An Object-Oriented Model for Interactive
Multimedia Presentations

M. VAZIRGIANNIS AND C. MOURLAS

Department of Informatics, University of Athens, TYPA Buildings, Panepistimiopolis, 15771 Athens,
Greece

In this paper a generic, platform independent design for interactive composite multimedia presentations

is proposed. The design is concerned with temporal and spatial features of multimedia composition and

synchronisation as well as handling the interaction with the user. A script based approach is adopted for

modelling the presentation scenario and the user interaction. The overall design is based on the object-
orientedparadigm.

Received October 1992

1. INTRODUCTION

Multimedia presentations are evolving as a popular and
demanding field since the potential of new multimedia
technologies is challenging a variety of groups of users.
There is an apparent lack of tools to integrate the
multimedia functionality and provide mechanisms for
building interactive, complex multimedia presentations.

A resulting requirement arises for modelling of com-
plex multimedia presentations that involve many multi-
media objects transformed in various, media dependent,
ways and presented according to a scenario or the user
interaction.

Our effort aims at defining an object-oriented class
that abstracts the composition and synchronisation fea-
tures of interactive complex multimedia presentations
and, moreover, provides the methods for the definition
and execution of an interactive scenario. A prerequisite
is a data model that supports specific attributes and
functionality of the multimedia objects. Such a data
model has been defined and partially implemented in
our department [13]. Finally, platform independent
design is another requirement that has to be fulfilled.
The design presented herein is as generic as possible for
platform independent solution.

The paper consists of three parts. The first part is a
reference to previous related work done in our depart-
ment. The previous work refers to modelling multimedia
data [13] and extensions to a parallel language for
supporting real-time applications [11]. Also we review
important concepts of multimedia composition and
synchronisation. There are sections referring to the
actions that may be applied on multimedia objects (in
space and time domains), the temporal relationships
among actions and the synchronisation between them.
Moreover, there is a presentation of how academic and
commercial sites approach multimedia synchronisation
and composition in time domain.

In the second part we define the composite item class,
analyse and evaluate the design through an indicative

example application. The model is defined in a notation
similar to C+ + and is based on previous pieces of work
done in our department. The example refers to an
interactive multimedia presentation of Crete. The
example incorporates audio, video, text and image
objects, buttons for handling user interaction and a
script (scenario) that defines the spatial and temporal
composition of the participating objects.

Finally, in the conclusion, we attempt to evaluate the
proposed model in terms of the objectives initially set
as well as in comparison to other systems referenced in
the state of the art. Finally we propose future research
directions.

2. STATE OF THE ART

In our department we have defined a data model that
aims at representing the features and functionality of
multimedia objects [13]. It is implemented as an object-
oriented hierarchy, whose base class is called item. The
item class abstracts mainly administrative features (like
author, format, date of creation/modification etc.) of the
multimedia objects. The media classes are subclasses of
item. Each of the media classes inherits all the data and
behaviour of the item class, while it defines the additional
attributes and methods that are specific to each media
type. Currently there are developed classes for text,
audio, video and images. Classes for animation and
music are in the specification phase.

Moreover in the department there is active research
on language extensions to support the implementation
of real-time (RT) applications [11]. The correctness of
such systems depends not only on the logical results of
the computations but also on the time at which the
results are provided. In addition, the development of
complex interactive multimedia applications presents
similar characteristics and requirements with the RT
applications since a desirable sequence and ordering of
a set of actions in the time domain is required. For this
reason much of our previous work in the field of RT

THE COMPUTER JOURNAL,

Vor. 36, No.1, 1993

202 I1dy 60 U0 1sonb Aq £1.Z111/82/1L/9€/a10Me/ulwiod/wod dno olwapeoe//:sdny wolj papeojumoq

AN OBJECT-ORIENTED MODEL FOR INTERACTIVE MULTIMEDIA PRESENTATIONS 79

processing has been incorporated in the model that
follows.

In the following there is an analysis of the several
aspects of complex multimedia presentations. These
aspects are:

® multimedia composition;

® actions and temporal relationships among them;
® multimedia synchronisation;

® multimedia temporal composition.

2.1. Multimedia composition

There are three aspects in the composition of multimedia
objects [1]: spatial, temporal and configurational. Spatial
composition refers to the spatial features of multimedia
objects (i.e. video-animation overlay, video-text overlay
etc.). The spatial relationship of objects are generally
expressed by their location in space (a set of co-ordinates
in space at which a given action may take place) while
the temporal relationships are expressed in terms of time
co-ordinates (a set of values in time where a set of
actions may happen) for the objects [4].

Temporal composition refers to the temporal relation-
ships between objects that participate in a complex
presentation (synchronisation and temporal sequencing
of components i.e. an audio starts at time t0, at time ¢t1
a video starts and both fade out in the time interval
[t2,t3]). Temporal composition includes also real-time
behavioural properties of the objects since there is a
need to define timing constraints for the execution of an
action or define the maximum time interval for an object
to wait during synchronisation. These properties will be
discussed in later paragraphs where we propose a set of
structures in order to describe these various real-time
requirements of the objects. The motivation for temporal
composition comes from the requirements for modelling
situations where a number of multimedia components
are simultaneously presented. Television and films are
two obvious examples, each containing both audible
and visual components. A more detailed discussion
about the introduction of the time in programming
systems as well as the problems of the verification and
validation of such systems can be found in [9] and [10].

The configurational aspects refer to relationships
which indicate the connections between the input and
output port of components. The proposed model does
not deal with these aspects because we aim towards a
generic platform and device independent design.

An important concept in multimedia presentations is
the scenario which may be viewed as a predefined spatial
and temporal sequence of presentations of multimedia
objects. It may either be static or dynamic (i.e. the flow
of actions may be modified according to events that
may happen).

2.2. Actions and temporal relationships among them

It is important to know and classify the actions that can
be applied to multimedia objects. In [4] the actions are

defined as arbitrary acts and are classified into atomic
and composed ones. Atomic actions cannot be sub-
divided into partial actions for the purpose of synch-
ronisation while composed actions consist of atomic or
other composed ones whose parts have to be synch-
ronised. This classification is made mainly for synch-
ronisation purposes so that atomic actions are used for
synchronisation scenaria. The start and end points of an
action are used as synchronisation points. Little [2]
classifies the actions performed on multimedia objects
into unary (which adjust the multimedia objects accord-
ing to the presentation requirements) and binary (which
compose the adjusted objects according to the presenta-
tion script).

The topic of temporal relations between actions has
been addressed by Allen [6]. In this paper there is a
definition of a complete set of temporal relations between
two actions. These are: before, during, overlaps, starts,
ends, equal and the inverse ones (this does not apply to
equal). Adding vacant time intervals the set is extended
with the sequential, parallel first and parallel last
relations.

In [4] there is a set of path operators that are based
on the aforementioned relationships. This set defines the
semantics of a synchronisation mechanism and the
synchronisation of the presentation of multimedia
objects. The most important operators which are also
incorporated in the proposed model are: A, v, *. They
are defined in [4] as follows:

® A4 A B (parallel-last): Actions 4 and B are started at
a common start point and are executed concurrently.
The composed action terminates when all the
participating actions (4 and B) terminate.

® 4 v B (parallel-first): Actions 4 and B are started at
a common start point and are executed concurrently.
The composed action terminates when the first in
time participating action (either 4 or B) terminates.

® 4'* (repetition): Action A will be repeated i times.

2.3. Multimedia synchronisation

Synchronisation in the context of multimedia refers to
the mechanisms used by processes to coordinate the
ordering in time domain. According to [1] the objectives
of multimedia synchronisation are: starting and stopping
multimedia objects at desired time points, establishing
or removing connections between components at trans-
ition points and ensuring global synchronisation between
activated components.

The main concepts used in [1] to achieve synchronis-
ation are the world_time and object_time that are neces-
sary in defining a low level synchronisation scheme. The
world_time concept as it is defined in [1] is used as a
reference time and refers to the time elapsed from the
origin of time, which is usually the start of the current
application. The object_time concept refers to a multi-
media object internal time. Assuming that the composite
C comprises the multimedia objects Ci then the criterion

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

202 I1dy 60 U0 1sonb Aq £1.Z111/82/1L/9€/a10Me/ulwiod/wod dno olwapeoe//:sdny wolj papeojumoq

80 M. VAZIRGIANNIS AND C. MOURLAS

for C to be synchronised is that for all its components
Ci the following formula holds [1]:

C.world_time — Ci.world_time < dt

where dt is the synchronisation tolerance. Synchronis-
ation then is maintained using temporal transformations
and jumps.

In general, the synchronisation of multimedia objects
presentation has two aspects:

® low level synchronisation, which addresses the prob-
lems of hardware capability for preserving certain
temporal features of multimedia composition within
a range. For instance the synchronisation tolerance
referred in [1] is such a feature.

® high level synchronisation, which refers to the sequence
of actions on multimedia objects and handling of
events that occur and cause other actions.

The proposed model does not deal with the low level
synchronisation since the objective is the definition of a
generic, abstract design for modelling the functionality
of multimedia composition and synchronisation. More-
over, it is assumed that the underlying hardware and
software is capable of proper execution and presentation
of the composed multimedia objects.

2.4. Multimedia temporal composition

There are various approaches in temporal composition
of multimedia objects. According to [14] temporal com-
position of multimedia specifies how actions (perform-
ance activities) are organised and combined in the time
domain. The temporal composition is abstracted in an
object-oriented model including three class hierarchies.
The first one serves scheduling purposes (ClockScheduler
class), the second triggers actions (Trigger Class) and
the third one deals with the events caused from the
beginning and the end of an action (BeginEvent and
EndEvent). Also temporal transformations for all time
dependent media are provided.

Another effort for modelling composite multimedia is
the evolving standard MHEG (Multimedia and Hyper-
media information coding Expert Group) [12]. As for
temporal composition MHEG defines structures that
support three types of synchronisation:

® clementary synchronisation, which refers to two
objects or actions (01, 02) and the respective time
intervals (T'1, T2). The elementary synchronisation is
classified into sequential (O1 is executed T1 time
units after the application start, 02 is executed T2
time units after the end of O1) and parallel (O1 is
executed T1 time units after the application start
while 02 is executed T2 time units after the applica-
tion start).

® chained synchronisation, in which there is a set of
objects (01, 02, ...) and the respective time intervals
(T1,T2,..). For instance O1 is executed T1 time
units after the application start, 02 is executed T2

time units after the end of O1, O3 is executed T3
time units after the end of 02 and so on.

® cyclic synchronisation, in which a set of events is
repeated at specific time intervals.

In the commercial field MACROMIND DIRECTOR
is one of the leading tools. MACROMIND DIRECTOR
is a product that runs on APPLE Macintosh platforms
and is used for the preparation of interactive multimedia
applications. It internally uses the LINGO language [7]
which, among other features, supports temporal com-
position of media objects. Temporal features of LINGO
deal with timer manipulation (there are system timers
and a general timer that, using the timeOut feature,
generate events). LINGO also supports event manipula-
tion. There are certain event types: keyDown, mouse-
Down, mouseUp that are recognised as events and invoke
the so-called event scripts or macros. Also the timeout
event which is caused when one of the aforementioned
timers reaches the timeout point set by the system or
the user. For instance the command

when (event) then {macro | script)

invokes a script or a macro (both are pieces of LINGO
source code) when the specified {(event) occurs.

3. METHODOLOGY AND COMPOSITE ITEM
CLASS DESCRIPTION

We aimed at the definition of an object-oriented frame-
work for multimedia composite modelling [3]. An
important construct of the proposed design is the action
concept, its definition and classification. As actions we
accept acts which aim to manipulate spatial or temporal
features of one or more multimedia objects. Actions are
classified in unary and n-ary actions. Unary actions
apply to single multimedia objects. They are mostly
methods or combinations of methods from the media
classes referring to spatial or temporal presentation
features. Examples of unary actions are: image scaling,
cropping, filtering, colouring, text formatting, audio
cueing, playing, suspending, resuming, stopping,
inverting and temporal scaling. A n-ary action applies
to a set of multimedia objects and defines a way of
group manipulation of the set referring to spatial or
temporal space. Such actions are spatial overlaying,
overlapping, grouping, ungrouping, moving and tem-
poral synchronisation of presented multimedia objects.

In the proposed model three temporal operators are
used in order to construct complex (n-ary) actions using
elementary (unary) ones. The temporal expressions gen-
erated in this way define complex actions which include
the notion of synchronisation between the elementary
ones. The three temporal operators which have been
already defined are: A (parallel-last), v (parallel-first)
and * (repetition) operators.

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

AN OBJECT-ORIENTED MODEL FOR INTERACTIVE MULTIMEDIA PRESENTATIONS 81

Another important concept in the proposed model is
the notion of the events. Events are arbitrary distributed
points in time used for the ordering of the actions and
their coordinated access to shared resources. A similar
approach for synchronisation of multimedia systems has
been proposed in [5]. Events may be regarded as a
special kind of information passing mechanism between
objects, since the information transmitted is only the
start and end of a specific action. More precisely, within
the lifetime of every object there are two special events
which are generated:

® the start point of a specific action;
® the end of that action.

If two or more media objects are combined in a
multimedia presentation the above events will be used
in order to assure the desirable temporal order of
presentation. For example, if an event which has been
generated at the end of a specific action is used to trigger
the execution of another action, then we have the
‘sequential’ synchronisation. If the event which is gener-
ated at the start of an action is used to trigger the
execution of another action, then we have a ‘parallel’
synchronisation. More complex synchronisation condi-
tions can be formed if more media objects are combined
for a multimedia presentation.

Moreover, selecting a specific button, during one
presentation, the corresponding event is caused. In this
way, as it will be described in the following paragraphs,

composite_item {
//administrative data

char *author;
date creation_date;
attr_value properties{(attribute,value));

composite_item father;

//spatial data

obj_list graphics_ob_list(<id pos,scale_f});
obj_list text_ob_list(id,pos));

obj_list image_ob_list(<id,pos,scale_f));
obj_list button_list (<id,pos));

obj_list composite_list({composite_id));

//temporal data
obj_list audio_ob_list(<id,invert,t_scale_f t; ,t4));

//spatio-temporal data
obj_list

/[temporal composition
tuple_list

//methods

play();

stop();

pause();
self_synchronise();

video_ob_list({id,invert,pos,scale_f t_scale_f t;,t4));

asynchronous interaction with the user can also be
handled by the model. Also two special events timeout
and no_sync can be produced in case of a time constraint
violation or from synchronisation problems.

The handling of interrupts is also supported by the
model. When we refer to interrupts we mean the asyn-
chronous control signals that can be sent to the applica-
tion by pressing special control keys (e.g. “C) or by a
hardware failure.

As already mentioned, the proposed design does not
involve low level synchronisation issues regarding the
capability of the hardware for proper presentation of
data intensive multimedia information. For the proposed
design, synchronisation refers to the level of sequence of
actions and handling of events.

A composite item class is defined for modelling the
data and behaviour of complex multimedia presenta-
tions. A composite multimedia item is an entity that
embeds a set of multimedia objects along with their
spatial and temporal space presentation features. It is
clear that the data are independent from the presenta-
tion. In the composite object there are only references
to the locations of the actual data, and the actions that
will be applied to these data during the presentation.
The multimedia objects are not altered themselves and
may be shared among various applications. The class
description covers requirements for interactive as well
as static scenarios. A partial description of the
composite_item class written in C++ follows:

scenario_list{start_time, duration, {action), synch_events, exception_handler, interrupt_handler);

I

add_scenario_tuple (start_time, duration, {action), synch_events, exception_handler, interrupt_handler);

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

82 M. VAZIRGIANNIS AND C. MOURLAS

The composite_item class includes administrative data
regarding author, creation date, and the properties list.
This list (which is author defined) consists of a set of
attribute value pairs, where attribute is a semantic feature
of the composite and value is the local value of the
attribute. For instance a property value pair would be:
(political event, elections of 1990). There is also the
identification of the father composite which invokes the
current composite_item and returns control to it once
its execution has finished. The top level composite has
null value for the father variable.

Multimedia object composition (spatial and temporal)
may involve extensive usage of unary actions (inter-
mediate transformations) in order to have the multi-
media objects prepared for n-ary actions. These
intermediate transformations require a lot of processing
power especially in the case of distributed multimedia
data [2]. The spatial and temporal data lists included
in the class description serve the purpose of preparing
the data for composition (i.e. unary actions like scaling,
cropping, cueing etc.) during an initialisation phase and
not during presentation time. Again it has to be stressed
that the actual multimedia data are not altered since
they are independent of the application.

For each media type there is a list of the objects that
participate in the composite. The lists include the identi-
fication (id) of the objects along with variables which
refer to both spatial and temporal features of the particip-
ating objects. The identifications (id) of the objects do
not locate the actual data but the location of the
transformed data according to the spatial, temporal and
spatio-temporal lists. These are the ids that are used in
the (action) attribute of the scenario_list tuples.

The composite_item class offers attributes for model-
ling the presentation features of the participating objects
in space and time. The spatial attributes refer to the
location of the object in the viewport (pos) and the
spatial scaling factor (scale_f).

The temporal attributes refer at first to the temporal
scaling factor (t_scale_f) which indicates the scaling
transformations in time for time depending media (video,
audio, animation etc.). Also they refer to the direction
of presentation which depends on the value of the
boolean variable invert. If it is true (T) then the object
presentation direction is inverted otherwise it is normal.
Finally they refer to the temporal portion of the object
that participates in the composite. This feature is defined
by the start time (t;) and duration (ty).

The user interaction, which is an essential part of a
multimedia presentation, is mainly served by buttons.
The composite_item class includes the button_list variable
which is a list of buttons that are included in the
composite. The button structure is assumed to be pro-
vided by another class that models the button generic
data and functionality. The rest of the variables refer to
the spatial and temporal composition of the composite’s
parts. The presentations may be static (i.e. the sequence

of presented items is predefined) or interactive (i.e. the
flow of actions is affected by events that may happen).
The composite_list variable is a list containing the identi-
fiers of the composites that are invoked from the current
composite item.

The most important part of an interactive multimedia
application is the scenario or script concept. It defines
the temporal sequence of presentation for the objects as
well as the handling of various events exceptions and
interrupts. The scenario concept is supported in the
composite_item class by the scenario_list variable which
is a list of user defined tuples. Many of the attributes of
each tuple have been introduced in programming lan-
guages for the implementation of real-time applications
[8, 11]. Each tuple of the scenario list has the form:

(start_time, duration, {action), synch_events,
exception_handler, interrupt_handler)

where

® start_time determines the start of execution of the
actions described in the tuple. It may be of the form:

(Abs_time and Event_tree) or
(Abs_time or Event_tree)

where the starting time may depend either on absolute
time (Abs_time) or on sequence of events (Event_tree)
or on a combination of both. The sequence of events
is a general logical expression of events. In this
context, events are used for the ordering of actions
in time domain. As already mentioned events are
caused either by the start or the end of an action or
by a user interaction event (e.g. selection of a button).
An event may cause the execution of a unary or n-ary
action. For instance, when we need a task to start at
12:45 or at the moment that either eventl or event2
has happened the value of start_time will be (12:45
or (eventl or event2)).

® Duration determines the duration of the action in the
tuple. It may be expressed in absolute time units or
as a set of events that will cause the execution of the
tuple to end. Similarly to start_time it has the form:

(Abs_time and Event_tree) or
(Abs_time or Event_tree)

® (Action) is the list of actions that will be performed
and may refer either to an individual object (in this
case actions are multimedia classes method calls e.g.
play, move, display) or to a combination of objects
(like overlay, overlap, resolve occlusion, scaling,
cropping etc.). Moreover we can construct complex
actions using elementary ones and the temporal
operators defined earlier. These expressions of actions
include the notion of synchronisation between the
actions implicitly resulting to a more elegant design
of the whole presentation. In addition, with these
temporal expressions we reduce also the number of
events used for explicit synchronisation with the result

THE COMPUTER JOURNAL,

VoLr. 36, No.1, 1993

202 I1dy 60 U0 1sonb Aq £1.Z111/82/1L/9€/a10Me/ulwiod/wod dno olwapeoe//:sdny wolj papeojumoq

AN OBJECT-ORIENTED MODEL FOR INTERACTIVE MULTIMEDIA PRESENTATIONS 83

of a simple description of a complex multimedia
application. For example, the composed action
(video.play A audio.play) implies that the video and
the audio will start at the same time and be executed
concurrently. The composite action will be terminated
when both the two participating actions will be
terminated.

Synch_events refers to the naming of the two special
events which are generated at the start and the end
point of the describing <action). It is an ordered pair
of event names where the first name represents the
event that will be occurred at the beginning of the
execution of the defined (action) and the other is
the name of the event that will be occurred at the
end point of the action. These names of the events
defined in this field are used for the explicit synch-
ronisation of the actions participating in a scenario.
More precisely, we use these names in the expressions
start_time and duration as we have already seen in
the description of these fields above. For example,
the pair (ele2) for the composed action
(video.play A audio.play) means that when the
start_time expression is evaluated to true then
the event el will be generated. At the end of this
composed action the event e2 will be also generated.
If we do not care about the generation of an event
we place an underscore (_) instead of its name.
exception_handler is a set of actions that will be
executed in case of violation of the predefined time
constraints or when there exists a lack of synchronis-
ation between the participating actions. As a result,
the execution of the specific action will be suspended
and the exception_handler will take immediately pri-
ority. This action will handle the exception and will
try to bring the whole system to a desirable state.
One of the two events timeout or no_synch will have
occurred showing that the exception produced from
a timing constraint violation or from synchronisation
problems of the action respectively.
interrupt_handler is an action that has to be per-
formed immediately after a system failure or by typing
special control characters (e.g. “C). Such failures can
be produced for instance from the hardware, resource
failures, environmental factors etc. and they are
application independent. When a failure occurs the

compl {

text_ob_list (""CRETE"", 2, 10);
graphics_ob_list ({crete_map, 80, 40, 0.8));
audio_ob_list ({cretan_musl F,1,0,10));
button_list ((Archaeological, (50, 5)), (Touristic info, (50, 125)), (Physical info, (80, 250)), (Close, (300, 100)});
composite_list (¢<HI1) (TI1),(P11));

scenario_list

(

{0 or e2,close.button_up,cretan_musl.play(),(-.e2),,

on "C cretan_musl.stop()),

{3,close.button_up, crete_map.display(dissolve),,,»,
{Archaeological_button.button_up, Hll.execute(),,,»,

system receives an identifier of the interrupt which is
usually a small integer and then calls this interrupt
handling routine. After the execution of the handler
the execution resumes at the point where it was
interrupted.

Using the proposed model, we can easily describe multi-
media applications that do not interact at all with the user
as well as applications that the user can play a significant
role in the whole presentation. In the former case the
sequence of the actions and the ordering of these actions
in the time domain is predefined. Consequently the
model is used in this case in its deterministic and
sequential form.

However, the power of the proposed model is demon-
strated in the development of complex interactive
multimedia presentations. In such presentations the
asynchronous way that the user interacts with the system
have to be handled in order to satisfy the desirable
sequence and ordering of the actions. This asynchronous
interaction is handled by the model supporting the
notion of the buttons and the interrupt handling facility.
The selection of a button generates a corresponding
event which in its turn can cause for example the
suspension of the current presentation and the concur-
rent execution of others.

Moreover, the user can interfere in the presentation
sequence sending special control signal (e.g. by pressing
~C) which can be handled by the model through the
support of interrupt handler definition. As a con-
sequence, the proposed model seems suitable enough for
the design of simple as well as complex and interactive
multimedia applications.

3.1. A sample composite multimedia presentation

We assume that there is the need for an interactive
multimedia presentation concerning the Greek island
Crete. The required multimedia material is available in
a multimedia data base under the aforementioned multi-
media data model representation scheme. The presenta-
tion refers to historical, tourist and physical information
of Crete and consists of several composites composing
a hierarchy. The composites HI1, PI1, TIIl are invoked
from compl, while TI2, TI3, TI4 from TI1. The presenta-
tion layout of each component may be seen in Figure 1.
The contents of the compl composite object is following:

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

84

M. VAZIRGIANNIS AND C. MOURLAS

CRETE

()

compl

TOURISTIC INFORMATION

g

hotels

events

joe

[PHYSICAL INTEREST

(animals)

(_geology)
[a]< =[] p[W®

PIl

ARCHAEOLOGICAL INFORMATION

(KNOSOS)
(FESTOS)

itineraries [(Back] [(Tm]un]»
TI1 HI1
HOTEL INFORMATION EVENTS INFORMATION
Cago) (15aug D
[y — [oack | (a4 [mius] p]B
TI2 TI3
ITINERARIES
('north coast)
[pack][] Jwm[u]p]P
TI4
FIGURE 1. The presentation layout of the composites participating in the example.

(Touristic_info_button.button_up,,Tll.execute(),,,>,
(Physical info_button. button_up, Pll.execute(),,,),
{close.button_up, exit,,, »

);

}

An analytical description of the composite compl fol-
lows. It includes the CRETE text resource that will be
displayed at the position (2, 10) relatively to the com-
posite viewport origin (the same applies for the position
of all objects participating in the composite). The
graphics_ob_list includes the map of Crete as graphical
object at the position (80, 40) scaled by the factor 0.8.
The audio_ob_list includes the first 10 seconds of
cretan_mus! audio object that will be played at normal
speed (t_scale_f=1). The composite list indicates that
the composites Hll, P11, T11 are invoked from within the
compl composite. There are four buttons (Archaeolo-
gical, Touristic info, Physical info, Close) located at the
respective positions: (50, 5), (50, 125), (50, 250), (300, 100).
The scenario list consists of six tuples. The first tuple

indicates that the cretan_musl audio will be played
starting from the origin of the application (0) or when
event e2 occurs. Namely the cretan_musl is played
back repeatedly. The music execution will last until the
close button or if “C key are pressed. In the former
case composite’s execution is stopped while in the
latter only the music execution stops. The second
tuple indicates that the crete_map will be displayed
using the dissolve effect at the third second of the
composite’s execution. The following three tuples
are the invocation of the three composite items HII,
PIl, TIl. The last tuple indicates that if the close
button is pressed the execution of the whole composite
stops. The contents of the PI1 composite item is
following:

THE COMPUTER JOURNAL,

VoLr. 36, No.1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

AN OBJECT-ORIENTED MODEL FOR INTERACTIVE MULTIMEDIA PRESENTATIONS 85

P11{

button_list (

{animals, 20, 200),{plants, 80, 200),{(geology,140,200),
{rewind,340,40) {stop,340,120) {play,340,160) {pause,340,200),
{play_invert,340,200) {fast_forward,340,280) (BACK,340,350));

audio_ob_list (
{animals_voice, F, 1, 0, 23},
{plants_voice, F, 1,0, 14),
{geology_voice, F, 1,0, 32),
{mus_back, F, 1, 0, 30);

video_ob_list (

(animals_vid, F,(20,30),1,1,0,14),
{plants_vid, F,(20,30),1,1,0,19),
{geology_vid F,(20,30),1,1,0,34));

/| the actions that will take place on P11 invocation.
scenario_list (
{0, back button_up, Pl1.display(),,,on"C P11.stop(),

// tuple referring to activation of animals button
{animals.button_up,

stop.button_up or e4,

((animals_vid.play() v animals_voice. play())

//start condition
/| duration

A
(plants.disable() A geology,disable())), // actions to be taken
(_ed), /] end of the composite action will cause e3

self_synchronise(), // exception handler in case of synchronisation problem

on "P generate_event(e4) // interrupt handler causes event e4

/] and stops the execution of the composite

// action

>

/] On e3 event the plants and geology buttons will be enabled
{e3, (plants.enable() A geology.enable()),,,»,

//the two following tuples indicate the functionality of the pause button

<

pause.button_up,
pause.button_down,
&video.pause(),

//start condition
/| duration
// the VCR pauses

1

iz
{pause.button_down, &video.resume() A all_buttons.active(),,.),

/| The functionality of the BACK button
(BACK.button_up,,exit,,,,

}

4. CONCLUSION ®

Composite multimedia is a quite complex problem
because of the various issues related to spatial and
temporal features of multimedia data. An effort for
composite multimedia modelling should be abstract
enough so as to represent the functionality and the data

static and interactive scenarios. They describe the
spatio-temporal features of a multimedia presenta-
tion. From the reviewed approaches only MACRO-
MIND DIRECTOR supports the scripts concept.
The other systems embed the functionality as methods
in structures that are used.

required for a generic platform independent model but ® platform independence. The proposed model is
also specific enough and technically complete so that designed so as to be platform independent since the
this model may be instantiated on various implementa- functionality included is generic and widely accepted.
tions. The proposed model is an initial effort towards It is assumed that there are tools in the various
multimedia composition modelling. The attractive points platforms that are able to implement the aforemen-
of the design are: tioned functionality.

THE COMPUTER JOURNAL, VoL.36, No.1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

86 M. VAZIRGIANNIS AND C. MOURLAS

® yuser defined events. The proposed design enables the
author define names for various events: start and end
points of a unary or n-ary action as well as for
asynchronous situations (user interaction). These
events may be used for synchronisation purposes.
MACROMIND DIRECTOR 7 and de Mey [14]
also support events but not defined by the user.

® spatio-temporal composition. The model provides the
spatial, temporal and spatio-temporal lists which
include the identification of the objects that particip-
ate in the presentation along with their transforma-
tions in space and time. From the reviewed models
and tools only the MHEG[12] and de Mey [14]
provide spatial and temporal transformations of the
participating objects.

® jnterrupt and exception handling. None of the reviewed
designs provides the definition of exception and inter-
rupt handlers as the proposed model does.

This design may be applied in a variety of application
fields where interactive multimedia presentations are
desired. Such applications may be educational, commer-
cial advertisements, information points etc. A long term
objective is the definition and implementation of a
language for authoring complex multimedia presenta-
tions based on the model that has been described. Since
in multimedia presentations there is the need for concur-
rent execution of media objects, we intend to design the
aforementioned language including parallelism features.

REFERENCES

[1] S. Gibbs, L. Dami and D. Tsichritzis, An object-oriented
framework for multimedia composition and synchronis-

ation, Object Composition, Centre Universitaire d’Inform-
atique (Univertitaite de Geneve), pp. 133143 (1991).

[2] T. Little and A. Ghafoor, Spatio-temporal composition
of multimedia, IEEE Computer, 24(10), pp. 42-50 (1991).

[3] B. Cox, An Evolutionary Approach to Object Oriented
Programming, Addison-Wesley (1989).

[4] Petra Hoepner, Synchronizing the presentation of multi-
media objects, ACM SIGOIS, pp. 19-31 (1991).

[5] R. Steinmetz, Synchronisation properties in multimedia
systems, IEEE Journal on Selected Areas in Communica-
tions, 8(3), pp. 401-412 (1990).

[6] J. F. Allen, Maintaining knowledge about temporal inter-
vals, Communications of the ACM, 26(11), pp. 832-843
(1983).

[7] Macromind director, Interactivity Manual, Macromind
Inc (1990).

[8] Y. Ishikawa, H. Tokuda and C. W. Mercer, Object-
oriented real-time language design: constructs for timing
constraints, Technical Report CMU-CS-90-111, Carnegie
Mellon (1990).

[9] Shem-Tov Levi and Ashok K. Agrawala, Real-Time
System Design, McGraw-Hill (1990).

[10] J. A. Stankovic, Misconceptions about real-time comput-
ing—A serious problem for next-generation systems,
Computer, 21(10), pp. 10-19 (1988).

[11] C. Mourlas and C. Halatsis, Extensions to a parallel
prolog system to support real-time applications, In Pro-
ceedings of the 4th International PARLE Conference,
pp. 551-565 (1992).

[12] ISO-IEC, Multimedia and hypermedia information
coding experts group (MHEG), JTCI/SC29/WGI2,
pp. 70-72 (1991).

[13] M. Vazirgiannis, M. Hatzopoulos and I. Rizos, HADT:
Hypermedia application development tool for tourist
applications, to appear in European Journal of Informa-
tion Systems, MacMillan Press. 1993.

[14] V. de Mey, C. Breitener, L. Dami, S. Gibbs and
D. Tsichritzis, Visual composition and multimedia,
Object Frameworks, Centre Universitaire d’Informatique
(Universite de Geneve), pp. 243-258 (1992).

THE COMPUTER JOURNAL,

VoL. 36,

No. 1, 1993

¥20z Mdy 60 U0 1s8nb Aq /1ZL¥1/8.2/L/9€/8191e/|ulwoo/woo dno-ojwspeoe//:sdiy woly pepeojumoq

