
Short Notes

SIMSTRICT: A Behavioural Simulator for
use with the STRICT Hardware Description
Language

SIMSTRICT is an advanced behavioural simu-
lator for VLSI system design. It can perform
verification between levels of the design hi-
erarchy by dynamic behavioural comparison
and can simulate incomplete designs. It is
integrated with the hardware description
language STRICT and autolayout tools to
create a powerful computer aided design system,
useful at the architectural level as well as gate
levels.

Received June 1988, revised November 1990

1. Introduction

In general, simulators can be classified by the
degree of abstraction from the physical devices
that constitute a design. Circuit stimulators
such as SPICE7 model at a low level using
analog primitives such as resistors, capacitors,
voltage sources and transistors. Gate simu-
lators like CLASSIC9 model a network of
logic gate primitives (e.g. AND, OR and
NOT) using discrete signal values (e.g. 1, 0
and undefined).

Functional simulators such as ELLA8 and
HILO10 extend this method to allow the
designer to define functional primitives for
nodes, in the structural network. A hardware
description language (HDL) is required as a
medium for the functional descriptions and
thus these simulators are normally part of a
design system which includes language and
simulation components. Some functional simu-
lators provide mixed mode simulation6 so that
functional and circuit simulation can be
combined. Gate and functional simulators
have been described as behavioural simu-
lators3 and Coelho defines behavioural simu-
lation as 'a tool which supports discrete value
simulation of a system composed of black box
behaviours described by a HDL'.5

SIMSTRICT is a behavioural simulator
which uses the hardware description language
STRICT.2 STRICT, like some other HDLs, is
hierarchical; design components being com-
posed of networks of sub-components. How-
ever STRICT requires that a behavioural
description is provided for each level of the
hierarchy. Thus SIMSTRICT can extend the
behavioural concept and perform dynamic
behavioural comparison to verify that the
design of a component meets its behavioural
specification. It does this as part of an
integrated STRICT environment.4

SIMSTRICT is a homogeneous level simu-
lator. That is the functional levels of the
components being simulated are transparent
to the simulation and are wholly dependent on
the behavioural descriptions provided in the
STRICT language.

The design of the language and the simulator
are intimately connected. However, it should
be noted that SIMSTRICT supports features
not yet embodied in STRICT, such as an
AFTER temporal constraint.

The simulation process, for the user, consists
of decomposing a component into its con-
stituent interconnected parts (i.e. going down

a level in the hierarchy) and then driving it
with test signals. The signals are applied
interactively, streamed in from data files or
generated by an embedded pseudo-
component. Output signals are collected from
user selected points in the design and displayed
interactively or stored in data files for later
review or processing. Signals in STRICT are
not limited to boolean values, but may be any
type available to the behavioural description.

2. The simulation model

SIMSTRICT simulation consists of modelling
the design as a network of blocks. These
blocks have behaviours that respond to the
arrival of signals from the network. We define
a behaviour as:

That is, behaviour is a set of at least one causal
event E and an associated assignment set:

A={(C,{S} + ,T)} + .

Which must contain at least one element.
Assignment set elements consist of a selection
condition C which specifies the conditions
under which the assignment can occur, an
assignment function set {5}+ containing at
least one element and a temporal constraint 7*.
The temporal constraint is defined as:

T=(a,w,G)1

where a and iv are defined as delay times
between which the assignments can occur,
such that 1 ̂ a ̂ iv. G is a guard function
defined as:

G = <J,U)

where / is a guard period during which the
assigned values must not change and U is a
causal event which can preempt the com-
pletion of the period. It is possible for/or U
to be null. Thus a complete definition of a
SIMSTRICT behaviour is:

B = {(£, {(C, <S} + , (a, w,)/ [/)))} +)} +.

The mapping of this description onto the
STRICT language is best illustrated by some
examples. We assume a block with inputs a, b
and c, and outputs d and e:

intended behaviour
whenever change (a) OR change (b) *-* E

(e=\): ~C
after 5 «-»a
within 10 «-nv

set d=a + b <->{S}
c = a — b

Here, a change in the signals at 'a ' or 'A'
trigger the behaviour. If the condition 'e = 1'
is satisfied then new values are assigned to 'd'
and 'c ' . These assignments occur between 5
and 10 time units after the causal event.

intended behaviour
whenever change (a) <-» E

within 10 <->>v
set d = a mod 2 *-* {5}

for 6 < - /
unless change (b) <-» U

Here, when there is a change at 'a' a new
value is assigned to 'd'. This occurs between 1
and 10 time units after the causal event mapped

to E. It is held at that value for 6 time units or
until the signal at 'b' changes. There are no
conditions in this example so the assignment is
performed whenever the causal event occurs.
When after is not specified a default of 1 time
unit is assumed.

The blocks in the simulation network are of
three types:

(i) Functional blocks: These correspond to
STRICT language BLOCKS and have their
behaviours explicitly specified by the intended
behaviour section of the BLOCK.

(ii) Network blocks: These are implied by
the use structure section of a STRICT BLOCK.
Their behaviours are a subset of the definition
given above:

As can be seen, they are composed of only
causal events and sets of assignments
functions. There are no conditions or temporal
constraints. In addition the assignment
functions are restricted to those needed to
join, split and merge signals.

(iii) Virtual blocks: These are implied by
special features of STRICT such as clocks.
They have full behavioural descriptions like
functional blocks.

The blocks are connected by ports. These
can be input, output or input/output and are
explicitly specified in STRICT. Virtual ports
are implied by the use of state variables in
STRICT. The ports are connected on a one-
to-one basis (see fig. 1). Since all the blocks
have similar behavioural formats and network
blocks handle the fan-in and fan-out of signals
the simulator algorithm can be comparatively
simple.

The behaviour of a block is used at two
levels. If the block is decomposed and
behavioural comparison carried out, then the
behaviour is used as an intended behaviour for
the comparison. Decomposition results in a
network of sub-blocks. This is simulated using
actual behaviours for the sub-blocks to produce
a simulated behaviour. It is the intended and
simulated behaviours that are compared.

The SIMSTRICT behaviour as defined
above is used as the intended behaviour for a
functional block. In order to derive an actual
behaviour we proceed as follows:

Bi = {(£, {(C, {S} +, T)} +)} + as defined.

Now E, C and {S} can be used directly.
However, T has to be transformed to give a
time for the assignment of signal values. In
general:

T = (a,w,G) >T = {d,C) where
d = F(a,w,p,...).

Fis called an interpretation function. This can
be any analytic function of a, H>, and p such
that a ̂ d ̂ w, where p,... are user supplied
parameters. In practice the following function
is used:

d = a + (w-a)p/\00 where 0<p<100.

The transformation G^G' is simply one of
interpretation. C = (/,£/) specifies that a
signal is expected to remain the same for a
guard period. While C = (/, U) indicates that
the signal will be present and unchanged
during the period.

If we take the time of the causal events E

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 651

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/651/352922 by guest on 09 April 2024

SHORT NOTES

FUNCT

A I

NET

1
I

FUNCT

Figure 1. Blocks connected by ports.

Instance root

Generic
data

Generic
data

Block Brother

Generic
data

Block
decomposed

Signal

Port

List

Son

Father
Block
inner

Port

List

Signal

Signal

Port

List

Port

List

Signal

Signal
change
list

Fixed
Temporary

Active
block
list

Figure 2. Schematic data structure.

and U to be le and tu respectively. Then an
intended behaviour specifies that the {S}
assignments should occur at some time t such
that:

te + a te + w.

The signal will be expected to remain the same
for the period:

te + w to te + w+f or,
te + w to tu,

where te + w <=tu<= te + w+f.

The associated actual behaviour is that the {S}
assignments are maintained for the period:

te + d to te + w+f or,
te + d to tu,

where te + d < tu ^ te + w+f.

The behavioural models above are used within
the context of a simulation cycle which briefly
consists of:

(i) Passing signals between blocks. Which
causes.

(ii) Evaluation of actual behaviours. Which
cause.

(iii) Scheduling of future actual and
intended signal changes. When these eventu-
ally occur behavioural comparison can be
performed. The actual signals cause (i) above.

3. Method

The design of SIM STRICT can be divided
into three broad areas: generic, schematic and
events. These in turn can be described as data
structures and related algorithms.

The event data structure and algorithm are
the event queue and the event manager
respectively. The event queue is used by the
simulation management algorithm for the
storage and subsequent retrieval of signal and
control information 'in the future', and to
step the simulation through time. A number of
possible methods can be used, such as linked
lists or rings. A simple linked queue method
was selected for ease of implementation on the
understanding that other methods could be
substituted as required.

3.1. The Data Structures

The schematic data structure contains com-
ponents (i.e. records) for each instantiation of
a functional, network or virtual block; for
each port on every block; and for each signal
passing between a pair of ports. A linked
structure (i.e. pointers) is used to configure
these components. This results in a threaded
structure with alternative paths to allow
efficient algorithms for both enquiry and
simulation to be used. Links are also used to
connect each schematic block to its associated
generic data structure (see below). When a
block is decomposed the data structure is
extended but the data components already
associated with the block being decomposed
are not removed. These remain integrated to
support behavioural comparison. Thus the
schematic data structure is dynamic. Its size
and structure is controlled by the degree of
decomposition requested by the user, while its
contents change as the simulation proceeds.
(See figure 2).

The generic data structure contains
behavioural descriptions for the block
instances in the schematic data structure. The
generic data structure is composed of a number
of separate behavioural descriptions called
generic blocks. Each of these generic blocks is
referenced (by a pointer) from the blocks in
the schematic structure. A generic block can
be used by more than one schematic block.

The generic data structure is designed to
support all the features of STRICT's intended
behaviour. A generic block is a linked structure
containing a number of expression lists re-
lating to the various clauses in STRICT's
intended behaviour section (see figure 3). The
expression lists are composed of stack
language statements in a coded form. A stack
language evaluator is used to process them

652 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/651/352922 by guest on 09 April 2024

Generic record

S H O R T N O T E S

Behaviour record

>' Generic port list
Name

Whenever list

Expression

r Function

Name

list

>' Expression

\ ' Select list

Expression

Set list

Assign After Within Until

Expressions

•< Pointer that must not have NIL value

•< Pointer that may have NIL value

Figure 3. Genetic data structure.

Behavoural
compare

f

Trace
process

)

Step
trace

process

1 f

External
data

process

1

Signal
propogate

Active
block

process

Failure

Command
processing

Go/step

Event
process

Event
queue
entry

File
control

Signal
deposite

Show

Figure 4. Simulator control flow.

and to support function calls. The generic
structures does not change during the simu-
lation, unlike the schematic data.

3.2. The Algorithm

Having considered the data structures and
some of the minor algorithms used in the
simulator, we can now discuss the simulation
management algorithm in detail. The primary
algorithm is event driven and is illustrated in
figure 4. This broadly consists of:

(i) Signal propagation through the network
blocks of the schematic structure, which results
in the activation of the target blocks. This is
assumed, at the moment, to be instantaneous.

(ii) Active block processing which accesses
the generic data structure to evaluate
behaviours and which may thus enter new
signal values into the event queue.

(iii) Event processing which steps the simu-
lation forward in time to the next block of
events and applies them to the output ports of
the blocks in the schematic structure.

(iv) Application of external data to ports in
the schematic data structure if required.

This asynchronous algorithm steps over
periods when there is no activity by obtaining
the current time from the event queue. The
propagation of signals through the schematic
data structure is such that only those function
blocks which might be affected are processed.

Behavioural comparison, when required, is
performed as follows: When signals arrive at a
decomposed block intended behaviour events
are scheduled and behaviour demons are
attached to the block. The signals are then
passed through into the block for the simu-
lation of its structure. The demons monitor
causal completion of guarded periods (i.e. U
in the model defined above) and can be
triggered by the subsequent arrival of another
signal. The output ports of a decomposed
block have states belonging to a finite set. The
action taken on the arrival of events, such as
signal assignments and intended behaviour
events, or the triggering of demons depends
on the current state of the target allocated
port. The states indicate what future events
are expected if the intended behaviour is to be
met.

3.3. Implementation

SIMSTRICT has been implemented in
PASCAL under VMS on a VAX/750. A
modular structure has been used to facilitate
modifications (e.g. replacing the event queue
manager).

The simulation manager has been described
above and is supported by a number of
interfaces:

A language interface gives information
about the behaviour and structure of the
design being simulated. This information is
derived from the STRICT language definition
of the design.

A command interface provides a route for
the user to drive the simulator. A compre-
hensive range of commands are provided
which allow the user to:
- Set up the simulation environment by de-

composing selected blocks and choosing
which signals to monitor.

- Deposit and examine signals.
- Display the schematic and generic data

structures.
- Control the operation of the simulator

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 653

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/651/352922 by guest on 09 April 2024

SHORT NOTES

A file interface provides facilities for com-
municating with text terminals and supports
files for:
- Logging the simulation run.
- Collecting output data for post processing.
- Supplying test data streams.
- Supplying command streams.
There is an optional format for input and
output files that is compatible with that used
by hardware test equipment. Simulation
results can thus be directly confirmed on the
fabricated design. Test data, as already stated,
can be generated by pseudo components
embedded in the design. This data can be
collected in test data file format so that the
STRICT language can be used as an in-
dependent test pattern generator for sub-
sequent SIMSTRICT runs.

SIMSTRICT has been implemented to
support processing in integrated interactive,
standalone interactive and standalone batch
modes. When integrated it is executed from
the SAGA language editor1 which forms the
core of the STRICT design system. In
standalone modes SIMSTRICT uses design
files generated by a previous run of the
language editor. It is used interactively for
initial exploration of the design. However,
large amounts of test data may be needed to
fully verify a design, so a standalone batch
model of operation is also provided. Com-
mand files can be used to execute predefined
command sequences in all modes. The com-
mand sequences used during all or part of an
interactive session can be stored and used to
reproduce an identical run on, for example, a
modified design.

4. Conclusions

SIMSTRICT is a powerful simulation tool for
VLSI circuit design. It is integrated with the
STRICT language and a fully automated
layout tool to provide a comprehensive design
environment not available elsewhere.

Many behavioural simulators are currently
available but SIMSTRICT offers features
which, for the first time, allow interactive
verification between levels of the design hi-
erarchy as part of a top-down philosophy.
Dynamic behavioural modelling, involving

demons attached to blocks and a finite state
algorithm, is used to provide behavioural
comparison. An interpretation function allows
the simulation model to be interactively
modified so that the boundaries of a
behavioural specification failure can be
explored.

Selective decomposition allows detailed
investigation of the design without the time
penalty of full decomposition. Incomplete
designs can be simulated so that SIMSTRICT
can cooperate in the stepwise refinement of a
design. Comprehensive command and file
interfaces support SIMSTRICT and give great
control over its operation and increase its
effectiveness.

Thus SIMSTRICT is able to act as a check
on the design process at an earlier stage than
other simulators.

4.1. Future Work

The development of SIMSTRICT will have to
keep pace with and play an active role in the
evolution of the STRICT language.

A prototype graphical display post pro-
cessor has already been written but fully
interactive graphics can be provided by the
development and integration of a graphics
interface.

The use of the simulator as an interactive
language debugger, similar to those used for
software programming languages, will en-
hance the system.

An intriguing use of SIMSTRICT is the
simulation of high level systems, such as local
area networks. The concept of interpretation
functions can be extended to include pro-
bability distributions and thus allow a form of
Monte Carlo simulation to be carried out.

5. Acknowledgements

The authors extend their thanks to their
colleges in the Newcastle VLSI design group
for their contributions to this work.

The work was carried out under UK Science
and Engineering Research Council funding. It
was started while A. P. Robson was a member
of the Department of Electrical and Electronic
Engineering, University of Newcastle upon

Tyne, and was continued collaboratively after
his move to the Department of Computing,
Newcastle upon Tyne Polytechnic.

A. P. ROBSON*J AND D. J. KINNIMENTt

* Department of Computing, Newcastle
upon Tyne Polytechnic, Ellison Building,
Newcastle upon Tyne, NE1 8ST.

t Department of Electronic and Electrical
Engineering, The University of Newcastle
upon Tyne.

| To whom correspondence should be
addressed.

References

1. R. H. Cambell and P.G.Richards,
SAGA: a system to automate the man-
agement of software production,
AFIPS50, 231-234 (1981).

2. R. H. Cambell, A. M. Koelmans and
M. R. McLauchlan, STRICT A Design
Language for Strongly Typed Recursive
Integrated Circuits, IEE Proc. 132, (E),
(I), no. 2 March/April 108-115 (1985).

3. S. E. Evanczuk, Getting Out of the Gate:
High Level Modelling in Circuit Design,
VLSI Design, Jan, 60-66 (1985).

4. A. M. Koelmans, M. R. McLauchlan
and A. P. Robson, The STRICT language
and Design Methodology, Proc. Elec-
tronics Design Automation Con/., 79-86
(1987).

5. D. R. Coelho, Behavioural Simulation a
Survey, Automated Design and Engin-
eering for Electronics - East, Proc. of
tech. sessions BOSTON, MA, USA, Oct,
88-94(1985).

6. D. Munns, A Hierarchical Mixed Mode
Simulator, Proc. Electronic Design Auto-
mation Conf., 573-578 (1987).

7. G. Barros, A Circuit Simulation Tutorial
VLSI Design, 110-120(1985).

8. Praxis Systems pic, The ELLA System
Overview (1985).

9. Plessey Semiconductors Ltd. Classic Ref-
erence Manual (1986).

10. GenRad Inc. HILO-3 Users Manual
(2522-0100) (1985).

Occupancy Models for the Estimation of Block
Accesses

Estimating the number of block accesses re-
quired to retrieve a set of records is an important
problem in the design and implementation of
data and knowledge systems. The models
underlying some of the proposed estimation
formulas are discussed as variations of oc-
cupancy problems, which have been extensively
discussed in the literature in probability and
statistics. Some additional properties of the
relevant distributions are presented. In addition,
an approach based on a sequential occupancy
problem is discussed. This approach, which
involves the estimation of the number of records
which will require the retrieval of a target
number of blocks, can be used to avoid the
estimation of block accesses in some situations.

Received November 1990, accepted November
1991

1. The block access estimation problem

The block access estimation problem involves
the estimation of the number of blocks that

must be accessed to retrieve a desired set of
records. This problem arises in the context of
query optimisation and physical database
design in information systems. More formally,
a set of A: records is to be retrieved from a file
of n records that has been divided into m
blocks. The blocking factor/) is equal to n/m\
p is usually assumed to be integral. The
number of blocks, b(m,p,k), that must be
accessed to retrieve the records is to be
estimated.

This problem has been addressed by a
number of authors, including Cardenas,4 Chan
and Niamar,5 Cheung,6 Christodoulakis,'9

Ijbema and Blanken,12 Luk,18 Maio, Scalas
and Tiberio,19 Palvia and March,25 Pezarro,2'
Waters,37"39 Whang, Wiederhold and Sag-
alowicz,40 VanderZanden, Taylor and
Bitton,35-36 Yao,4 1" Yue and Wong43 and
Zahorjan, Bell and Sevcik.44 Two primary
formulas for estimating the number of block
accesses have been proposed. In addition, a
number of variations and approximations
have been developed.

The first estimation formula for the expected
number of block accesses was presented

independently by Cardenas4 and Waters.38 It
is

b(m,p,k) = mI I — I 1

The second estimation formula is based
upon a different model of the block access
problem. This formula was presented inde-
pendently by Pezarro,2' Waters39 and
Yao.41-42 It is

b(m,p,k) = m

where d= 1 .
m

In both cases the problem is modelled as
one of selecting k records from m blocks. The
record distributions are assumed to be in-
dependent, and the blocks are assumed to be

654 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/651/352922 by guest on 09 April 2024

