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Time (usfkey)

24 95 26 27 28 29 200 211 212 213 214 215 216
Total keys sorted
Figure 11. Time to Quicksort a 64-byte key.

6. CONCLUSIONS

This paper has presented an efficient implementation of
the historical radix sort algorithm, and has shown that
this implementation of a radix sort is superior to the
more widely used Quicksort. In almost all experiments
the radix sort was considerably faster than Quicksort,
regardless of the number of keys being sorted, the size of
these keys, and the contents of these keys. Out of a total
of 312 different tests, Quicksort performed nominally
better in only 5 tests, none of which involved sorting
more than 64 keys.

There are cases where our radix sort should not be
used. The partitioning is not stable, which may be
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