Engineering: Interoperability in
Multidatabase Systems, Vienna, Austria.
Sponsored by the IEEE Computer Society.

RIDE-IMS '93 is the third of a series of
annual workshops on Research Issues in Data

Engineering (RIDE). RIDE workshops are
held in conjunction with the 1EEE CS In-
ternational Conferences on Data Engineering.
Following the successful RIDE-IMS "91 held
in Kyoto, Japan. the next RIDE workshop
will also focus on interoperability of het-
erogeneous and autonomous database and
knowledge systems.

The proceedings, consisting of the accepted
papers, will be published by IEEE Computer

642 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

Society and will be widely available.

For further information contact:

Elisa Bertino, Dipartimento di Matematica,
Universita di Genova. Tel.: +39-10-353-8034.
Email: bertino@ icnucevm . cnuce .cnr. it.

or

Susan Urban, Computer Science Department,
Arizona State University. Tel.: + 1-602-965-
2784. Email: urban@ asuvax .eas.asu.edu.

$202 14dy 60 U0 1senb Aq 868ZGE/219/9/GE/e101ME/|UlW0d/Wo0 dno"olWwepeoe//:sdiy Wolj papeojumoq

