
SHORT NOTES

29. Daniel R. Ries and Michael R. Stone-
braker, Locking granularity revisited,
ACM Transactions on Database Systems 4
(2), 210-227 (1979).

30. C. S. Roberts, Partial match retrieval via
the method of superimposed codes. Pro-
ceedings of the IEEE 67 (12), 1624-1642
(1979).

31. R. Sacks-Davis and K. Ramamohanarao,
A two level superimposed coding scheme
for partial match retrieval. Information
Systems 8 (4), 273-280 (1983).

32. M. Schkolnick and P. Tiberio, Estimating
the cost of updates in a relational data-
base. ACM Transactions on Database
Systems 10 (2), 163-179 (1985).

33. Kenneth F. Siler, A stochastic evaluation
model for database organizations in data
retrieval systems. Communications of the
ACM 19 (2), 84-95 (1976).

34. V. Siskind and J. Rosenhead, Seek times
for disc file processing: some results from

probability theory. The Computer Journal
19(4), 301-305 (1976).

35. Brad T. VanderZanden, Howard M.
Taylor and Dina Bitton, Estimating block
accesses when attributes are correlated.
Proceedings of the Twelfth International
Conference on Very Large Databases,
Kyoto, Japan, August 25-28, 1986, pp.
119-127.

36. Brad T. VanderZanden, Howard M.
Taylor and Dina Bitton, A general frame-
work for computing block accesses. In-
formation Systems 12 (2), 177-190 (1987).

37. S. J. Waters, File design fallacies. The
Computer Journal 15 (1), 1-4 (1972).

38. S. J. Waters, Estimating magnetic disc
seeks. The Computer Journals (I), 12-17
(1975).

39. S. J. Waters, Hit ratios. The Computer
Journal 19 (1), 21-24 (1976).

40. Kyu-Young Whang, Gio Wiederhold and
Daniel Sagalowicz, Estimating block ac-

cesses in database organizations: a closed
noniterative formula. Communications of
the ACM 26 (11), 940-944 (1983).

41. S. B. Yao, Tree structures construction
using key densities. A CM 75: Proceedings
of the Annual Conference of the Associ-
ation for Computing Machinery. 1975, pp
337-340.

42. S. B. Yao, Approximating block accesses
in database organizations. Communica-
tions of the ACM 20 (4), 260-261 (1977)

43. P. C. Yue and C. K. Wong, Storage cost
considerations in secondary index selec-
tion. International Journal of Computer
and Information Sciences 4 (4), 307-327
(1975).

44. John Zahorjan, Barbara J. Bell and Ken-
neth C. Sevcik, Estimating block transfers
when record access probabilities are non-
uniform. Information Processing Letters
16 (5), 249-252 (1983).

A Record-Oriented Cryptosystem for Database
Sharing

The encryption/decryption scheme proposed in8

is generalised in this paper. The new crypto-
system presented is record-oriented, i.e. each
record is encrypted integratedly with different
keys and each field is decrypted individually by
separate keys, and has significant advantages
over many conventional methods. Compared to
the encryption system proposed by Davida,
Wells, and Kam,8 this new system has the
advantages the previous one has and improves
two drawbacks of theirs which will be stated
below. Thus not only the security is increased
but also the storage needed is reduced in the new
cryptosystem.

Received August 1989, revised July 1990

1. Introduction

Generally, there are three methods for imple-
menting data security: (1) physical security;
(2) operating system security; and (3) data
encryption." Conventionally, people use physi-
cal security and operating system security to
implement database security.612 But it is not
satisfactory for the following two reasons: (I)
raw data exist in readable form inside a
database; (2) it does not guarantee what we
get from a database is the original data, which
means the original data may have been
modified by an intruder.

A database management system (DBMS) is
the main line of defence for constraining users
in traditional solution. By the use of current
software techniques, it is not sure that illegal
actions, such as Trojan horse programs,4 that
modify data can be avoided. Even hardware
write locks and secure-periods processing are
applied only to prevent unauthorised data
modifications. There is no escape from un-
authorised reading problems; however, read
problems are more serious than write problem
because read privileges are more frequently
used than write privileges.7 In the past decade,
we have depended too much on DBMSs. Even
if users are kept completely in legitimate
channels for accessing data, the DBMS can
lose raw data by omission, or the storage
media may be physically stolen. Since raw
data exist in readable form, the intruder can
penetrate the DBMS and get or modify the
data.

Although the encryption method cannot
make a database perfectly secure, it indeed
solves some problems which cannot be solved
by conventional methods. Encryption of data
can solve the previous two problems in the
following ways: (1) if data are not stored in
readable form, a cryptoanalyst cannot know
the message without proper decryption key(s);
(2) if a DBMS does not know the value of
data, the Trojan horse code does not work; (3)
data authentication problems are solved since
attackers cannot change the ciphertext without
knowing the encryption keys.251115

Davida, Wells and Kam8 have first proposed
an elegant cryptosystem named DWKC for
database security. DWKC was based on the
Chinese remainder theorem14 and was a new
milestone of database security implemen-
tation. However, this scheme has two draw-
backs which will be described in the next
section. This article proposes a generalised
cryptosystem to DWKC and solves the two
mentioned problems. The presented crypto-
system satisfies all requirements as DWKC
does and fits many desired properties listed in
Ref. 8. Our new cryptosystem appears in
Section 3. Thereafter we analyse the crypto-
complexity in Section 4.13 Finally, discussions
and conclusions are stated in the last section.

2. DWKC for Database Encryption

In 1981, a cryptosystem named DWKC for
database encryption was first proposed by
Davida, Wells and Kam.8 DWKC was based
upon the Chinese remainder theorem.14 Let X
be the ciphertext of an encrypted record, q, be
the decryption key for field / and there be n
fields in each record. The encryption procedure
is described mathematically by Formula (2.1).

et mi mod Q (2.1)

where Q = Yl"_, qt, mt is the value of field i, et
- (Q/ii) bt is the encryption key for field i,
and bt is the multiplicative inverse of Q/qt
with moduli qr The decryption can be done by
the following formula:

m, = Xmod qf (2.2)

that is, by conducting a modulo with q(to the
ciphertext X, each mt is revealed.

However, this scheme suffers drawbacks as
stated below. Let mf and m't be the values of

the ;th field of two different records R and R'.
From Equation (2.2), it is easy to see that
X—mt is a multiple of the decryption key q(,
i.e. X—mi = c1qt for some constant cv Be-
sides, if a user knows the other plaintext value
m\ and the corresponding ciphertext A", then
he can determine the read key </, by solving the
following simultaneous equations:

X-m, = .

and

where c2 is another constant. Thus qt can be
determined with high probabilities by com-
puting the GCD(A'-m(,A"-m;). To prevent
the above known-plaintext attack, each field is
then concatenated with a random redundancy
value x((each 32 bits or longer; larger
redundancy leads to more security) before
enciphering. Henceforth, the encryption pro-
cedure is replaced by Equation (2.3).

() modg (2.3)

where || indicates concatenation. On the oiner
hand, the decryption is modified as:

x, II m(= A'mod q, (2.4)

By discarding the random bits x(, one can get
the ith field value m,. Though this new
encryption (decryption) procedure increases
the difficulty of a known-plaintext attack, it
has a large storage overhead. In the next
section, we will propose a new cryptosystem to
solve the above problems.

3. A Proposed New Encryption System

A new encryption scheme for database security
is now proposed. The proposed cryptosystem
satisfies all of the required constraints for an
encryption mechanism.8 To illustrate the
scheme, we assume that there are n fields in
each record of a database. Let ml,m2,...,mn
be the n raw data fields of a record. Let the
decryption keys be (k,qt) for the ith field.
Essentially, the encryption process is to con-
vert the field values of a record into a ciphertext
form, say X, and later we can recover it to the
original raw field values by using the de-
cryption key. This encryption is done by the
following formula

658 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/658/352960 by guest on 10 April 2024

SHORT NOTES

x = (3.1)

where Nt = \m(qjk\ is a transformed version
of mv p , is the combination coefficient of Ni
and Q is a constant as described in Theorem 1
below.

Conceptually, for encryption, first each field
value m, is crushed to be Nf, then multiplied by
a mixing coefficient pt. Taking the summation
and finally a moduli, the ciphertext A1 of a
record is obtained. The diagram of encryption
scheme is shown in Fig. 1.

On the other hand, each field value mt can
be decrypted by the formula

m. = [X/q,\modk (3.2)

where f] means a ceiling operator and [j
denotes a floor operator, while the decryption
process is illustrated in Fig. 2.

We can now show that Formulas (3.1) and
(3.2) are correct.

Theorem 3.1

Let q1,q2,...,qn be pairwise relatively prime
numbers . Let mvm2, •••,mn and k be integers
satisfying

Then

<k

= S eAty

is the smallest constant such that [X/qt\ mod k
= mv where

0, = k n <7,, Q,b, = k (modkqt), N, = \mtq,/k]

n

for i " = l , 2 , . . . , n and Q = it FI q,

Proof

The proof is similar to that of Lemma 2.1 in
Ref. 3.

Let k, qt, mt, Nt, Qv bv and X be symbols as
stated in Theorem 3.1. Obviously, we have the
following result.

Theorem 3.2

Let mvm2, ..,mn be n field occurrences of a
record. Let Kt = {k, q) be the decryption key
for the ith field. Let Nt be the crushing
function for mt; pt = Q(b,, the combination
coefficients. Then both Formula (3.1) and
Formula (3.2) are the encryption and de-
cryption algorithms, respectively.

Example

Let ra, = 3, m2 = 2, and m3 = 5 be the three
fields of a record R on some database. Let AT,
= (11,13), AT, = (11,14), AT, = (11,15) be the
corresponding decryption keys of the three
fields and Q = 30030. Then /V, = 4, JV2 = 3,
N3 = 7 and pt = 16170, p2 = 27885, p3 =
16016. Therefore, we have ^ = (16170x4 +
27885 x 3+ 16016 x 7) mod 30030 = 20207.

On the contrary, the three fields can be
revealed correctly by using Equation (3.2.).

Clearly, if each record is encrypted by
applying different k values, the problem stated
previously as in Ref. 8 can be easily solved.

This will be shown in the next section. The
redundant bits appended in each field can be
eliminated. Thus not only the security is
increased but also the storage needed is
reduced.

4. The Crypto-complexity

One criterion for implementing the database
cryptosystem is crypto-complexity: the work
factor or the number of operations required to
break the cryptosystem by a cryptoanalyst.
Now, let us consider the crypto-complexity.
Our cryptosystem keeps Q, k, pt and qf as
secret keys. Trying to get Q, k and pt directly
from the equation

modg

appears to have very few possibilities indeed.
A possible approach is first to find out all q,'s
from the decrption algorithm with known
plaintext-ciphertext pairs as stated in DWKC.
Then it may be easier to determine Q, k and
/J,'S. Now, let us see how possible a known-
plaintext attack is if we use different encryption
keys, k's, for different records. Let X and X'
be the ciphertexts of two different records R
and R', respectively. If mt and m\ are fields in
R and R\ respectively, and both are known by
a cryptanalyst, then from Equation (3.2) he
has

[X/qt\ mod k = m, and [X'/qt\ mod k' = m\

imply

[X/qt\-mt = ^k and [X'/q^-m, = c2 k'

for some constants c1 and c2.
The above simultaneous equations have

three unknown variables, qt, k, and k'. Hence,
they have infinite possible solutions for qt. In
general, if / corresponding fields of / records
are known, there are (+ 1 unknown variables
to be determined with (simultaneous equa-
tions. It will be much more difficult for a
known-plaintext attack than that in Ref. 8.
Besides, the random redundancies concat-
enated in each field are eliminated and thus
our scheme significantly improves the storage
efficiency.

5. Discussions and Conclusions
We have proposed a generalised cryptosystem
which satisfies the required properties as listed
in Ref. 8 for protecting a database. It has
significant advantages over many conven-
tional methods. Basically, each encrypted
record is a ciphertext form over an integrated
record; i.e., a record-oriented. Meanwhile,
small changes made to the encrypted values
will cause significant changes to the decrypted
values, thus unauthorised modifications of
data can be prevented. Also pattern matching
attacks13 cannot work for an intruder. More-
over, because it encrypts all fields together, the
possibility of substituting attacks13 is elimi-
nated. A user can only read one field value
according to the corresponding privilege key
he has. It is not required that unnecessary
parts of the data be decrypted to satisfy a read
request.

Finally, let us discuss the problem of the
management of keys (k). Essentially, there are
three places to maintain these keys.

(1) We may append one field for k value in
each corresponding record and encipher the

. . .

Figure 1. Encryption.

1 ""2

Figure 2. Decryption.

entire record. The problem of this method is
how we can encipher k so that any authorised
users can reveal it freely.

(2) k's are managed by DBMS; that is,
users keep g('s privately and DBMS keeps k's
privately; the decryption of any field is
completed by DBMS and users cooperatively.

(3) fc'sare kept secretely by users; i.e. each
user has a decryption key pair (k, qt) to decrypt
one field; however, the only drawback is that
users may manage several keys.

C.H.LIN1, C.C.CHANG2 and R. C.T.
LEE1

•institute of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan
30043, R.O.C.
2 Institute of Computer Science and Infor-
mation Engineering, National Chung Cheng
University, Chiayi, Taiwan 62107, R.O.C.
(address for correspondence).

References
1. A. V. Aho, J. E. Hopcroft and J. D. Ull-

man, The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading,
Mass. (1974).

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 659

42-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/658/352960 by guest on 10 April 2024

SHORT NOTES

5.

S. Berhovitz, J. Kowalchuk and B. Shan-
ning, Implementing the public key
scheme. IEEE Communications Magazine
17 (3), 2-3 (1979).
C. C. Chang and C. H. Lin, A reciprocal
confluence tree unit and its applications.
BIT 30, 27-33(1990).
D. E. Denning, Cryptography and Data
Security. Addison-Wesley, Reading,
Mass. (1982).
W. Diffie and M. Hellman, New direc-
tions in cryptography. IEEE Transactions
on Information Theory IT-22 (6), 644-654
(1976).
G. I. Davida, D. J. Linton, C. R. Szelag
and D. L. Wells, Data base security. IEEE
Transactions on Software Engineering SE-
4(6) 531-533 (1978).

7. G. I. Davida and D. L. Wells, Micropro-
cessors and data encryption. Proceedings
of IEEE COMPCON Washington, D.C.,
154-159(1979).

8. G. I. Davida, D. L. Wells and J. B. Kam,
A database encryption system with sub-
keys. ACM Transactions on Database
Systems 6 (2) 312-328 (1981).

9. D. K. Hsiao, D. S. Kerr and S. E. Mad-
nick, Computer Security. Academic Press
Inc., ACM Monograph Series (1979).

10. J. Kam and J. D. Ullman, A model of
statistical database and their security.
ACM Transactions on Database Systems
2 (1), 1-10 (1979).

11. R. C. Merkle and M. E. Hellman, Hiding
information and signatures in trapdoor
knapsacks. IEEE Transactions on Infor-

mation Theory IT-24 (5), 525-530
(1978).

12. N. Minskey, Intentional resolution of pri-
vacy protection in database system. Com-
munications of the ACM 19 (3) 148-159
(1976).

13. K.H.Nam, Cryptographic models for
computer communications. Ph.D Disser-
tation, University of Southwestern
Louisiana (1985).

14. I. Niven and H. Zuckerman, Introduction
to the theory of numbers. Wiley, New
York (1966).

15. R. L. Rivest, A. Shamir and L. Adleman,
A method for obtaining digital signatures
and public-key cryptosystems. Commun-
ications of the ACM 21 (2), 120-126
(1978).

A Short Note on Perfectly Balanced Binary
Search Trees

We present a perfect balancing method for a
binary search tree. During the updates the
algorithm allows the structure to grow grace-
fully and maintains the optimal shape without
degeneration. The algorithm uses swapping as
the basic operation. Since the tree produced by
the algorithm is optimal it can favourably be
compared with that produced by other balancing
algorithms. In worst case situation, the al-
gorithm takes O(n) time, n being the total
number of nodes in the tree. This is an added
significance when it is compared with the static
optimal binary search trees.

Received September 1989, revised November
1990

1. Introduction

Studies on the construction and maintenance
of optimal binary search trees have received
considerable importance in computer science
literature. Knuth9 and Wirth13 describe
algorithms producing static optimal binary
trees. The complications involved in restoring
the optimal shape of a binary search tree
because of an update, lead to the formulations
of 'permissive balance'. Such balancing
strategies require only a little additional cost
for the three reorganization process. Of the
two balancing methods, global balancing
algorithms2-3-51012 require either a traversal
through the tree or a transformation of the
input tree into some other structure, while the
local balancing algorithms1811 keep the tree
within the predefined balancing limit. A recent
algorithm' produces a nearly optimal tree by
displacing the data in an 'inorder' fashion
until a vacant position is found in the lowest
level of the tree. In the next section we present
a strategy to create a perfectly balanced
(optimal) binary search tree.

2. The insertion algorithm

Perfect balancing requires that at each node of
the tree, the number of nodes in its left subtree
nd right subtree differs at most by one. Hence

perfectly balanced trees keep the optimal shape
and they have the best worst case time in the
tree operations. The standard tree data
structure with an additional field for storing
the number of nodes could be used to
implement the tree.

A subtree is defined as a heavy subtree if it
has a brother subtree having less number of
nodes. A perfectly balanced binary search tree

(a) Data to insert is say 'M'. Pivot node is 'C.
Number of nodes is 12.

After the first call (recursive). Data to insert
is 'F'. Stepping down one level.

(c) After the second stage of the call. Data to
insert is 'F'. Pivot is nil.

(d) After the third stage of call. Data to insert
is *D'.

Final tree. A new node is inserted.
Number of nodes is now 13.

Figure 1.

660 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/658/352960 by guest on 10 April 2024

