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The two-dimensional method of Langdon and Rissanen for compression of black and white images is
extended to handle the exact lossless compression of grey-scale images. Neighbouring pixel values are
used to define contexts and probabilities associated with these contexts are used to compress the image.
The problem of restricting the number of contexts, both to limit the storage requirements and to be able
to obtain sufficient data to generate meaningful probabilities, is addressed. Investigations on a variety of
images are carried out using the JPEG lossless mode predictors. Results indicate that a one pass
arithmetic encoder using restricted contexts can lead to effective lossless image compression algorithms.
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1. INTRODUCTION

Recent interest in arithmetic encoding has encouraged a
clear separation between the model for representing data
and the encoding of information with respect to that
model and has led to a new paradigm for the develop-
ment of data compression algorithms [10]. With this
paradigm, new algorithms are developed by concentrat-
ing on effective ways of modelling the data. In the area
of text compression and universal data compression,
variable-order Markov models usually form the basis of
state-of-the-art data compression schemes [2]. We have
applied this paradigm to the problem of exact compres-
sion of digital image data and in this paper we present
a technique which makes it possible to build very
complex models without requiring exorbitant amounts
of memory.

Since image data is often voluminous, compression
schemes which seek to reduce the volume of data
considerably at the expense of absolute picture fidelity
have been popular. These schemes are called lossy,
inexact or noisy schemes as opposed to lossless or exact
compression schemes which allow the original data to
be recovered without errors. The main advantage of
lossy schemes is that they provide better compression
ratios by discarding some picture information, while at
the same time retaining enough picture information to
reconstruct a picture which is similar visually to the
original. A great deal of time and effort has been invested
in such schemes, particularly for applications which are
bandwidth-limited such as teleconferencing and faxsimile
transmission.

In 1990 a number of standards for lossy image com-
pression emerged. The JPEG standard was proposed for
encoding still-frame multilevel colour digital images [9].
The MPEG standard covers the transmission of moving
images and also addresses the problem of synchroniza-
tion of audio information with video information [4].
In December 1990 the px64 standard was adopted for
transmission of video services using ISDN (Integrated

Services Digital Network) channels [5]. The potential
value of these video compression standards can be seen
by the fact that some companies were prepared to
implement the techniques in the JPEG standard in
hardware, while the standard was still in the draft
proposal stage.

We have chosen to concentrate on lossless schemes
since we are primarily interested in modelling the data
accurately. In the case of lossy schemes, such as JPEG,
the image data is transformed so that it is easier to
identify information which can be discarded without
greatly affecting image quality. A lossy scheme may
achieve further compaction by representing the
remaining information inexactly. However, every lossy
scheme must at some point reduce the image data to a
sequence of symbols which is coded exactly. At this stage
techniques developed for lossless schemes can be applied
to lossy schemes. Our interest in exact schemes has also
been motivated by two main concerns:

1. Research into the structured information content of
digital pictures offers potential application to image
processing techniques such as noise-reduction, edge
detection and segmentation;

2. Archival storage of images in application areas where
exact reproducibility of the data is important. If it is
extremely expensive to capture the images in the first
place, or if the analysis of the image data is a critical
process, we should expect to be concerned about
preserving that data exactly when storing it in com-
pressed form. Possible examples are satellite images,
reconnaissance images, medical images and images
from deep space probes.

Our work has concentrated initially on grey-scale
images but we believe it generalizes naturally to multi-
spectral data, video sequences and colour images.

2. EXACT GREY-SCALE IMAGE
COMPRESSION

We wish to compress grey-scale digital images for which
the data values can be represented as a two dimensional
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array of values, consisting of r rows of ¢ columns of
picture elements (pixels). The pixel values are regarded
as small integers in the range 0 to 2°, 4<b <16, ie. 16
to 65,536 intensity levels. b =8, i.e. 256 intensity levels,
is common and has been assumed in many of the
examples in this paper. Grey-scale images generally
range in size from a quarter million to many million
pixels: we are particularly concerned with the larger
images. Images are most commonly stored by rows. If a
compressed image has been stored by rows, then when
that image is compressed, information from previous
rows and from previous columns in the current row is
available to both the encoder and decoder to help in
effective compression.

Differential Pulse Code Modulation (DPCM) uses
information from these pixels to predict a value for the
next pixel to be encoded [6]. Since the decoder has the
same information available, it can reconstruct the pre-
dicted value, so the encoder needs only to transmit the
difference between the actual and predicted picture
values. The distribution for the prediction errors is often
a highly skewed distribution. Variable length codewords
or arithmetic coding can thus be used to encode the
prediction errors efficiently.

We find it convenient to refer to the location of pixels
relative to the current pixel by using compass notation
as illustrated by Figure 1. CP denotes the current pixel.
Thus, the W pixel is immediately to the left in the
current row, the N pixel is immediately above, and so on.

The JPEG standard specifies a baseline method for
the lossy compression of images. This baseline method
is based on the Discrete Cosine Transform (DCT). The
DCT can be used as the basis of a method for lossless
compression but the JPEG committee chose not to do
this, as the DCT involves floating point arithmetic. This
means that a guarantee that images could be recovered
without any errors while using the DCT requires the
nature of the floating point arithmetic used by both the
encoder and decoder to be strictly defined. To accom-
modate lossless compression the JPEG standard specifies
methods which use DPCM. Table 1 lists the predictors
specified by the JPEG standard.

In our work we aim at achieving the best possible
compression and so we are prepared to consider schemes
which might be quite computationally expensive. If

NNW NN NNE
WNW NwW N NE
ww w Ccp

FIGURE 1. Referring to pixels relative to the current pixel (CP).

TABLE 1. Predictors used in JPEG’s lossless mode

Mode Mode
0 Null 4 N+ W -—-NW
1 W 5 W+ (N —NW)/2
2 N 6 N+ (W —NW)/2
3 NW 7 (N + W)/2

highly efficient implementations are required, some algo-
rithm complexity and compression efficiency could be
sacrificed to achieve this. Most work in DPCM has
concentrated on predictors which are easy to compute,
such as predictors which use linear combinations of past
pixel values, since the emphasis seems to have been on
algorithms which could be implemented efficiently in
hardware. Our approach has been influenced by develop-
ments in text compression where knowledge of the most
recently encountered symbols is used to derive probabil-
ity estimates for the likelihood that the current symbol
will assume a particular value.

Langdon and Rissanen have adopted a similar
approach in the compression of bilevel images (images
whose pixels take only two values), either black or white
[3]. Their methods are context-based in that they classify
the environment of the current pixel depending on the
values of pixels which have already been encountered.
Langdon and Rissanen showed their approach could
compress the eight CCITT test documents 20-30%
better than existing algorithms. Arps et al. describe a
VLSI implementation of Langdon and Rissanen’s
method for compressing bilevel images and report that
their algorithm achieves about 20% better compression
than the CCITT algorithm on the CCITT document
test set, for which the CCITT algorithm had been
explicitly optimized [1]. On bilevel image data the new
algorithm performed 2.0 to 4.5 times better than the
CCITT algorithm.

The Langdon and Rissanen approach to compressing
binary images has been extended by Todd et al. to
multilevel images [8]. Values from neighbouring pixels
are used to predict the value of the current pixel. The
prediction error is then encoded. For convenience we
term this algorithm as TLR (for Todd, Langdon and
Rissanen). TLR is a two pass algorithm. In the first pass
the distribution of prediction errors for a given predictor
is determined. Error values are partitioned into a number
of classes having approximately the same number of
observations. The error classes of the neighbours of the
current pixel define a context which is used to select a
model for encoding the prediction error for the current
pixel. If there are n classes and m neighbouring pixels
then there are n™ contexts. A prediction error is encoded
by specifying which error class the prediction error was
in, and what value within that error class the prediction
error took. Depending on the neighbouring pixels, one
of n™ contexts is used to provide a model for encoding
the error class for the prediction error of the current
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pixel. To save on memory space, it is assumed that a
single model can be used to describe the value for a
prediction error within an error class, irrespective of
the context.

If the pixel values are in the range 0 to 255 inclusive,
the prediction errors are in the range —255 to 255. If
we use five error classes and three neighbours then we
have 5° contexts with five probabilities required per
context, plus 511 probabilities to determine the error
within the error class, so we need to maintain
n™*1 4+ 511 =1136 parameters for the model. Todd
et al. also considered 11 error classes. In this case the
model requires 15,152 parameters. They presented results
on six images for five choices of predictor and for both
five and 11 error classes. These results suggested that
TLR was an effective image compression scheme and
that the most suitable number of error classes was 11.
It is difficult to draw conclusions as to how effective
TLR is from this work because of the fact that there is
no agreed set of standard test images on which to base
comparisons with different algorithms.

3. CONTEXT MODELLING FOR IMAGE
COMPRESSION

Our intention was to generalize the work of Todd et al.
[8]. They had been particularly concerned with reducing
the number of parameters required for a context-based
model. With the progress of technology, memory require-
ments are becoming less important constraints on algo-
rithms. We are interested in investigating improvements
in compression obtained when very large numbers of
contexts are used.

Contexts are patterns of neighbouring pixels, where
these pixels are in that part of the image which has
already been encoded and would therefore be known to
the decoder at the time the current pixel needs to be
decoded. The context approach is intuitively appealing.
If large prediction errors have occurred in the neigh-
bouring pixels then it is natural to expect that large
errors are more likely to occur in the predicted value of
the current pixel. On the other hand, when we have
been able to predict the neighbouring pixel values either
exactly or with small errors, we should assume that we
are in some region of the picture where the intensity is
changing in a regular manner and we shall be able to
predict the value of the current pixel accurately. Todd
et al. observed that large prediction errors are often
related to the presence of edges in the picture, abrupt
changes in intensity that invalidate the assumptions of
smoothly changing values that were used to derive the
predictor formulas. It was this observation that motiv-
ated their choice of the prediction error in neighbouring
pixels as the means of characterizing the context of the
current pixel.

There are two main drawbacks in using a large
number of contexts. The first is the amount of storage
required for the large number of contexts. If we wish to

distinguish n contexts as well as a different probability
model for each context, we need n times as much storage
as for a single model. Todd et al. reduce the amount of
storage by assuming that the probability model associ-
ated with a context can be broken into two parts, one
part being shared amongst all contexts [5]. We have
developed a different means to reduce the amount of
storage required for a probability model.

The second drawback is that we expect a start-up
overhead to be associated with any probability model
for a context. This start-up overhead will become more
significant if we have more contexts. For example, if we
have 1000 observations for one context, then the statistics
associated with the model for that context may have
reached a reasonably steady state. If those observations
are spread over a large number of contexts, say 250,
then we may, on average, have only four observations
per context and that model may not have changed much
from its initial state. The single context model should
therefore be capable of better performance on smaller
numbers of observations whereas the model with many
contexts would require many more observations before
enough have accumulated for each context. The same
problem occurs with the use of high-order Markov
models in universal compression. Cleary and Witten use
overlapping models to overcome problems associated
with the start-up phase [2]. Low order models are more
effective for small number of observations than higher
order models, so low order models are used in preference
to higher order models until enough observations have
accumulated. We have used a similar approach with
context-based image compression.

3.1. Reducing storage requirements

We have investigated how context-based image compres-
sion is affected by using a large number of contexts. We
considered as many as tens or hundreds of thousands of
contexts. If the model associated with each context was
stored in full it would require 256 probability estimates
and each context would require from at least 0.25 kbytes
to many kbytes.

One way to reduce storage requirements is to maintain
a cache of the most commonly occurring contexts.
Infrequently occurring contexts can be cached out and
the storage space re-used. One such approach is
described in Tischer [7].

Another approach is to approximate the prediction
error distribution with some distribution which can be
described using a small number of parameters. There is
a trade-off involved: an approximation to the distribu-
tion may lead to less compression but reduced storage
costs may mean that more contexts can be used and the
greater number of contexts might lead to better compres-
sion performance overall. Possible choices for such dis-
tributions are the normal distribution and Laplacian
distribution [6]. Although this approach may greatly
reduce the amount of storage, a disadvantage is the
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computational effort required to generate probability
estimates from the parameters of a distribution in a way
which is compatible with the requirements of an arith-
metic encoder.

The approach we have been exploring is extremely
easy to implement and to interface with an arithmetic
encoder. It also allows more efficient decompression.
Given an n bit prediction error we can choose to regard
this as n independent observations of a binary variable
and to encode each bit separately. For a given context,
we can maintain an overall frequency count for that
context and counts for how often each of the n bits is
set. Thus, n+ 1 frequency counts are required. The
probability that a particular bit is set can be approxi-
mated by the observed frequency that the bit was set
divided by the observed frequency for the context. The
frequency counts themselves may be held in byte quantit-
ies. The probability that the prediction error will take a
particular prediction value will be the product of the
probabilities the model predicts for each of the bits in
the representation. For 8 bit data, this product of
probabilities can be the ratio of two 64 bit numbers, so
using a byte to represent the frequency counts can store
probabilities as accurately as if a 64 bit frequency count
was kept for each possible prediction error value.

We refer to this way of economizing storage for a
context as the bit plane approach. It has the advantage
of requiring an amount of storage which is related to
the logarithm of the number of values we might wish to
encode. This approach is therefore particularly well
suited to applications where pixels have more than 8 bits.
A bit plane representation may not provide as accurate
an approximation to the probability distribution of the
prediction errors in a given context as a method which
retains individual frequency counts, but it requires so
little storage per context (9 bytes typically) that we can
use many more contexts. A further advantage of the bit-
plane approach is that the arithmetic decoder need only
make one decision in determining whether the encoded
symbol was a 1 or a 0. In the general case where the
encoding alphabet takes 2° possibilities, the decoder
might need to make as many as b decisions in determin-
ing the identity of the current symbol. Thus encoding
and decoding on a bit-by-bit basis should lead to simpler
and quicker arithmetic decoders which might be easier
to implement in hardware.

3.2. Updating the probability model

Suppose our picture has 8 bit pixels so the prediction
errors are in the range —255, ..., 255. In the absence of
any prior information to the contrary a model might be
initialized by assuming each prediction error can occur
with probability 1/511. An arithmetic encoder can
encode a symbol which is expected to occur with probab-
ility p in very close to —log, p; bits. A common scheme
for allowing the probability estimates to change in
response to the stream of symbols which have been

encoded would reflect this initial assignment of probabil-
ities by giving each symbol a frequency count of 1, so
the total for all frequency counts would be 511. Each
time a prediction error is encoded, its frequency count
would be incremented and the overall frequency count
would be incremented. Whenever the symbol occurs, the
probability used to encode that symbol would be
the ratio of its frequency count to the overall frequency
count.

This method of generating probability estimates
adapts to the nature of the source of symbols and is
widely used in universal data compression schemes.
When modelling grey-scale image data, we have prior
knowledge about the source of the data which enables
us to develop probability update schemes which adapt
more quickly to the nature of the prediction errors. With
grey-scale images we expect that the intensities will
generally change smoothly. Thus if we observe a predic-
tion error of —1, we would expect prediction errors
which are close to —1 would be more likely to occur
than prediction errors very different from —1. The
general probability estimate update scheme outlined
earlier increases the probability estimate for the symbol
which has just occurred but decreases the probability
estimates for all other symbols by n/(n + 1) where n is
the total frequency count, not including the current
symbol. Thus if the current prediction error is 0, the
general updating scheme would decrease its probability
estimates for —1 and 1 by the same ratio as it would
decrease the probability estimates for very large predic-
tion errors like —255 and 255. A desirable property for
probability estimate update schemes for grey-scale image
compression is that when a particular prediction error
value occurs, values which are close to the observed
value have their probability estimates raised depending
on their nearness to the observed value and values which
are distant from the observed value have their probabilit-
ies lowered. We term this the locality of the update
process.

3.3. Gray-coded bit plane approach

As outlined earlier the bit plane approach enables us to
save a lot of space in storing a model for a context. A
question which arises is how well the bit plane approach
performs with respect to updating the probability estim-
ates. In encoding prediction errors for 8 bit pixels the
prediction error will be in the range —255, ..., 255, which
requires 9 bits. However, if we regard the 256 prediction
values as being arranged in a circle with 255 adjacent
to 0 then any value is at most 255 positions away from
any other value and the prediction error can actually be
encoded in 8 bits. Thus in our discussions on the locality
of updating the bit plane approach we shall be assuming
the use of 8 bit prediction errors.

Suppose our model has been initialized with the
assumption that all values are equally likely and occur
with probability 1/256. Suppose also that the first predic-
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tion error is 0. Using the bit plane approach the initial
state for the model would be that each bit has a 1/2
chance of being set. If 0 has occurred first, we can update
the probability of a particular bit’s being set to 1/3. Thus
if the next prediction error is also zero, that value will
be encoded in 8 x —log,(2/3) = 4.680 bits. Values with
exactly 1 bit set like 1, 2, 4, etc. will be encoded in
7 x —log,(2/3) —log,(1/3) = 5.680 bits. Values with few
bits set have their probabilities raised and are encoded
in fewer bits while those with more than 4 bits set have
their probability estimates lowered and take more bits
to encode.

If the conventional updating scheme used in universal
data compression were applied, the encoding for a
prediction error of 0 would require —log,(2/257)=
7.006 bits while every other value would be encoded in
—log,(1/257) = 8.006 bits. Thus, the effect of the update
strategy on the bit plane case is to increase the probabil-
ity estimates of other values which are close to the value
which was updated while the conventional scheme lowers
the probability estimates for all intensity values for the
context other than the one which occurred.

The locality properties of updating the bit plane
representation are not optimal. For example, if we
represent —1 as a two’s complement number, its repres-
entation will have all bits set and its probability in the
situation we have been considering will be changed to
8 x —log,(1/3) = 12.68 bits. Thus we have the undesir-
able property that a prediction error of 0 will cause us
to believe that the probability of a prediction error of 1,
2, 3 or 4 will also rise but that at the same time the
likelihood of a prediction error of —4, —3, —2 or —1
will fall dramatically. In order to improve the grey-scale
locality properties, we need to represent values in such
a way that neighbouring values will agree in the greatest
number of bits possible. Gray codes have this property
since consecutive Gray-coded integers have bit repres-
entations that differ in only one position. In all our
work using the bit-plane approach, we use Gray-coded
representations of the prediction error. We have found
that this can lead to increases in compression of up to
1 bit per pixel over the normal two’s complement
representation of the prediction error.

4. NUMERICAL EXPERIMENTS

In our experiments we have assumed that an arithmetic
encoder will be used to compress image data according
to the probability estimates provided by a particular
model. In most cases it is sufficient to estimate the size
of the compressed data from the probability estimates
without actually producing the compressed data file.
In some cases we have verified the compressed file
estimates by producing compressed output, which was
subsequently successfully decompressed to retrieve the
original data. The compressed file size estimates under-
estimate the actual file size but we observed that the
estimate was generally accurate to better than 1%.

4.1. Test images

A difficulty with work in image compression is that
there are few widely recognized test image sets. Two
images which we had at our disposal which are widely
used are MANDRILL and LENNA. Both images were
at 512 x 512 resolution and were originally 24 bit colour
images. We chose to produce test images from these by
taking the luminance component of the original images
and treating this as an 8 bit grey-scale image.

NECKXRAY is an image which comes from a radi-
ology application where X-ray pictures with some
accompanying information are digitized for archival and
transmission. As such there are large constant regions
in the background and since the X-ray is of a person’s
neck, there are large constant background regions in the
X-ray itself. The image has a resolution of 850 rows x 579
columns.

NOAAO and NOAA?2 are two bands from a multispec-
tral image taken from a NOAA satellite. NOAAO is
taken in the visible part of the electromagnetic spectrum
while NOAA?2 is in the infra-red part of the spectrum.
The data in these images was originally 10 bit but was
reduced to 8 bits. Both images consist of 1600 rows by
2048 columns and thus take up 3.125 mbytes.

CLOUDS is a 2048 x 2048 subset of a GMS infra-
red image. This image is stored and treated as having
8-bit data. In fact, the pixel values could have been
stored in 7 bits but none of our programs makes explicit
use of this fact. CLOUDS is the largest image at
4 mbytes.

The six test images are illustrated in Figure 2. The
images in clockwise order from the top left corner are
CLOUDS, LENNA, MANDRILL, NECKXRAY,
NOAA2 and NOAAO. Note that the relative size of the
images reflects the relative size of the test images in
terms of numbers of pixels.

4.2. Single context compression

We expect the Gray-encoded bitplane approach to
involve a trade-off. It will use less memory space than
the approach of storing frequency counts for each of the
256 possible prediction error values but this may be at
the cost of approximating the prediction error distri-
bution less accurately. This approximation might be
reflected in reduced compression efficiency. To explore
the effects of this trade-off we ran a series of tests using
the six test images and each of the JPEG predictors in
Table 1. For each combination of predictor and image
we ran two tests: one using 256 frequency counts to
model the prediction error distribution and another
using the Gray-encoded bitplane approach. The results
are shown in Table 2.

In running these tests, we chose to ignore effects
caused by picture boundaries. For example, JPEG pre-
dictor Null can be used for every pixel whereas other
predictors cannot be used in the first row if they require
values from a previous row or cannot be used in the
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FIGURE 2. Single context compression.
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TABLE 2.

Performance of the JPEG predictors

Top line—compression results in bits per pixel for the Gray-encoded bitplane approach
Bottom line—compression results in bits per pixel for 256 frequency counts

0: 1: 2: 3: 4: 5: 6: 7:

Null w N NW N+ W -NW W+ (N —NW)/2 N+ (W —-NW)/2 (N +W)/2
LENNA %0 I de e i1 e s +60
MANDRILL 30 el eE gl ol s e e
NECKXRAY S0 31 3y yes e Y04 o Y04
NOAMO Y 3 5 e 760 rss >l e
NOAAZ 3T e 3% e T i o 1
cLoubs 50 3% v 220 >5s 250 27e

first column if they require values from a previous
column. These pixels never constitute more than 0.4%
of the pixels in the 512 x 512 images and less as the
image size increases.

In addition, the frequency counts in both approaches
were constrained to be in the range [1,...,255] so that
they might be stored as bytes. When the frequency
counts exceeded 255 they were re-scaled by halving. If
the re-scaled count underflowed to 0 it was adjusted to
1. This re-scaling can have beneficial effects as it allows
the influence of any particular observation to progress-
ively fade and thus lets the prediction error distributions
adapt as the nature of the image changes.

The results in Table 2 indicate that the Gray-encoded
bitplane approach leads to less compression than the
256 frequency count approach. With the exception of
four cases, three involving the Null predictor, the 256
frequency approach always leads to better compres-
sion—on average, 4.26% better. For the Null predictor,
the Gray-encoded bitplane sometimes leads to better
compression. We conjecture that the Gray-encoded bit-
plane approach may sometimes lead to better compres-
sion because it can adapt quicker to changes in the
nature of the image.

In general it is difficult to say which JPEG predictor
will give the best results in a given situation. The Null
predictor will almost certainly give the worst results. In
our results the NW predictor also consistently gave the
second worst results. Predictors that involve two or
more pixels constantly gave better compression. It is
hard to separate the performances of the remaining
predictors and to propose criteria for selecting a pre-
dictor to use with a given image.

4.3. Multiple context compression

Since the use of Gray-encoded bitplanes trades off
compression efficiency against storage requirements, it
is natural to consider using a number of Gray-encoded

bitplane contexts. The 256 frequency count approach
requires at least 258 bytes per context if 1 byte counts
are maintained per frequency (the overall frequency
needs at least two bytes if individual counts can approach
255). We can use as many as 29 Gray-encoded bitplanes
while still needing less storage than the 256 frequency
count approach. We chose to use 25 contexts as 25 is a
perfect square.

We conducted a number of trials using one or two
neighbouring pixels in a context. For one neighbour
contexts we used 25 classes. For two neighbour contexts
we used five classes per neighbour. We conducted a
number of trials using either the actual pixel value of a
neighbour in determining a context or using the predic-
tion error. In the case of the prediction error contexts,
the prediction errors were partitioned into five classes
by using a number of partition values which had been
determined by partitioning the prediction error distribu-
tions for a number of predictors applied to a suite of
test images. These values were constants in our algo-
rithms and in some cases were an inadequate partitioning
of the prediction error distribution. Since many results
were generated we list the best results in Table 3. The
compression results reported in this table were obtained
under similar conditions to those for Table 2, in that we
estimated the compressed file size and ignored the effect
of edge pixels. In Table 3 the second line of the entry for
each row describes the context which gave the best
compression. The contexts were:

N: the value of the northern neighbour;
Ww: the value of the western neighbour;

N&W:  the values of the northern and western
neighbours;

PeN: the prediction error value of the northern
neighbour;

PeW: the prediction error value of the western
neighbour;

PeN&W: the prediction error values of both the
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TABLE 3. Performance of JPEG predictors with 25 Gray-encoded bitplane contexts
Top line: compression in bits per pixel
Bottom line: best context models
0: 1: 2 3 4 5: 6: 7
Null w N NW N+ W-NW W+ (N —-NW)/2 N+ (W —-NW)/2 (N+W)/2
495 4.71 4.57 4.90 478 4.70 4.55 4.50
LENNA N PeN PeW PeN PeW PeN PeN PeN
6.35 6.30 6.45 6.60 6.53 6.31 6.38 6.20
MANDRILL W N&W PeW PeW PeN PeW N&W PeW
3.70 2.74 2.80 3.13 2.73 2.78 2.74 2.70
NECKXRAY N PeN&W PeN PeN&W PeN&W PeN&W PeN&W PeN&W
NOAAO 3.81 243 244 2.61 2.57 244 241 226
PeW PeN&W PeN&W PeN&W PeN&W PeN&W PeN&W PeN&W
NOAA?2 4.19 341 3.30 3.72 343 331 336 3.21
w PeW PeN PeW PeN&W PeN&W PeN&W PeN&W
3.44 233 2.38 2.85 236 2.40 2.30 247
CLOUDS PeW PeW PeN PeW PeN&W PeN&W PeW PeW

northern and western neighbours.

The use of 25 contexts leads to a great improvement
in the performance of Null. The improvement was always
at least one bit per pixel. On the MANDRILL image
the Null predictor actually comes within 0.15 bpp of the
best performing predictor/context combination. Exclud-
ing the performance improvement for the Null predictor,
the use of 25 Gray-encoded bitplane contexts as opposed
to the use of one context leads to an average lowering
by 9.32% of the bits per pixel. The improvement was
most marked for the predictors which use a single pixel,
i.e. N, W and NW.

The results in Table 3 show that for each choice of
image and predictor there is a way to select 25 contexts
when using Gray-encoded bitplane compression which
leads to results at least as good as those achieved when
using the 256 frequency count approach. In most cases
the use of more contexts leads to better compression.
The difficulty again arises in determining in advance
which combination of predictor and contexts leads to
the best compression for a particular image.

4.4. Compression using very large numbers of contexts

To avoid the problems when trying to partition the
prediction error distribution into classes with nearly

equal numbers of members we considered using 256
contexts. In the 25 context trials the best results were
obtained when the prediction error in neighbouring
pixels was used to determine the context for the current
pixel so we concentrated on using the prediction error
in the 256 context cases. This allows each value to
determine its own unique class. We conducted trials
using either the pixel value at a neighbour or the
prediction error value at a neighbour. We again estim-
ated the compressed file size in a similar manner to
earlier tests and we ignored the effects of edge pixels.
The results in Table 4 show that greatly increasing the
number of contexts does not necessarily lead to large
improvements in the compression amount. In fact, for
the NOAAO image, the best result is 2.34 bpp while the
best result for this image using 25 contexts was 2.26 bpp.
The best results for three images when 25 contexts were
used were obtained using prediction errors from both
the northern and western neighbours and it is likely that
better results for 256 contexts would be obtained if
prediction errors from both these neighbours were used.
Since each context requires only 9 bytes of storage it
is feasible to consider using very large numbers of
contexts. If we let every distinct value of the prediction
error in the northern and western neighbour define a

TABLE 4. Performance of JPEG predictors in bits per pixel with 256 Gray-encoded bitplane contexts
N w N+ W-—-NW W+ (N —-NW)/2 N+ (W —-NW)/2 (N +W)/2
PeW PeN PeW PeN PeW PeN PeW PeN PeW PeN
LENNA 4.58 4.72 4.79 481 4.77 4.71 4.58 4.56 4.60 4.51
MANDRILL 6.47 6.34 6.63 6.56 6.37 6.34 6.45 6.45 6.22 6.28
NECKXRAY 2.78 2.79 2.84 2.86 293 2.86 2.83 2.84 2.82 2.75
NOAAO 246 247 2.64 2.63 2.58 249 2.46 2.55 234 235
NOAA2 341 331 3.51 345 3.38 332 3.40 347 324 332
CLOUDS 232 237 238 2.51 247 247 2.30 2.66 2.46 2.84
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context we have 65,536 contexts but the total memory
required is still well under a megabyte.

Each context is initialized to reflect a distribution
where each value is equally likely. As observations
accumulate, the distributions can more closely approxi-
mate the actual distributions for a given context and
compression performance improves. This start-up per-
formance overhead is not significant when there are at
least a quarter of a million pixels in the image and there
are relatively few contexts. However, the overhead does
become significant when the number of contexts grows
to say 2'¢. In order to reduce this effect, a back-up
model which uses relatively few contexts can be main-
tained and used until contexts in the main model have
accumulated enough observations. The results in Table 4
were generated with the intention of using one of the
256-context models as a back-up model in an algorithm
which had very large numbers of contexts in the main
model.

It was decided to use the ‘mean’ predictor, (N + W)/2,
with 256 contexts using the prediction error in the
western neighbour. This combination of predictor and
context seemed to give good compression behaviour
frequently on the previous tests and could already be
applied in the second row of an image. In addition, it
was decided to use the ‘north’ predictor, N, for pixels in
the first column and the ‘west’ predictor, W, for pixels
in the first row. In other situations where neither the
main model nor the back-up could be applied the ‘west’
predictor was used. For both the ‘west’ and ‘north’
predictors, only one context was maintained. The back-
up model as well as ‘north’ and ‘west’ were updated only

on those occasions when they were actually used to
encode a pixel.

This algorithm was implemented in a program which
generated a compressed file as output. The size of this
output file agreed closely with the file size predicted
using the assumption of optimal encoding. The cor-
rectness of this compression program was verified by
producing a decompression program which could restore
the original file from the compressed file.

Results were produced for various models using 2'°
contexts which depended upon either the prediction
error or the actual pixel value in either the western or
northern neighbours. After experimenting with a number
of values, a fixed threshold of 64 was selected as provid-
ing good overall results. Thus a particular context from
the main model was only used to encode the current
pixel if that context had already accumulated 64 observa-
tions. If it had not accumulated enough observations
then the back-up model was used. The back-up model
only has 1/256 as many contexts as the main model and
can be expected to provide better results than the main
model in the start-up phase. These results appear in
Table 5.

4.5. General discussion of results

For Tables 2—5 the images are ordered in terms in size.
The smallest images are LENNA and MANDRILL and
the use of large numbers of contexts does not lead to
improvements in the amount of compression for these
images. As the size of the images increases there is some
benefit in using multiple contexts. This is most clearly

TABLE 5. Performance in bpp of 256 x 256 contexts, Mean with 256 PeW as fallback
0: 1 2: 3 4 5: 6: 7.
Null w N NW N+W-NW W+ (N —-NW)/2 N+ (W —NW)/2 (N+W)2
LENNA 4.60 4.60 4.51 4.66 4.65 461 4.51 4.53
MANDRILL 6.22 6.22 6.22 6.23 6.23 6.23 6.23 6.21
NECKXRAY 2.68 2,67 2.64 2.88 2,67 2.63 2.63 2.64
NOAAO 2.23 2.23 223 2.54 2.54 225 226 223
NOAA2 3.26 3.26 3.26 3.67 3.39 323 3.24 3.21
CLOUDS 227 223 2.16 2.70 232 2.19 2.17 229
TABLE 6. Detailed performance of best compression with 256 x 256 contexts
Predictor Context Overall Main Model Fallback Model
bpp bpp % used bpp % used
LENNA N PeN&W 4.51 421 73.53% 5.35 26.06%
MANDRILL (N +W)/2 PeN&W 6.21 5.39 29.96% 6.56 69.46%
NECKXRAY W+ (N —-NW)/2 N&W 2,63 2.06 61.58% 3.54 38.11%
NOAAO (N + W)/2, Null N&W 2.23 2.10 95.31% 428 5.77%
NOAA2 (N +W)/2 PeN&W 321 3.09 95.31% 5.71 4.53%
CLOUDS N N&PeW 2.16 2.03 93.52% 4.12 6.38%
THE COMPUTER JOURNAL, Vor.36, No.1, 1993

20z 1Mdy 60 uo 1s8nb Aq 9¥ | L 1/89/L/9€/8101e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq



CONTEXT-BASED LOSSLESS IMAGE COMPRESSION 77

seen in the results for NOAAO, NOAA2 and CLOUDS
but the improvement is not large: of the order of 0.1 bpp.
As the number of contexts grows the influence of the
predictor diminishes. If every combination of the values
of the northern and western neighbours is used to define
a context then any predictor which uses only the value
of the northern and/or the western neighbour will predict
a constant value for that context. For example, if the
northern neighbour takes the value 96 and the western
neighbour the value 94 for a particular context, then the
averaging predictor, (N + W)/2, will always produce the
same predicted value, 95. Thus the prediction error
distributions for predictors in such contexts will be
shifted versions of the predicted error distributions of
the Null predictor in the same context.

More detail on the best results is given in Table 6. Of
particular interest is the proportion of pixels which were
encoded using the main model, the compression effici-
ency that was achieved when the main model was used
and the compression efficiency when the backup model
was used to encode the current pixel. For the best result
on the ‘MANDRILL’ image the main model was used
only 29.96% of the time, so the performance of the back-
up model became important. For the largest three
images, the main model could be used for over 94% of
the time and the performance of the back-up model has
less impact on overall performance.

5. CONCLUSIONS

The Gray-encoded bitplane approach offers a compact
way of approximating the prediction error distributions
which arise when using DPCM in image compression.
The great savings in memory requirements which are
possible when using this approach allows the use of
context-based techniques which can use large numbers
of contexts to improve compression. There are many
degrees of freedom in the techniques which remain to
be explored and it is not clear what the best choices for
these degrees of freedom will be.

The use of the Gray-encoded bitplane approach for
image compression is particularly well suited to applica-
tions where the pixels may take a large range of values,
e.g. 10- or 12-bit data. The results in this paper indicate
that large numbers of contexts do not lead automatically
to large increases in the amount of compression. This is
a useful result in the sense that we can generalize context-
based methods for image compression to multispectral
images. Multispectral images can arise in remote sensing
and RGB colour images can also be regarded as multi-
spectral images in this way. These images can be regarded
as 3D grey-scale images and the range of possible
contexts for the current pixel in such an image is huge.
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