Collaboration Management in DiCE

H. M. ViIN* M.-S. CHEN AND T. BARZILAI
IBM T. J. Watson Research Center, P.0. Box 704, Yorktown Heights, NY 10598, USA

Effectiveness of managing collaborations directly impacts the productivity of a group, and can be
significantly improved through computer supported tools made available by the advent of high speed
networks and multimedia computer systems. In this paper, we propose a framework for characterizing
the requirements of person-to-person (e.g., telephony), person-to-service (e.g., collaboration with software
agents), and service-to-service collaborations (e.g., business workflow applications). The framework
defines a hierarchy of three abstractions, at the lowest level of which are conferences which characterize
the access rights of participants involved in a collaborative endeavor. The higher two levels are activities,
which represent a collection of semantically related conferences, and collaborations, which represent
temporally ordered sequences of activities. We describe the mechanisms for establishing and controlling
the progress of a wide variety of multimedia collaborations. The framework for modelling collaborations
and the mechanisms for their instantiation described in this paper form the basis of DiCE—a Distributed
Collaborative Environment being developed at the IBM T. J. Watson Research Center.

Received October 1992

1. INTRODUCTION

Recent advances in network technology (e.g., FDDI,
SMDS, PARIS, ATM, etc.) coupled with the develop-
ment of high performance workstations with digital
audio and video capabilities are expected to transform
computer systems from mere data processing units into
highly effective means for carrying out multimedia col-
laborations. However, enabling a rich set of computer
assisted collaborations requires the integration of multi-
media collaboration management with distributed com-
puting, applications, and communications.

In recent years, several conferencing systems have
been proposed and prototyped to improve the effect-
iveness of person-to-person collaborations. Lantz [13],
and Sarin and Greif [17] have proposed conferencing
architectures for text and graphics. Forsdick et al. at
BBN [9], Ahuja et al. at AT & T Bell Laboratories [2]
and Aguilar et al. at SRI [1] propose architectures for
person-to-person multimedia conferencing. Casner et al.
at ISI [6] have developed media transport protocols
for teleconferencing among geographically distributed
sites in wide area packet networks, but do not address
issues of flexible capabilities for user participation.
Angebranndt et al. provide a client-server architecture
analogous to X-Windows for integrating audio and
telephony into a graphics workstation [4]. The PX
system [12] developed at the Computing Research
Laboratory of BNR and the Etherphone system
developed at Xerox PARC [19,21,22] have explored
workstation-controlled telephony and capabilities for
editing and distributing recorded voice messages.

* Current address of Harrick Vin: Multimedia Laboratory, Depart-
ment of Computer Science and Engineering, Mail Code C-0114,
University of California at San Diego, La Jolla, CA 92093. E-mail:
vin@cs.ucsd.edu. This work was carried out when the author was
visiting IBM T. J. Watson Research Center during the summer of 1991.

However, the emphasis in much of the above work is
on person-to-person teleconferencing and not on general
paradigms for carrying out a wide range of structured
collaborations among individuals. Harrison et al. [10]
have developed a model for coordinating concurrent
development. However, their model is restricted to con-
current update of text files. Holt [11] has presented a
general framework for expressing coordination require-
ments in an organized work area, but does not address
the requirements of digital multimedia on high speed
networks. Danielsen et al. [8], and Prinz and Speth [15]
have described group communication models for com-
puter-based communications environments. A taxonomy
of conferencing environments described by Rangan and
Vin in [16] is a step in the direction of understanding
structured collaborations. However, mechanisms neces-
sary for developing a comprehensive framework for
specifying various types of collaborations have not been
fully explored.

In this paper we propose a framework for capturing
the requirements of a wide range of structured collabora-
tions, ranging from simple meetings and conferences to
classrooms and examinations, and from corporate nego-
tiations, work flow tasks, and team design endeavours
to courtroom hearings, each with its own unique set of
requirements for media communication. The framework
defines a hierarchy of three abstractions, at the lowest
level of which are conferences which characterize the
access rights of participants involved in a collaborative
endeavour. The higher two levels are activities, which
represent a collection of semantically related conferences,
and collaborations, which represent temporally ordered
sequences of activities. We describe mechanisms for
instantiating and managing the progress of structured
collaborations captured by our framework. The frame-
work for modelling collaborations and the mechanisms

THE COMPUTER JOURNAL,

Vor. 36, No. 1, 1993

20z Iudy 01 U0 3s8nB Aq 9Z€E L #7/28/1/9€/2101E/|UlW0d/W00 dNO"OIWBPEDE//:SAY WO POPEOJUMOQ



88 H. M. VIN, M.-S. CHEN AND T. BARZILAI

for their instantiation described in this paper form the
basis of DiCE—a Distributed Collaborative Environ-
ment—being developed at the IBM T. J. Watson
Research Center?.

The rest of the paper is organized as follows: The
framework for modelling structured collaborations is
described in Section 2. Mechanisms for establishing and
controlling the progress of collaborations are outlined
in Section 3. The DiCE prototype is described in Sec-
tion 4, and finally, Section 5 summarizes the paper.

2. AFRAMEWORK FOR MODELLING
COLLABORATIONS

Informally, we refer to interactions among multiple
agents (representing either humans or software services)
as a conference (denoted by C), a set of conferences that
exist simultaneously as an activity (denoted by C), and
a temporally ordered sequence of activities as a collab-
oration (denoted by C). We refer to the agents interacting
in a conference as participants (denoted by P). Particip-
ants of a conference interact through a set of applications
(denoted by A)—involving audio, video, text, etc. If
C,,C,, ..., C, represent the activities constituting a col-
laboration C, and Vi € [1, n], {C;;, Cys, ..., C;n} represent
the conferences constituting activity C;, then a complete
description of collaboration C requires the knowledge
of the following:

1. The interactions that characterize each conference C;;
(Section 2.1),

2. The conditions for the existence of conferences
Ci1, Ciz, ..., Ci that constitute C; (and hence, the
existence of C;) (Section 2.2), and

3. The conditions for activation of each activity C;,
i e [1, n] (Section 2.3).

2.1. Characterizing interactions within a conference

Participants of a conference interact through a set of
applications (involving audio, video, images, text, etc.).
The semantics of a conference may impose some con-
straints on the access rights of participants with respect
to applications. Generally, the access rights depend on:

1. the type of conference,
2. the type of application, and
3. the type of participant.

For instance, a course at a university is a collaboration
which contains many different types of conferences, such
as lectures, examinations, laboratory sessions, brain-
storm sessions, etc.; two types of participants, namely,
professor and students; and many different types of
applications that involve audio and video, electronic
blackboard, simulations, etc. During a lecture, all the
participants (namely, the professor and the students)
may have the right to transmit and receive audio or

! This prototype collaboration management system will be deployed
in AURORA, which is one of the five CNRI national gigabit testbeds.

video. However, only the professor may be permitted to
write on the blackboard. On the contrary, in a brain-
storm session, students may also be permitted to write
on the blackboard. Hence, complete characterization of
the interactions within a conference requires the speci-
fication of the access rights of its participants with
respect to its constituent applications.

Formally, let P ={P,, P,, ..., P,) be a set of particip-
ants, and 4 ={A4,, 4,, ..., A,} be a set of applications.
Let receive («) and transmit (—) represent the basic
modes of participation in an application. Let D;;,
ie[l,n], je[l, m] represent the access rights of the
participant P; with respect to application 4;. Hence,
Di;e{d,{-},{<},{—, «<}}. Thus, a participant P,
can participate in application A;iff D;; #¢. We denote
this by P,><A;, and refer to as participation relation.
Specifically,

PiNAjEDij7é¢ and Dije{aa{_’}»{"‘},{_’, <1}

Given these semantics for the notions of participants,
applications, and the access rights, we define a conference
as follows:

Definition 1. A set of participants and applications
constitute a conference if and only if each participant
participates in at least one application, and for each
application, there are at least two participants, among
whom at least one has the right to transmit and at least
one has the right to receive?. Furthermore, a conference
aggregates applications associated with a semantic
context, and can also be termed as an aggregator of
applications.

Formally, if

ij

represent the access rights of P; with respect to all the
applications, then a set of participants P and a set of
applications 4 can be said to constitute a conference
Ciff
Vie[l,n]:D;#0
and
Vje[l,m],

and

i, i"e[l,n]ii#i, P,><1A;, Py ><UA;

{<, >t = D;jju Dy,

The access rights of participants with respect to
applications constituting a conference can be graphically
represented using directed arcs from the participants to
the applications. Figure 1 describes a lecture involving
an Audio Conversation and an Electronic Blackboard.

2 Conditions, such as at least two participants associated with each
application, are required to guarantee meaningful interaction among
a group of participants. Any change in access rights during the progress
of a conference must guarantee that these conditions hold for the
entire duration of the conference.

THE COMPUTER JOURNAL,

VoLr. 36, No.1, 1993

202 Iidy 01 uo 1senb Aq 9Z€ L1 //8/L/9€/aI0ne/|ulwod/wod dno olwapese//:sdny wolj papeojumoq



COLLABORATION MANAGEMENT IN DICE 89

C ""'~~.._..Aggregation
\ / Electronic
Blackboard

Participation
Relation

Audio
Conversation

FIGURE 1. Representing the interactions within a lecture.

It illustrates that in a lecture, only the professor has the
permission to write on the blackboard (as depicted by a
bidirectional arc from P to Electronic Blackboard), and
the students can only view its contents (as depicted
by unidirectional arcs from Electronic Blackboard to
S1, ..., S5). However, all the participants (namely, the
professor and the students) can receive and transmit
audio.

Note that the participation relation encapsulates the
permitted access rights of both the sender and the receiver
with respect to the media exchanges characterizing an
application. However, during the progress of a confer-
ence, participants may specify any desired mode of
participation within their permitted access rights. Fur-
thermore, a conference may even permit participants to
alter their permitted access rights and desired mode of
participation during the progress of the conference.
Depending on whether a conference permits the access
rights and mode of participation once it is initiated, it
can be classified as either static or dynamic. In reality,
most conferences are partly dynamic and partly static,
with varying degrees of dynamicity. For instance: in an
examination, participants cannot be changed after initi-
ation; in a judicial court hearing, witnesses cannot change
their desired mode of participation after initiation; in a
research group meeting, almost any of the attributes can
be changed at any time.

Additionally, participants in our framework can rep-
resent either human users, software services (such as, a
conference recording service), or other conferences. By
permitting a participant to be a conference, the frame-
work provides a recursive definition of a conference,
leading to nested conferences [16]. It should be observed
that, even though nested conferences can always be
flattened into simple conferences containing purely indi-
vidual participants, the former approach provides a
mechanism for separating intra-group and inter-group
communication, and serves as a better (more natural
and efficient) abstraction to model inter-group and inter-
organization conferences. To illustrate, consider an inter-
organizational meeting to discuss policies for technical
cooperation between two organizations. The nature of
the collaborative activity requires that members of each

organization have closed-door discussions amongst
themselves, and then communicate the consolidated
views of their organization to the other organization.
Such a meeting is amenable to decomposition into three
conferences: C,, the meeting amongst the members of
one organization; C,, the meeting amongst the members
of the other organization; and C, the meeting between
the groups (see Figure 2).

2.2. Expressing existence of a conference

Each conference is associated with a duration of exist-
ence, which can be expressed either in terms of time or
as an expression relating the existence attributes of
various entities constituting the conference. In the sim-
plest case, a conference terminates when there are less
than two active participants (e.g., a telephone conversa-
tion). A more involved semantics may, for example,
require that a conference should terminate or change
when a key participant leaves the collaboration (e.g., a
classroom lecture may transform into an informal meet-
ing once its professor leaves).

When multiple applications are involved in a confer-
ence, certain applications may be considered more crit-
ical than others. For instance, during a lecture involving
audio and video, interaction in the audio domain may
be considered mandatory for receiving or transmitting
video, thereby making audio transmission critical for the
existence of the lecture.

The existential constraints among the participants
and applications can be expressed through existential
relations. If P={P,, P,, ..., P,} denotes the set of par-
ticipants and A ={A,, 4,,..., A,,} denotes the set of
applications, then Z=PuU A denotes all the entities
constituting a conference. Let = denote the existential
relation. If &, and &, denote the boolean variables
representing the existence of entities Z; and Z;, respect-
ively, then the relation between Z; and Z;, denoted by

</

IRAN LD
OO0 (7o)

FIGURE 2. Inter-group meeting: group participation in a
conference.

THE COMPUTER JOURNAL,

Vor. 36, No.1, 1993

20z Iudy 01 U0 3s8nB Aq 9Z€E L #7/28/1/9€/2101E/|UlW0d/W00 dNO"OIWBPEDE//:SAY WO POPEOJUMOQ



90 H. M. VIN, M.-S. CHEN AND T. BARZILAI

&.,=¢&,,, has the semantics that the existence of Z;
depends on the existence of Z;. The interpretation of the
semantics of the existential relation depends on the
entities related by it. & 4, = &'p, signifies that the existence
of application A; requires the participation of P;. Sim-
ilarly, ¢ = & 4, has the semantics that the conference C
exists only when application A; exists. The interpretation
of &,,=>&,, is that participation in application 4; is
essential for participating in A;. Graphically, the existen-
tial relationship &, = & can be represented as a dashed
arrow from Z; to Z;.

In general, the existence of a conference may also
depend on the existence of other conferences. For
instance, consider a conference G, between the members
of a technical group and their manager to discuss a
management report. In order to obtain the precise details
of the management report, the manager may initiate a
conference C, with the meeting recording service to
retrieve the proceedings of a previously conducted man-
agement meeting. Since the C, is relevant only when C,
is in progress, we can say that the existence of C, depends
on the existence of C, (see Figure 3). We refer to such a
set of existentially related conferences as an activity.

Definition 2. An activity is an aggregation of existen-
tially related conferences.

An activity terminates when all of its constituent
conferences terminate. On the other hand, initiating an
activity initiates all of its constituent conferences.

2.3. Collaborations

Whereas an activity provides a convenient abstraction
for capturing collective interaction in a common time
span, a complete collaborative endeavor may, in general,
involve several periods of collective activity, possibly
with dependencies between the outcomes of some periods
and causations of others. All such activities, whose
initiations are temporally related, constitute a collabora-
tion. In general, the ordering of various activities consti-
tuting a collaboration can be expressed using any of the
13 possible temporal relationships (namely, before, meets,

Activity

é;?iqlential @

Participation
Relation

FIGURE 3. An activity as an aggregation of two conferences.

during, overlaps, starts, ends, and equal plus the inverse
relations—except equal) [3, 14]. An activity is initiated
as soon as the temporal constraints are satisfied. Using
the notion of temporal relations, a collaboration can be
formally defined as follows:

Definition 3. A collaboration is a temporally ordered
sequence of activities.

Figure 4 illustrates the use of temporal relations in
the specification of a collaboration (namely, a course at
a university) consisting of three types of activities
(namely, lectures, laboratory sessions, and examination).
The temporal ordering shown in Figure 4 represents a
course that consists of a sequence of lectures and laborat-
ory sessions (starting with a lecture, as depicted by a
bold pentagon in Figure 4), followed by an examination.

Recursive temporal relations among the activities
constituting a collaboration makes the collaboration
persistent (as opposed to transient collaborations such
as telephone conversations). Mutual recursion yields
periods of active interactions separated by periods of
inactivity, and can be used to realize periodic meetings
(such as, weekly scheduled meetings, lectures for a course,
etc.). For example, a temporal relation €~ C indicates
that activity C is to be re-activated t units of time after
the termination of its previous activation. For such
collaborations, the needed system resources (such as
network bandwidth) can be reserved in advance, and
their periodic invocations can be made automatic.

2.4. Discussion

A conference within our framework represents synchron-
ous interactions among a set of participants. An activity
is defined as a set of existentially related conferences,
and can model all types of synchronous interactions
among groups. A collaboration is defined as a set of
temporally related activities, and hence is capable of
modelling asynchronous interactions. Thus, the abstrac-
tions of conference, activity, and collaboration together
can capture all types of interactions in person-to-person,
person-to-service, and service-to-service environments.

The three types of relations, namely, the participation,
existential, and temporal, are orthogonal, and hence can
be specified independently of each other. Specifically, the
process of specifying collaborations can be divided into
three stages:

Lecture
Course __/"

Mutually recursive
temporal relations

FIGURE 4. A course as a temporal ordering of lectures,
laboratory sessions, and examination.

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

¥20z Mdy 01 uo 1s8nb Aq 9ZE L ¥1/28/1L/9€/811e/|ulwoo/woo dno-ojwspeoe//:sdiy wolj pepeojumoq



COLLABORATION MANAGEMENT IN DICE 91

1. Defining a collaboration as a composition of tempor-
ally related set of activities;

2. Defining each of the activities as a set of existentially
related set of conferences; and

3. Defining each of the conferences as an aggregation of
participants and applications tied together by parti-
cipation and existential relations. Figure 5 represents
such a hierarchical specification of a course.

Such specifications of collaboration semantics, repres-
ented either graphically (as shown in this Section) or
using a formal, object-oriented specification language
[20], can be interpreted to synthesize low-level, network
environment specific constraints, which can be retrieved
while instantiating collaborations. Since conferences are
the building blocks of activities and collaborations,
instantiating a wide range of collaborations requires
mechanisms for establishing and controlling the progress
of their constituent conferences, and are elaborated in
the next Section.

3. CONFERENCE MANAGEMENT

The framework for modelling collaboration presented in
the previous Section combines efficiency and power via
a hierarchy of three abstractions. Since, within our
framework, conferences are the building blocks for mod-
elling collaborations, the usefulness of the framework
critically depends on the flexibility of the underlying
conference management, which is guided by the follow-
ing two principles:

® Autonomous participation: Every participant should
be permitted to independently determine his/her
mode of participation in conferences. Furthermore,
even after the initiation of the conference, its particip-
ants may be permitted to alter their mode of participa-
tion independently, at their own will.

® Negotiated conference management: Establishing a

Audio
Conversation

FIGURE 5. Hierarchical modelling of collaborations.

conference is a negotiation process involving particip-
ants and their environments (such as, hardware and
network environments). Negotiations may also be
carried out during the progress of a conference to
permit dynamic changes in the list of participants
and their access rights.

In this Section, we discuss the implications of the
above two principles on the techniques for establishing
and managing the progress of conferences.

3.1. Establishing a conference

The process of establishing a conference consists of
three phases:

1. Invitation and arbitration,
2. Negotiation, and
3. Setup.

This three phase procedure not only provides a flexible
platform for creating conferences, but also reduces the
overhead of channel setup for real-time media commun-
ication (as we shall outline later).

3.1.1. Invitation and arbitration

The goal of this phase is to determine the set of invitees
that are willing to participate in the conference. The
main tasks of this phase includes: sending invitations to
all invitees, arbitration (to elect one initiator among
multiple agents who try to initiate a conference simultan-
eously), collecting initial responses confirming will-
ingness to participate, and the establishment of a
multicast connectivity® for the exchange of control
information.

If conference management is based on a client-server
model, requests for initiating a conference are sent by
initiators to a conference server (a software entity
responsible for managing establishment of conferences).
Consequently, the server can uniquely identify the con-
ference initiator (by ignoring contending requests for
initiating the same conference), thereby simplifying the
invitation and arbitration phase of conference establish-
ment. However, the client-server model is fraught with
inherent problems of reliability and scalability.

In a peer-to-peer communication environment, on the
other hand, there are two approaches in dealing with
multiple initiators:

1. setup-and-merge, and
2. arbitrate-and-setup.

In the setup-and-merge approach, participants ignore
contending initiators and join different initiators to form
a set of non-overlapping subgroups. These subgroups
then try to merge themselves back into one complete
group. However, this approach is quite often undesirable

3 Multicast communication, in networks not providing support for
multicast connectivity, can be emulated by a combination of several
point-to-point and broadcast communication channels.

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

¥20z Mdy 01 uo 1s8nb Aq 9ZE L ¥1/28/1L/9€/811e/|ulwoo/woo dno-ojwspeoe//:sdiy wolj pepeojumoq



92 H. M. VIN, M.-S. CHEN AND T. BARZILAI

because it may yield an unacceptably long time to
initiate a conference, may incur high network overhead,
and may be overly complicated for non-specialist users.

On the contrary, the arbitrate-and-setup approach
detects and resolves contentions from multiple initiators,
thereby ensuring a unique initiator with each conference.
Since media transmission channels are established only
after all the participants of the conference are determined,
the arbitrate-and-setup approach yields much lower
network overhead. However, such an approach necessit-
ates the development of techniques for uniquely identify-
ing the conference initiator [7]. Assuming that:

1. the network transmission latency for a packet is
bounded by D, and:

2. messages are delivered reliably, but not necessary
in order,

we propose a timeout-based mechanism for detecting
and resolving contentions.

During the arbitration phase, an agent can be either
an initiator or an invitee. After sending invitations to all
the invitees, an initiator collects replies for a period of
2D. If the initiator receives no invitation during this
interval, then there is no competing initiator. Otherwise,
each initiator independently decides whether or not to
give up the initiator role based on simple deterministic
rules (such as the length of their user identifiers). Sim-
ilarly, each invitee also waits for a period of 2D for
receiving possible invitations from more initiators. If the
later invitation is sent by a prioritized initiator, it reacts
by returning a positive reply and changing its sign-on
to the new initiator. Otherwise a late invitation is
ignored. After the 2D period, the arbitration is considered
complete. The winning initiator, however, waits for a
time out of D before continuing to the next phase of
actually setting up network connectivity.

3.1.2. Negotiation

This phase is designed to permit participants (and their
hardware and network environments) of a conference to
reach consensus in determining the operational para-
meters of the conference. The functionality of the negoti-
ation phase can be subdivided as follows:

® Managing hardware and network heterogeneity: Nego-
tiations among the participants of a conference
provide mechanisms for managing heterogeneous
hardware and network environments. For instance,
consider an audio conference between two particip-
ants, whose audio digitizers encode audio stream
differently (such as, mu-law and ADPCM). If a service
for converting one audio encoding to another is
available, then detection of heterogeneity during the
negotiation phase can trigger an invitation to the
service to join the conference. This would then enable
the participants of the conference to communicate.
Negotiations can also be used to resolve feature
interaction problems (i.e., when a feature provided by

the conferencing system interferes with the operation
of another feature, e.g. call-forwarding-busy-line and
call-waiting) [15].

® Flexibility of participation in conferences: The negoti-
ation phase permits participants of a conference to
reach a consensus on their mode of participation with
respect to the conference. For instance, if the number
of video streams that can be received at any work-
station is limited due to processing requirements,
then each participant may determine the set of
video streams that he/she would like to receive by
the process of negotiation. Negotiations may also be
carried out between the participants of a conference
even during its progress. For instance, participants of
a conference may negotiate to admit a new user, or
to alter the access rights of participants already active
in the conference.

The negotiation phase yields a set of operational
parameters, that define the set of multicast pipes required
to be established among the participants of a conference,
which is the input to the setup phase.

3.1.3. Setup

The main task of the setup phase is to establish long-
term connectivity for media communication among the
participants of each of the applications. There are two
different approaches in establishing multicast pipes for
media communication:

1. create exactly one pipe with the capacity (bandwidth)
equal to the combined requirement of all the applica-
tions, or

2. establish a set of pipes, one for each application.

Although the former approach is simpler, and incurs a
smaller network overhead for setting up the pipe, the
latter approach is more desirable for the following
reasons:

® Media information may have to be routed to different
devices (and hence, to different processes) within a
workstation, which may result in a significant over-
head for demultiplexing the data stream received
from a single multicast pipe.

® Different media have different transmission character-
istics (such as the tolerance to packet loss or error in
transmission). Hence, the process of establishing
multicast pipes can exploit the transmission char-
acteristics, so as to efficiently utilize the bandwidth.

® The participants in different applications may be
different. Hence, if a single pipe, with combined
capacity is created, it leads to a lot of wasted
bandwidth.

Once multicast pipes for media transmissions are
established, the conference is said to be established. It is
important to reiterate that the negotiation and setup
phases may take place at any time during the progress
of a conference so as to reflect the changes in participants’

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

20z Iudy 01 U0 3s8nB Aq 9Z€E L #7/28/1/9€/2101E/|UlW0d/W00 dNO"OIWBPEDE//:SAY WO POPEOJUMOQ



COLLABORATION MANAGEMENT IN DICE 93

preferences or status. Successful completion of each
round of negotiation and setup procedures during a
conference results in a reconfiguration of the conference.

3.2. Controlling the progress of a conference
3.2.1. Coordination

Interactions in a conference may need to be coordinated
due to the intrinsic nature of applications or resource
constraints. For instance, the nature of applications such
as shared electronic blackboards or concurrent editors
may necessitate controlled access. Since no single set of
rules can satisfy the coordination requirements of several
different applications, we propose a simple generic baton
sharing protocol, which can be tailored by the conference
management to enforce the coordination requirements
of different applications [7].

In this protocol, batons represent access rights with
respect to applications. The number of batons is a
parameter that is set to represent the maximum number
of participants that can simultaneously exercise the
access right. A participant needs one baton to exercise
the access. It is possible that a participant holds more
than one baton. In such a case, only one baton is active
or in use and the others are considered idle. When a
participant intends to exercise the access right but does
not have any baton, it sends a request for a baton to all
the participants of the conference. On receiving a request
for baton, a participant either gives away all his idle
batons or returns a negative reply. The negative reply
indicates one of the two possible situations: the par-
ticipant has one active baton (which he does not wish
to release), or has no baton at all.

This protocol is sufficient for normal situations. How-
ever, additional considerations are necessary for excep-
tional situations, such as loss of batons due to
unintended separation of participants. In steady state,
the sum of the number of idle batons and the number
of negative replies indicating active baton condition
should be the same as the maximum number of particip-
ants that have the access right. This property can be
used by a participant, who is waiting for a baton, to
detect abnormal conditions. Upon detection, particip-
ants exchange status update messages describing the
number of active and idle batons in their possession. If
a shortage of batons is detected, then the participant
with the smallest identifier generates batons to make up.
On the contrary, if there is an excess of batons, particip-
ants, again according to their identifiers, first give up
idle batons and, if necessary, then give up active batons.

3.2.2. Dynamicity in mode of participation

During the progress of a conference, participants may
change their desired mode of participation or even
terminate their participation at any time, thereby initiat-
ing changes in transmission or reception of media
information. In response to such changes, conference

management must verify the requested change against
the permitted access rights of the participant. If verified,
media transmission pipes are altered to reflect the new
configuration. Furthermore, a conference controller may
also alter the permitted access rights of participants,
invite new participants, or change the conference control-
ler. The extent of dynamicity of a conference governs
the types of changes in conference attributes (such as
participants, applications, access rights, mode of parti-
cipation, etc.) permitted during its progress.

4. THE DICE PROTOTYPE

A Distributed Collaborative Environment (DiCE), based
on the framework for modelling collaborations presented
in this paper, is currently being prototyped by the High
Bandwidth Applications Group at the IBM T. J. Watson
Research Center. In order to demonstrate its power,
DiCE has been instantiated in the Multimedia Multi-
party Teleconference (MMT) system [7]. MMT is a
workstation based, hub-free (peer-to-peer) environment
for managing multimedia conferences. The design of
MMT exploits the functionality of the emerging high
speed networks, and achieves functional integration of
multimedia computing with high speed networking.
MMT permits participants of a multimedia conference
to exchange high quality motion video and audio, and
supports a shared workspace platform over which
existing applications can be used in a collaborative mode
without any modifications. In this Section, we describe
the hardware environment and the software architecture
of our prototype.

4.1. Hardware environment

The multimedia workstation of our first prototype is
based on IBM PS/2 running AIX. Each PS/2 is equipped
with special purpose hardware for full duplex compres-
sion and packetization of full motion video, and for the
composition of multiple simultaneous video and audio
streams. Specifically, each PS/2 in our prototype environ-
ment is equipped with three adapters: multimedia front-
end, multimedia processing, and communication back-
end. The multimedia front-end is the IBM M-Motion
Video Adapter/A. This adapter has the functions of:

1. capturing and digitizing analog video and audio,

2. delivery to another adapter for processing or net-
working, or direct playback locally, and

3. chroma keying for multiplexing video and graphics
on the same workstation display.

The multimedia processing adapter, which is the heart
of our prototype, can compress and decompress digital
video at 30 frames/second, compose multiple compressed
video streams from different remote sources using an
innovative technique [18] and display them simultan-
eously at 30 frames/second each, and compose multiple
audio streams from different remote sources and provide

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

20z Iudy 01 U0 3s8nB Aq 9Z€E L #7/28/1/9€/2101E/|UlW0d/W00 dNO"OIWBPEDE//:SAY WO POPEOJUMOQ



94 H. M. VIN, M.-S. CHEN AND T. BARZILAI

the unconstrained audio effect of a face-to-face meeting.
Consequently, each participant in a multimedia collab-
oration can independently decide the video and audio
streams that he or she wants to receive. Furthermore,
the distributed mixing of audio and video yielded by the
multimedia processing adapter is more reliable than the
typical hub-based composition of media streams.

The communication backends are either a research
gigabit LAN prototype (e.g., MetaRing or ORBIT), or
a FDDI adapter running at 100 Mbps. These adapters
can exchange information with multimedia processing
adapters directly without involving system CPU and
memory. This is very important in achieving an efficient
network and workstation interface, which becomes crit-
ical in dealing with multimedia computing. Figure 6
represents the inter-connectivity of the three adapters.

The hardware prototype, with the Multimedia Multi-
party Teleconferencing system, has been demonstrated
on the PARIS platform, and is expected to be deployed
for various field trials, including the AURORA national
gigabit testbed and various joint studies between IBM
and its industrial partners.

4.2. Software architecture

In order to support a wide spectrum of multimedia
collaborations that can be captured by the framework
presented in Section 2, the software architecture of DiCE
is designed to consist of three components: collaboration
management, media transmission control, and interfaces.

4.2.1. Collaboration management

The functionality of collaboration management can be
partitioned into three components: Multimedia Server
(MMS), Collaboration Management Unit (CMU), and
Conference Control Unit (CCU).

® Multimedia server (MMS). There is exactly one active
instance of MMS in a workstation. The primary
function of the MMS is to provide naming and
addressing facilities for agents, so as to provide
features such as invitation by name (rather than

IBM PS/2

—

Processor

Micro Channel

Comm.
Adapter

Back-end Front-end

High-Speed
Network

FIGURE 6. Hardware environment.

address), automatic invitation forwarding, and visit-
ing [19]. When a user registers with an MMS on a
workstation, the MMS creates a Collaboration Man-
agement Unit (CMU) responsible for managing all
the collaborations in which the user may participate.
Since multiple users may be simultaneously registered
from the same workstation, several instances of
CMUs may coexist within a workstation.

® Collaboration management unit (CMU): A CMU
represents a user, and is the heart of the software
architecture of DICE. It encapsulates the behavioural
semantics of collaborations (such as, the temporal
relations among activities, and the conferences consti-
tuting each activity) in which a user may participate.
In fact, it performs the functions of a ‘schedule keeper’,
and initiates activities (and hence, their constituent
conferences) in accordance with the temporal speci-
fications of collaborations. For each conference initi-
ated, the CMU creates a Conference Control Unit
(CCU) responsible for controlling the progress of the
conference. Furthermore, the CMU maintains exist-
ential relations among conferences constituting
activities.

® Conference control unit (CCU): CCUs represent con-
ferences and encapsulate their operational attributes
and constraints (such as, access rights with respect to
applications, critical applications and participants,
etc.). The primary function of the CCU is to control
the establishment and progress of a conference. This
includes sending preliminary invitation to a list of
invitees and accumulating acceptances, carrying out
negotiations to decide the mode of participation for
each of the participants, setting up the network
connectivity for control as well as media communica-
tion, and modifying network connectivity based on
changes in mode of participation of participants.
Note that the functionality of CCU is application-
independent, providing a flexible, extensible architec-
ture. Each participant is represented in a conference
by a CCU. Since a user may be participating in
multiple conferences simultaneously, multiple active
instances of CCU may coexist in a workstation.

To illustrate the mapping of collaboration semantics
to operational modules (namely, CMU and CCUs),
consider the specification of a course shown in Figure 5.
The semantics of a course can be captured using a CMU
and three CCUs (one each for Laboratory, Lecture,
and Examination, denoted by CCU,,,, CCU_., and
CCUg,,n, respectively). The CMU will activate each
activity in accordance with the temporal relations. Activ-
ating a Lecture, for instance, will result in the creation
of the CCU,,, for enforcing the operational attributes
and constraints characterizing a lecture (see Figure 5).
When the Lecture terminates (as defined by its existential
relations), CCU,,, also terminates, and the CMU is
notified. The CMU, in turn, may activate either CCU\,,

THE COMPUTER JOURNAL,

VoL. 36, No.1, 1993

202 Iidy 01 uo 1senb Aq 9Z€ L1 //8/L/9€/aI0ne/|ulwod/wod dno olwapese//:sdny wolj papeojumoq



COLLABORATION MANAGEMENT IN DICE 95

or CCUg,,,. The CMU maintains the semantics speci-
fication of the Course until its termination.

4.2.2. Media transmission control

Media Transmission Units (MTU) are used for managing
applications constituting a conference. An MTU is cre-
ated by CCU to support an application that becomes
part of the conference. The functionality of an MTU is
application and network dependent. For instance, the
MTU corresponding to a shared workspace application,
such as the electronic blackboard, should mediate
information exchange as well as coordinate accesses
from the participants, i.e., floor control; whereas the
MTU corresponding to a motion video application
initiates the video transmission protocol.

4.2.3. User interface

The user interface components in the software struc-
ture include:

® Collaboration Interface (CI): The Collaboration
Interface provides the linkage between the user and
the underlying collaboration management system. It
provides facilities to initiate different types of collab-
orations (such as, a course, a panel session at a
convention, etc.). In order to initiate a collaboration,
the initiator first selects the type of a collaboration,
which triggers the invocation of a window-based
interface for specifying collaboration-specific para-
meters. For instance, if a user decides to initiate a
course, then the interface prompts the user to specify
the names of the professor, assistants, and students
as well as the duration of course.

Once a collaboration is initiated, CI provides mech-
anisms for controlling its progress. Specifically, CI
provides two types of modules: a conference control
module, which provides a window-based interface for
placing, joining, and terminating conferences; and an
application linkage, which provides mechanisms for
users to add and delete applications to the conference.

To create a conference, the initiator first specifies
the set of invitees (if different from the one described
by the specification of the parent collaboration),
which results in invitations being sent to all of the
invitees. On receiving a request to participate in a
conference, CI can perform automatic filtering of
invitations (based on the criteria specified by the user)
using the conference-specific parameters (such as the
reason for creating a conference, urgency, etc.) speci-
fied in the invitation, and then prompts the user
about the invitation.

Once the invitee accepts the invitation, the applica-
tion linkage permits the user to specify the applica-
tions with respect to which he/she would like to
participate in the conference. The preferences can
also be altered dynamically (i.e., during the progress
of the conference). Since the applications constituting

a conference are logically independent entities, CI
initiates a different interface for each application.

® Video Interface (VI1): The functionality of the Video
Interace can be subdivided into two parts:

1. Video Window, and
2. Video Control Panel.

A Video Window is used for displaying motion
video at 30 frames/sec, and multiple such Video
Windows can be active simultaneously. Each Video
Window maintains information regarding all the par-
ticipants of the conference, and provides a menu-
based interface to change the source of the video
stream being displayed in it.

The Video Control Panel provides an interface to
create, destroy, move, and resize Video Windows; as
well as mechanisms for controlling display-specific
features such as brightness, contrast, colour, etc.
Furthermore, the Video Control Panel is responsible
for communicating information describing the con-
figuration of Video Windows (such as, height, width,
overlap, etc.) to the video processing adapters, which
can also be used by the adapters to perform real-time
digital mixing of multiple video streams.

® Audio Interface (AI): Unconstrained audio transmis-
sion is the default in the DiCE multimedia conferenc-
ing environment. Hence, each participant receives
audio streams from all other participants, which are
then digitally mixed before playback. The Audio
Interface provides a window-based interface to select-
ively enable the mixing of various audio streams. In
addition, it provides an interface for controlling cer-
tain audio-specific parameters such as volume of the
speakers. Such parameters are also communicated to
the multimedia adapter to facilitate the process of
audio mixing.

® Shared Workspace Interface (SWI): The functionality
of the Shared Workspace Interface can be subdivided
into two parts:

1. Shared Workspace Control Panel, and
2. Application Window.

The Shared Workspace Control Panel provides the
interface to invoke various applications within a
conference. Once initiated, an Application Window
provides application-specific interface to the user.

Figure 7 represents the inter-relationship between the
components of the software architecture of DiCE
prototype.

5. CONCLUDING REMARKS

We have presented a framework for modelling collab-
orations in person-to-person, person-to-service, and
service-to-service domains. We have provided formal
semantics for collaborations, and have derived a set of
properties (namely, the participation, existential, and
temporal relations) essential for characterizing the beha-

THE COMPUTER JOURNAL,

VoL.36, No.1, 1993

202 Iidy 01 uo 1senb Aq 9Z€ L1 //8/L/9€/aI0ne/|ulwod/wod dno olwapese//:sdny wolj papeojumoq



96 H. M. VIN, M.-S. CHEN AND T. BARZILAI

Communication
Pipe

FIGURE 7. Software architecture of the DiCE prototype.

vioural semantics of collaborations. We have described
mechanisms for instantiating different types of collabora-
tions, and the design of a software architecture that
controls the progress of collaborations. The framework
for modelling collaborations and the software architec-
ture described in this paper form the basis of DiCE—a
desk-top Distributed Collaborative Environment being
prototyped at the IBM T. J. Watson Research Center,
and will be installed on the PARIS fast packet switched
networks in the AURORA testbed.

REFERENCES

[1] L. Aguilar, J. J. Garcia-Luna-Aceves, D. Moran,
E. J. Craighill and R. Brungardt, Architecture for a multi-
media tele-conferencing system, Proceedings of the
SIGCOMM ’86 Symposium on Communications Architec-
tures and Protocols, Stowe, VT, pp. 126-136 (1986).

[2] S. R. Ahuja, J. Ensor and D. Horn, The rapport multi-
media conference system, In Proceedings of COIS’ 88
Conference on Office Information Systems, Palo Alto, CA,
pp. 1-8 (1988).

[3] J.F. Allen, Maintaining knowledge about temporal intervals,
Communications of the ACM, 26(11), pp. 832-843 (1983).

[4] S. Angebranndt, R. L. Hyde, D. H. Luong, N. Siravara
and C. Schmandt, Integrating audio and telephony in a
distributed workstation environment, In Proceedings of
Summer 1991 USENIX Conference, Nashville, TN,
pp. 419-436 (1991).

[5] T. F. Bowen, F. S. Dworak, C. H. Chow, N. D. Griffeth,
G. E. Herman and Y. J. Lin, The feature interaction
problem in telecommunication systems, Bellcore
Technical Report (1989).

[6] S. Casner, K. Seo, W. Edmond and C. Topolcic, N-way
conferencing with packet video, Proceedings of the Third
International Workshop on Packet Video, Morristown,
NJ (1990).

[7] M.-S. Chen, Z.-Y. Shae, D. Kandlur, T. Barzilai and
H. M. Vin, A multimedia desktop collaboration system,
To appear in the proceedings of IEEE GLOBECOM 92,
Orlando, Florida (1992).

[8] T. Danielsen, U. Pankoke-Babatz, W. Prinz, A. Patel,
P. Pays, K. Smalland and R. Speth, The amigo project:
Advanced group communication model for computer-
based communications environment, In Proceedings of
the Conference on Computer Supported Cooperative Work
(CSCW '86), Austin, Texas, ACM Press, pp. 115-142
(1986).

[9] H. C. Forsdick, Explorations in real-time multi-media
conferencing, Proceedings of the 2nd International Sympo-
sium on Computer Message Systems, 1FIP, pp.331-347
(1985).

[10] W. Harrison, H. Ossher and P. Sweeney, Coordinating
concurrent development, In Proceedings of the Conference
on Computer Supported Cooperative Work (CSCW '90),
Los Angeles, California, ACM Press (1990).

[11] A. W. Holt, Diplans: A new language for the study and
implementation of coordination, ACM Transactions on
Office Information Systems, 6(2), pp. 109-125 (1988).

[12] R. Kamel, K. Emami and R. Echert, PX: Supporting
voice in workstations, IEEE Computer, 23(8), pp. 73-80
(1990).

[13] K. A. Lantz, An experiment in integrated multimedia
conferencing, In Proceedings of CSCW '86, pp. 267-275
(1986).

[14] T. D. C. Little and A. Ghafoor, Synchronization and
storage models for multimedia objects, I[EEE Journal on
Selected Areas in Communications, 8(3), pp.413-427
(1990).

[15] W. Prinz and R. Speth, Group communication and
related aspects in office automation, In Proceedings of
the IFIP TC 6/WG 6.5 Conference on Message Handling
Systems, Munich (1987).

[16] P. Venkat Rangan and H. M. Vin, Multimedia conferenc-
ing as a universal paradigm for collaboration, In Multi-
media Systems, Applications, and Interaction, Chapter 14,
Lars Kjelldahl (editor), Springer-Verlag, Germany (1991).

[17] S. Sarin and I. Greif, Computer-based real-time confer-
ences, IEEE Computer, 18(10), pp. 33—45 (1985).

[18] Z.-Y. Shae and M.-S. Chen, Mixing and playback of
JPEG compressed video, IBM Research Report, RC
16068, Also to be presented at GLOBECOM ’92 (1990).

[19] D. C. Swinehart, Telephone management in the
etherphone system, In Proceedings of the IEEE/IEICE
GLOBECOM 89, Tokyo, pp. 1176-1180 (1989).

[20] H. M. Vin, M.-S. Chen and T. Barzilai, A framework for
modeling collaborations, In Proceedings of the 1992 IFIP
International Conference on Upper Layer Protocols, Archi-
tectures and Applications (ULPAA '92), Vancouver,
Canada, Ed. G. Neufeld and B. Plattner, Elsevier Science
Publishers (1992).

[21] H. M. Vin, P. T. Zellweger, D. C. Swinehart and P. Venkat
Rangan, Multimedia conferencing in the etherphone
environment, IEEE Computer—Special Issue on Multi-
media Information Systems, 24(11), pp. 69-79 (1991).

[22] P. T. Zellweger, D. B. Terry and D. C. Swinehart, An
overview of the etherphone system and its applications,
Proceedings of the 2nd IEEE Conference on Computer
Workstations, pp. 160—168 (1988).

THE COMPUTER JOURNAL,

Vor. 36, No.1, 1993

202 Iidy 01 uo 1senb Aq 9Z€ L1 //8/L/9€/aI0ne/|ulwod/wod dno olwapese//:sdny wolj papeojumoq



