
SHORT NOTES

5.

S. Berhovitz, J. Kowalchuk and B. Shan-
ning, Implementing the public key
scheme. IEEE Communications Magazine
17 (3), 2-3 (1979).
C. C. Chang and C. H. Lin, A reciprocal
confluence tree unit and its applications.
BIT 30, 27-33(1990).
D. E. Denning, Cryptography and Data
Security. Addison-Wesley, Reading,
Mass. (1982).
W. Diffie and M. Hellman, New direc-
tions in cryptography. IEEE Transactions
on Information Theory IT-22 (6), 644-654
(1976).
G. I. Davida, D. J. Linton, C. R. Szelag
and D. L. Wells, Data base security. IEEE
Transactions on Software Engineering SE-
4(6) 531-533 (1978).

7. G. I. Davida and D. L. Wells, Micropro-
cessors and data encryption. Proceedings
of IEEE COMPCON Washington, D.C.,
154-159(1979).

8. G. I. Davida, D. L. Wells and J. B. Kam,
A database encryption system with sub-
keys. ACM Transactions on Database
Systems 6 (2) 312-328 (1981).

9. D. K. Hsiao, D. S. Kerr and S. E. Mad-
nick, Computer Security. Academic Press
Inc., ACM Monograph Series (1979).

10. J. Kam and J. D. Ullman, A model of
statistical database and their security.
ACM Transactions on Database Systems
2 (1), 1-10 (1979).

11. R. C. Merkle and M. E. Hellman, Hiding
information and signatures in trapdoor
knapsacks. IEEE Transactions on Infor-

mation Theory IT-24 (5), 525-530
(1978).

12. N. Minskey, Intentional resolution of pri-
vacy protection in database system. Com-
munications of the ACM 19 (3) 148-159
(1976).

13. K.H.Nam, Cryptographic models for
computer communications. Ph.D Disser-
tation, University of Southwestern
Louisiana (1985).

14. I. Niven and H. Zuckerman, Introduction
to the theory of numbers. Wiley, New
York (1966).

15. R. L. Rivest, A. Shamir and L. Adleman,
A method for obtaining digital signatures
and public-key cryptosystems. Commun-
ications of the ACM 21 (2), 120-126
(1978).

A Short Note on Perfectly Balanced Binary
Search Trees

We present a perfect balancing method for a
binary search tree. During the updates the
algorithm allows the structure to grow grace-
fully and maintains the optimal shape without
degeneration. The algorithm uses swapping as
the basic operation. Since the tree produced by
the algorithm is optimal it can favourably be
compared with that produced by other balancing
algorithms. In worst case situation, the al-
gorithm takes O(n) time, n being the total
number of nodes in the tree. This is an added
significance when it is compared with the static
optimal binary search trees.

Received September 1989, revised November
1990

1. Introduction

Studies on the construction and maintenance
of optimal binary search trees have received
considerable importance in computer science
literature. Knuth9 and Wirth13 describe
algorithms producing static optimal binary
trees. The complications involved in restoring
the optimal shape of a binary search tree
because of an update, lead to the formulations
of 'permissive balance'. Such balancing
strategies require only a little additional cost
for the three reorganization process. Of the
two balancing methods, global balancing
algorithms2-3-51012 require either a traversal
through the tree or a transformation of the
input tree into some other structure, while the
local balancing algorithms1811 keep the tree
within the predefined balancing limit. A recent
algorithm' produces a nearly optimal tree by
displacing the data in an 'inorder' fashion
until a vacant position is found in the lowest
level of the tree. In the next section we present
a strategy to create a perfectly balanced
(optimal) binary search tree.

2. The insertion algorithm

Perfect balancing requires that at each node of
the tree, the number of nodes in its left subtree
nd right subtree differs at most by one. Hence

perfectly balanced trees keep the optimal shape
and they have the best worst case time in the
tree operations. The standard tree data
structure with an additional field for storing
the number of nodes could be used to
implement the tree.

A subtree is defined as a heavy subtree if it
has a brother subtree having less number of
nodes. A perfectly balanced binary search tree

(a) Data to insert is say 'M'. Pivot node is 'C.
Number of nodes is 12.

After the first call (recursive). Data to insert
is 'F'. Stepping down one level.

(c) After the second stage of the call. Data to
insert is 'F'. Pivot is nil.

(d) After the third stage of call. Data to insert
is *D'.

Final tree. A new node is inserted.
Number of nodes is now 13.

Figure 1.

660 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/660/352970 by guest on 05 April 2024



SHORT NOTES

procedure insert (var t: tree; var newdata: typedata); {This procedure
inserts a new node into an optimal binary search tree. The function
Wt(t) returns t"-weight if t is not null else O. Previous is a variable.}

begin
if t = nil then {create a new node}
begin

new(t);
begin
t" • data = newdata; t" • left, t" • right •= nil; t~ • weight = 1

end;
end
else
begin

previous — t" • data;
if newdata < t" • data then
begin

if wt(t" • left)-wt(t" • right) > 0 then {left imbalance}
begin

pivot •= t" • right;
searchl(t, newdata, previous);
insert(t" • right, newdata);

end
else {No imbalancing}
insert(t" • left, newdata);

end
else if newdata > t" • data then
begin

if wt(t" • left)-wt(t" • right) > = 0 then {no imbalancing}
insert (t" • right, newdata)

else {right imbalance}
begin

pivot == t*-left;
search2(t, newdata, previous);
insert (t'left, newdata)

end;
end
else write ('ERROR');
{Update the weights}
t" • weight •= wt(t" • left) + wt(t" • right) + 1;

end
end;

Figure 2. Insertion algorithm.

procedure search 1 {var t: tree; var newdata: typedata; previous:
typedata);

begin
if t < > nil then

begin
if newdata < t" • data then
begin

previous = t" • data;
searchl(t"left, newdata, previous);

end
else
if (newdata > t"-data) and (newdata < previous) then
begin

previous = t" • data;
search 1 (t"-right, newdata previous)

end;
swapl(t, newdata)

end;
end;

procedure swap 1 (var t:tree; var newdata: typedata);
var

tempdata: typedata;
begin

if (t < > nil) then if (t < > pivot) and (newdata < t" • data) then
begin

swap l(t"-left, newdata);
begin

if newdata < t" • data then
begin

tempdata = t'-data;
t" • data = newdata;
newdata •= tempdata;

end
end;

swapl(t"-right, newdata);
end

end;

Figure 3. (a) The searchl algorithm, (b) swapl algorithm. swapl
is the reverse operation of swapl.

Table 1

Algorithm AVL BB(a) Gonnet Gerasch Ours

Balance

Extra space
Run time (worst)
Worst Ht:

Height

O(n)
O(logsn)
1.447/.

Weight

O(n)
O(log2n)
2Hn

<pl

Oin)
0{n)
\MHn

Nearly
optimal
0{n)
O(n)
Hn

Optimal

O(n)
O(n)
Hn

is out of balance if we insert a node in a heavy
subtree. The insertion algorithm ensures that
at each node of the tree the number of nodes
in its left subtree and right subtree differs at
most by one.

The algorithm invokes the balancing actions
only when the datum to be inserted has a
tendency to force the tree to be out of balance.
In this situation the root node of the brother
subtree of the heavy subtree is set as the pivot
node. Then the search procedure is invoked
which in turn activates the swap procedure for
achieving the data displacement in an' inorder'
fashion. This cascading of data displacements
terminate when the excess datum is pulled out
from the heavy subtree. Then the insert
procedure is called at the pivot node for
inserting the pulled out datum from the heavy

subtree and continue the process until a
proper place is found to accommodate the
newly displaced datum. Now a new node is
created to store this latest pulled-out datum.
The process is illustrated in Fig. 1.

The code for the insertion algorithm is
given in Fig. 2. The counter 'weight' is the
major factor to decide whether to invoke the
balancing actions or to go down to the next
level. The counter in each node of the path
from the root to the newly inserted node is
updated in each insertion. For convenience we
use the function wt(t) which returns O if tree /
is null otherwise t". weight. The procedure
searchl is given in Fig. 3 along with swap\
procedure, searchl differs from searchl by
its initial checking and the usage of swapl.
swap 2 permits a reverse operation of swap\.

3. Performance analysis

Since the algorithm maintains a counter at
each node of the tree, the additional space
required is Oin). This space requirement can
be reduced to O(ri) bits by using a bit flag
showing the difference of the number of nodes
in the left and right subtrees of the nodes.
Thus the space requirement is comparable to
that of GeraschV algorithm.

The running time of the algorithm is directly
related to the number of calls of the procedure
insert and the operation of swapping. The
worst case time of the algorithm is linear with
the number of nodes in the tree. The value of
the new datum controls the swapping process.
Thus the performance of the algorithm is
determined by the position of the new datum

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 661

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/660/352970 by guest on 05 April 2024



SHORT NOTES

Performance of the algorithm (Average)

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0
0.2 0.4 0.6

(Thousands)
0.8

Figure 4. Number of nodes: • swapping; + number of nodes;
nodes).

O log (number of

in the tree. During the insertion process, the
number of swapping required to insert a node
at level /,(0=£/s£A)> is n-2n-il'l)-\, h =
Ilog2(«+ 1)J. Gerasch's algorithm7 produces a
nearly optimal tree with swapping as the basic
operation. In this algorithm7 imbalancing
occurs at a node P if a subtree of P has more
number of complete levels than the other
subtree of P. In this case, P becomes the pivot
node for rebalancing and keys are displaced in
an 'inorder' fashion to make room for the
new key. The key that is displaced out of the
subtree of P replaces the key in P that in turn
becomes the key to insert into the other
subtree of P in order to complete the ap-
propriate incomplete level of the subtree.
Therefore for trees with nodes just above 2*,
for any k, Gerasch's algorithm runs
approximately in logarithmic time. In a similar
situation the present algorithm runs in linear
time as a consequence of the strict balancing
condition for maintaining the optimal shape.
In average situations, the algorithm runs in
between logarithmic and linear with the
number of nodes in the tree. Empirical studies
of the present algorithm reveal that the
performance of the algorithm in average
situation is close to log2 («) (Fig. 4). Since the
optimal shape is maintained through a series

of local rearrangements, in average situations
the tree reorganisation is limited to local
changes.

4. Conclusion

We have presented a strategy to create an
optimal binary search tree. Using swapping as
the basic operation, the algorithm dynamically
keeps the tree optimal during the updates. In
worst case situations, the number of swappings
during a single insertion is at most n, where n
is the number of nodes in the tree. Hence the
algorithm is significant while considering the
static optimal binary search trees.

Acknowledgement
The authors are thankful to the referee for his
valuable suggestions which improved the
earlier version of this paper. One of the
authors(APK) is grateful to the University
Grants Commission(INDIA) for providing a
research fellowship to carry out this research
work.

A. P. KORAH and M. R. KAIMAL
Department of Computer Science,
University of Kerala,
Trivandrum, India 695 034

References

1. G. M. Adel'son-vel'skii and E. M.
Landis, An algorithm for the organization
of information. Dokl. Akad. Naak, USSR
146 (2), 263-266 (1962).

2. J. L. Bently, Multidimensional binary
search tree used for associative searching,
Communications of the ACM 18 (9)
509-517 (1975).

3. H. Chang and S. S. Iyangar, Efficient
algorithms to globally balance a binary
search tree. Communications of the ACM
27 (7), 695-702 (1984).

4. J. Culberson and J. I. Munro, Explaining
the behaviour of binary search trees under
prolonged updates: A model and
simulations. The Computer Journal 32 (1),
68-75 (1989).

5. A. C. Day, Balancing a binary tree. The
Computer Journal 19 (4), 360-361 (1976).

6. J. L. Eppinger, An empirical study of
insertion and deletion in binary trees.
Communications ofthe ACM 26(9) (1983).

7. T. E. Gerasch, An insertion algorithm for
a minimal internal path length binary
search tree. Communications of the ACM
31 (5), 579-585 (1988).

8. G. H. Gonnet, Balancing binary tree by
internal path reduction. Communications
of the ACM 26 (12), 1074-1081 (1983).

9. D. E. Knuth, The Art of Computer pro-
gramming, vol. 3 Sorting and Searching,
Addison-Wesley, Reading Massachusetts
(1973).

10. W. A. Martin and D. N. Ness, Optimal
binary trees grown with a sorting al-
gorithm. Communications of the ACM 15
(2), 88-93 (1972).

11. J. Nievergelt and E. N. Reingold, Binary
search trees of bounded balance. SIAM
Journal of Computing 2 (1), 33-43 (1973).

12. Q. F. Stout and B. L. Warren, Tree
rebalancing in optimal time and space.
Communications of the ACM 29 (9),
902-908 (1988).

13. N. Wirth, Algorithms + Data structures =
Programs. Prentice Hall of India, New
Delhi (1988).

On Equivalent Systolic Designs of LU De-
composition and Its Algebraic Representation

Algorithms which are to be mapped onto
interconnecting processing elements in order to
design a systolic array are conventionally
represented by graphs or networks. This paper
introduces the concept of algebraic represen-
tation and uses a generating function to rep-
resent a systolic array.

Received May 1989, revised September 1989

1. Introduction

Conventional design of systolic arrays is based
on the mapping of an algorithm onto an
interconnection of processing elements. These
algorithms are typically described by graphs
or networks, where nodes represent processing
elements or registers and edges represent
interconnections. Although for many purposes
these conventional representations are ad-
equate for specifying the VLSI algorithm, the

algebraic representation is more suitable for
supporting formal manipulation on designs
than the graphic or network models.

Space-time recursion equations of parallel
algorithm can be naturally represented by an
algebraic representation. In this paper we use
a generating function to represent a systolk
array. It adapts the power series notation to a
more algebraic form to aid the specification
and design of systolic array. It also provides a
global view on the data-interacting activity of
a systolic array. Using a generating function
as an algebraic representation of a systolic
array, properties of linear algebra, such as
velocity addition, can be applied to derive
different but equivalent designs of a systolic
array.

2. Generating function and systolic flow

The proposed generating function2910 as an
algebraic notation for representing a systolic
design consists of a collection of data streams.
A 'data stream' represents the moving path
of a data item, including the relation between

the space coordinates of the data item and
time. It can be considered as a moving path
of a particle in kinetics. A data stream B can
be represented by the following generating
function:

where X, Y, Z are the space axes, r is the time
axis, and b is the data item name of the data
stream B. Data item b locates at space (/'(/),
//)> *(')) at time t. Let B(l) denote
bX<m )"«>Zt(V. Implicitly, data item b of B(t)
carries a value which depends on t, but what
we are concerned with here is just the position
vector (i{t), j(t), k(t)) of the moving data item
at time t, not how its value is modified in each
PE, hence we only use the data item name b,
not its value, to represent the data stream in
the following discussion.

If data item b moves with constant velocity
V = Aix + Ayy + A&z from the beginning posi-
tion (/(0), T(0), k(0)), where x,y,z are unit

662 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/35/6/660/352970 by guest on 05 April 2024




