The Millar Polyhedron and its use in the
Construction of Octrees

R.J. MiLLAR,* M. E. C. HuLL* AND J. H. FRAZERT

*Department of Computing Science, University of Ulster, Newtownabbey, Co. Antrim BT37 0QB, UK
tDepartment of Design in Industry, University of Ulster, York Street, Belfast BT15 IED, UK

This paper presents the Millar Polyhedron, a cubic spiral, by mathematical definition. The defined

ordering is given by look-up tables and it is shown how these have a simple implementation on a computer

system. A link between this ordering and an octree data structure is then established and it is demonstrated

how the cubic spiral can be used to climb over voxel-based input data in the construction of an octree—

directly yielding the octree nodes due to its particular ordering. The paper concludes with the suggested
transputer implementation in occam 2 with some practical results.

Received August 1991, revised October 1991

1. INTRODUCTION

Octrees [1] are often constructed from model data in a
bottom-up manner [11]. Although these techniques only
reference each raw voxel value once, they involve the
building of (temporary) nodes, some of which will sub-
sequently be coalesced into a higher-order octree node.
This will take place if all eight children of a node have
the same value. At this point, the voxel values are being
indirectly inspected again and again.

This paper addresses this problem and introduces the
Millar Polyhedron as a linear octree construction tech-
nique with order o(n), where n is the number of voxels.

The Millar Polyhedron is presented in this paper as
a cubic spiral—a 3D space-filling curve [2]. Its recursive
definition is given mathematically before an efficient
implementation as a series of look-up tables is presented.
It will be explained how these tables provide a mapping
between a node within the space-filling curve and a
(x,y,z) co-ordinate in the cubic modelling space.
Examples will demonstrate the use of these tables.

It will be established that the ordering of the Millar
Polyhedron exactly matches that of a depth-first octree
traversal. Thus, using the Millar Polyhedron to direct
the path of a walk around the raw voxel data will
reference each voxel once and once only directly from
the voxel values as they are encountered. No temporary
or intermediate nodes are required.

Finally, the implementation of the recursive definition
in an iterative manner makes each application of the
table mapping an independent calculation. Thus, the
definition is inherently concurrent and a suggested trans-
puter [5] implementation is presented. Results from this
implementation are included to support this conclusion
and to indicate the time-complexity and linear nature of
the algorithm.

2. THE MILLAR POLYHEDRON

The Millar Polyhedron is a 3D space-filling curve. Cole
[1] has discussed the 2D Hilbert polygon [2] and related

it to quadtrees [10]. The Millar Polyhedron is essentially
a cubic spiral. Given a 3D cubic lattice of points—say
the centre points of the voxels of a modelling space—
the curve is defined to start at one corner of the lattice
and climb around every point to emerge at a different
corner. Each point is visited only once by the curve. A
mathematical definition follows before the curve is
applied to the construction of octrees.

2.1. Definition of the Millar Polyhedron

Define the zero-order polyhedron, M,, as a single point
in space.

In general, the ith order polyhedron, M; (i>0), is
formed recursively from the coupling of eight copies of
M;_,. Each of these copies will have a different trans-
formation applied to it before they are linked together
in a specified order into a cubic form. Figure 1 illustrates
M,, M, and M,.

The transformations which are applied to the eight
copies of the lower order polyhedron M;_, in the
formation of a polyhedron M are illustrated in Figure 2.

. /
0 /
Ny A

A 4

a

L]

<
«

a

M, M,

FIGURE 1. The Millar Polyhedra My, M, and M,.

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

THE MILLAR POLYHEDRON 187

n1 fotated M,, ; rotated
about y-axis about x-axis
by 1809 by -900 and
M,,., rotated reflected in
about z-axis ~—T y=0
by -900 and
reflected in M, rotated M, rotated M, rotated
x=0 about y-axis about x-axis / about x-axis
by 1800 by 900 and by -900 and
reflected in reflected in
y=0 T y=0
M, rotated M, rotated
about z-axis about x-axis
by 900 and by 900 and 2
reflected in reflected in y
x=0 y=0 +(i

FIGURE 2. Transformations on M;_, to form M;.

These eight transformed versions of M;_, are linked
together to form the Millar Polyhedron M, in the order
given by Figure 3.

2.2. Mapping of node number — (x, y, z) coordinate

To relate this voxel walk-round ordering to a cubic
modelling space, it is necessary to establish a mapping
from the node number (i.e. the value of a count of the
number of voxels already visited) to a (x, y, z) coordin-
ate—which typically would allow a datum value corres-
ponding to this coordinate to be extracted from a
database. These data values can be voxels belonging to
any application of spatial enumeration mod:lling. For
example, the authors have demonstrated the use of this
technique in modelling the data for X-ray absorption at
regular points within a patient as generated by a com-
puted tomography scanner [3, 4, 8]. Again, the mapping
is presented here in isolation from the application of the
technique.

Suppose the Millar Polyhedron M is traversing a set
of 23 nodes which are arranged in a cubic form of side
2/ nodes.

An efficient implementation of the mapping is based
on look-up tables which have the advantage of being
able to be pre-calculated for any Polyhedron M,. These
will find the (x, y, z) coordinate for the node number n
from 23 nodes numbered as 0 to 2*'—1 in exactly i table
accesses.

S 6

1 2

FIGURE 3. Order in which M; traverses M; _ .

The mapping requires a total of 24 tables. Only tables
(1) and (4) are presented in Figure 4 for the purposes of
illustration. The complete set of tables are appended.

These look-up tables are used in the following manner.

1. Express the node number n in binary form:

2. Group the digits in triplets a,a,a;, ajasag, etc.

3. Look up the first triplet, a;a,a;, in table (1). This will
yield x,, y, and z,—the first digits of the binary form
of the coordinates (x, y, z). The table look-up will also
yield the number of the next table which should be
accessed for the next triplet, if any. Note that all
leading zeros must be included in the binary form of
the node number.

With the defined ordering of M,, table (1) can first be
formed. This table relates the eight nodes of the M,
polyhedron, numbered as 0 to 7—the digit triple in the
table, to their (x, y, z) position in space. For this simple
polyhedron, each of x, y and z can only be 0 or 1. Tables
(2) to (6) represent M, under the five distinct transforma-
tions outlined in Figure 2 for the formation of M; from
M;_,. For example, table (4) is the rotation of M; by
180° about the Y-axis. The other tables are formed
by the composition of these transformations and it is

DIGIT NEXT
TRIPLET| x | y | z | TABLE

o0 [of|o]o 2

001 1]o]o 3

010 1|01 3

011 0]o]1 4

TABLE(1)Y 100 |0 | 1|1 4

101 1|11 5

110 1{1]o 5

111 o|l1]o0 6

000 1 (o1 15

001 0|lo]1 16

00 [o|o]o 16

011 1{ofo 1

TABLE (4) 100 1{1]o0 1

101 0|10 12

1m0 (o |11 12

111 1|11 8

FIGURE 4. Typical look-up tables for node number —(x, y, z)
coordinates

THE COMPUTER JOURNAL,

VoL.36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

188 R.J. MiLLAR, M. E. C. HuLL AND J. H. FRAZER

found that they form a closed set of 24 distinct
transformations.

Consideration of the orientations of the Millar
Polyhedron M,, leads to the conclusion that this set is
complete. The first node can be at any of eight positions
(the eight corner nodes of the cube), the second node at
any of three positions (the nodes which are adjacent to
the first node), similarly the third node at eight of two
positions and then the other nodes are dictated by the
polyhedron ordering. This might suggest 48 orientations,
but considering that, for example, the orientations of
Figure 5 are not differentiated, then each orientation
has one exact match traversed in the opposite direction.

Thus, we obtain

(8 x 3 x2)2=24

distinct (unordered) orientations.

2.3. Mapping of (x, y, 7) coordinate — node number

Depending on the application, it may be necessary to
reverse the Millar Polyhedron walk-round. For example,
an aircraft using a terrain model for navigation might
need to know what lies ahead at coordinates (a, b, c).
Obtaining this information requires an interrogation of
the model by node number. Thus, the inverse mapping
from (x, y, z) coordinates to node number is presented
for completeness.

Once again this mapping is achieved by a set of 24
look-up tables. These tables are the converse of those
presented in Section 2.2 and tables (1)’ and (4)’ are given
in Figure 6 for use in the example which follows.

The inverse mapping is performed in a similar manner
to that of Section 2.2. A xyz-triplet is formed by taking
the most significant bit of each of the x, y and z ordinates
expressed in binary. This is used as a key to table (1)’ to
yield the three most significant bits of the node number
in binary form. Again, the table which should be used
next for any remaining bits is quoted.

3. OCTREE CONSTRUCTION USING THE
MILLAR POLYHEDRON

It has been observed in Section 2.1 that the Millar
Polyhedron visits nodes in a spiral manner around a
cube. If this cube was divided into eight equal-sized sub-
cuboids, then it would be found that each of these sub-
cubes also has its nodes visited in the same fashion. This
would hold true if the sub-division was continued until

A

FIGURE 5. Identical orientations when unordered.

Xyz DIGIT NEXT
TRIPLET | TRIPLET | TABLE
000 000 2
001 011 4
010 111 6
Table (1)’ 011 100 4
100 001 3
101 010 3
110 110 5
111 101 5
000 010 16
001 001 16
010 101 12
Table (4)’ 011 110 12
100 011 1
101 000 15
110 100 1
111 111 8

FIGURE 6. Sample tables for the mapping of (x, y, z)

coordinates —» node number.

a point was reached where no further sub-division was
possible, i.e. the voxel level.

This process of sub-division is exactly the same
method as is used in the construction of a classical
octree [9]. If when traversing the voxels a count is kept
of the number of voxels having the same datum value
(be it colour or X-ray absorption), then this will collapse
identical voxels inside a cubic volume into a single data
value and count. The result of such an operation is that
the nodes of an octree can be directly constructed from
the output of the walk over the voxels using the path
dictated by a Millar Polyhedron.

A node counter is initialized to zero. The node number
to (x, y, z) mapping is applied and the voxel value at
position (x, y, z) is queried from the model database. If
the voxel value is the same as the previous node, a count
is incremented, otherwise the previous count and voxel
value is output and a new count started. The node
number is incremented and the process repeated. An
algorithm presentation is given in Section 4. The node
number to (x, y, z) mapping is the key aspect of this
algorithm. To provide a clearer understanding of the
mapping, two examples follow:

Example 1. What is the (x, y, z) coordinate for node
30 in a M, polyhedron?

Node 30,, = Node 011110,

First triplet is 011 and accessing table (1) yields the
sequence 0,0,1 for x, y, z respectively with the informa-
tion that table (4) should be accessed next.

Complete calculation:

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

THE MILLAR POLYHEDRON 189

Node # Digit Triples | Use Table # X |y z

011 1 001
110 @ 0 1 1
(Not needed) (12)

Reading out (x, y,z) by column yields (00,01,11), i..
(0,1,3). Figure 7 illustrates an M, system with axes x, y,
z. The character X marks the node number 30 (with
nodes numbered as 0 to 63). It can be seen that 0,1,3)
is the correct co-ordinate.

Example 2. What is the node number in a M,
polyhedron for (0,1,3)?

TRIPLET TABLE DIGIT
X 'y z # TRIPLET
0 0 1 ay 011
0 1 1 4y 110

Node number is 011110, or 30 (denary), which is correct
by the previous example.

Thus, it can be seen how the look-up tables provide an
iterative definition of the path of the Millar Polyhedron.

A typical data stream produced by the Millar
Polyhedron walk-round when used with an ‘identical
node’ count as a method of data compression might be

16, 23, 16, 25, 7, 24, 25, 23, 64, 10, 2, 19, ...

The entries in the data stream are essentially data tuples
of (number of voxels, colour number), (number of voxels,
colour number), ..., i.e. there are 16 voxels of colour 23,
followed by 16 voxels of colour 25, etc. The first 16

FIGURE 7. The position of node 30 in a M, polyhedron.

voxels in this example would be the first two cubes of
voxels walked over by the Millar Polyhdron ordering.

In octree construction, a number of voxels is sought
which is a member of the ‘cubic’ numbers (1, 8, 64, 512,
...) and which are of constant colour. This counting of
the voxels is from the start of the walk over. Thus,
taking the example data stream above, it can be seen
that the 16 voxels of colour 23 must be sub-divided to
the next lowest cubic number (8) as two cubes of 8
voxels of colour 23. Similarly for the next 16 voxels. The
seven voxels of colour 24 would have to form seven
‘cubes’ of one voxel of colour 24. The 25 voxels of colour
23 forms a total of 64 voxels from the start of the
encoding. Thus, the section of octree formed would be
as shown in Figure 8.

In summary, the data stream above is modified to
read as:

8,23,8,23,8,258,251,7,1,7
L7,1,7,1,7,1,7,1,7,1, 23
8,23,8,23,8,23,64,10,1,19, 1, 19, ...

Note also from this example how the next block of
voxels had to give up a single voxel to complete a sub-
divided cuboid. However, it does serve to illustrate how
the octree can be formed in a bottom-up manner by a
single, non-backtracking pass over the data stream. It
should be appreciated that the division of the Millar
Polyhedron directed walk-round data into cubic num-
bers can be achieved by a modification in the way in
which the algorithm counts its similar voxels. It is not
necessary to pass over the walk-round data as done here
to achieve this end.

A further level of data compression can be achieved
for a monochrome display system as it is not necessary
to record the colours. All that is required is a convention
that the first block of voxels are of foreground colour.
Then the next block must be of background colour, the
next of foreground colour, etc. Should the first block
need to be of background colour then simply record a
zero-sized block of foreground colour at the start.

4. ACONCURRENT IMPLEMENTATION

The application of the node number to (x,y,2) co-
ordinate mapping for any node is a completely independ-

FIGURE 8.

A section of octree formed from a data stream.

THE COMPUTER JOURNAL,

VoL. 36,

No. 2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

190 R.J. MiLLAR, M. E. C. HuLL AND J. H. FRAZER

ent calculation. Thus, the processing for a number of
nodes can be performed concurrently.

Since the Millar Polyhedron is a linear curve, visiting
(say) n nodes, concurrent octree construction can be
achieved by allowing the first processor to walk around
nodes 0 to (n/(number of processors))—1, the second
processor to walk around nodes (n/(number of pro-
cessors)) to (2*n/(number of processors))—1, and so on.
It is then only necessary to examine the last and first
tuple at a join of two partial curves to determine if they
have the same voxel value and thus to coalesce them to
one tuple.

An outline (sequential) implementation in occam 2
[6] of the octree construction algorithm is as follows. It
should be noted that this routine does not split counts
into any form of cubic number.

indeed the processor-bound nature of the task of octree
construction from voxel-based input data. The table in
Figure 9 quotes sample timings for completing a Millar
Polyhedron directed walk over voxel data in a cubic
modelling space of side 256 voxels using different num-
bers of T414 transputers at 10 MHz link speed. It
indicates a linear increase in effective processor power
against the number of transputers in use. It should be
kept in mind, however, that the walk over the input
data need only occur once for any given set of data.
Thereafter, the encoded data can be stored for future
reference.

Further concurrency can be achieved by pipelining
the table look-up operations. In processing 2*' nodes,
each node will require exactly i table look-ups. Each of
these i look-ups is dependent on the previous table for

PROCEDURE walkround (CHAN OF INT; INT from.walkround, VAL INT first.node, last.node)

SEQ
X, ¥, z:=node.no.to.xyz(first node)
datum: =from.database(x, y, z)—input data
last.datum: =datum
count: =1

SEQ node.no=first.node +1 FOR last.node—first.node

SEQ
X, y, z:=node.no.to.xyz(node.no)
datum: =from.database(x, y, z)
IF
(datum =last.datum)
count: =count+1
(datum < > last.datum)

SEQ
from.walkround ! count; last.datum
count:=1

last.datum: =datum
from.walkround ! count; last.datum

A parallel form of this algorithm can be easily obtained:

VAL INT no.processors IS 4:
VAL INT no.nodes.each IS no.nodes/no.processors:
[no.processors]CHAN OF INT; INT data.stream:
PAR

data.stream.joiner(data.stream)

PAR i=0 FOR no.processors

walkround(data.stream[i], i* no.nodes.each, ((i+1) *no.nodes.each)—1)

The only assumptions in this method are that the total
number of nodes is exactly divisible by the number of
processors, which is often the case (and if it is not then
this is easily overcome by a small modification to the
lastnode value on the final processor), and that the
input database is available to all processors.

This outline occam 2 code also illustrates the flexible
nature of this approach. When the number of processors
needs to be increased then only a simple change of a
constant is required.

Actual results obtained from such an implementation
confirm the concurrent nature of the algorithm and

Number of Transputers Time taken (minutes)
1 120
4 30
8 15
16 8

FIGURE 9. Typical times for a complete Millar Polyhedron walk
over 256° voxels of data.

THE COMPUTER JOURNAL,

VoL.36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

THE MILLAR POLYHEDRON 191

a ‘next table’ number, so no concurrency is available
there. However, if i processors are in a pipeline, the first
processor can perform the first table look-up for the
second node while the second processor performs the
second table look-up for the first node.

5. CONCLUSIONS

The Millar Polyhedron presents an efficient method of
climbing around voxel-based data in the construction of
a model which is to be held in an octree data structure.
It eliminates the need for temporary nodes and only
references each voxel once. It is a linear algorithm. The
look-up tables defined in the paper are an effective way
to specify the ordering and have the value of a fixed
speed of operation which is constant whatever the
current position in the ordering or whatever the level of
detail in the model. The tables need only be specified
once and this can be performed external to any applica-
tion package and the tables written into the applica-
tion code.

The form of the ordering and the data it produces are
ideally suited to the construction of octrees, being ident-
ical to that of a linear octree, i.e. a depth-first octree
traversal. An algorithm to do this has been presented
and implemented in a parallel processing system.

Analysis of the technique and the results obtained
from the transputer/occam 2 implementation have dem-
onstrated how the Millar Polyhedron walk-round is
inherently concurrent. The use of the transputers has
exploited this concurrency and provided a flexible and
an expandable system. Concurrent processing is vital to

deal with the processor bound nature of the task of
octree construction.

REFERENCES

[1] A.J. Cole, Compaction techniques for raster scan graph-
ics using space-filling curves. The Computer Journal, 30,
pp- 87-92 (1987).

[2] D. Hilbert, Ueber stetige abildung einer linie auf ein
flachenstuck. Mathematische Annalen, 38, pp.459-460
(1981).

[3] G. N. Hounsfield, Computerised transverse axial scan-
ning (tomography). British Journal of Radiology, 46,
pp. 1016-1022 (1973).

[4] M. E. C. Hull, J. H. Frazer and R. J. Millar, Octree-
based modelling of computed-tomography images. IEE
Proceedings Part 1. Communications, Speech and Vision,
137, pp. 118-122 (1990).

[5] INMOS Limited, The Transputer Reference Manual,
Prentice-Hall, New York (1988).

[6] INMOS Limited, occam 2 Reference Manual. Prentice-
Hall, New York (1988).

[7] D. Meagher, Octree Encoding: A New Technique for the
Representation, Manipulation and Display of Arbitrary
3-D Objects. TPL-TR-80-111, Rensselaer Polytechnic
Institute, Troy, NY (1980).

[8] R. J. Millar, Octree Construction for Imaging. DPhil
Thesis, University of Ulster (1989).

[9] M. A. Oliver and N. E. Wiseman, Operations on quadtree
encoded images. The Computer Journal, 26, pp.83-91
(1983).

[10] H. Samet, The quadtree and related hierarchical data
structures. ACM Computing Surveys, 16, pp. 187-260
(1984).

[11] K. Yamaguchi, et al. Octree-related data structures and
algorithms. IEEE Computer Graphics Applications, 4(1),
pp. 53-59 (1984).

THE COMPUTER JOURNAL,

Vor.36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

192

R.J. MiLLAR, M. E. C. HuLL AND J. H. FRAZER

APPENDIX: COMPLETE LOOK-UP TABLES FOR NODE NUMBER TO (x,y,z) MAPPING

Digit Next Digit Next
Triple | x | y | z | Table Triple | x | y | z | Table
000j0]0}|O0 2 00010]|1{1 17
00111]0¢}60 3 001 |1]1(1 13
01011]0¢}1 3 0101011 13
Table 01110071 4 Table 0111001 16
1) 100({0|1]1 4 ©) 100j0]0{O0 16
101 ({1]1]1 5 101 {1]0{0 1
110 (1|1]0 5 110|1]1{0 1
111 ({0|1{0 6 111 ({0]1(0 18
000f{0]0]0 1 000 (1]|1{0 10
001(0]1]0 7 001(1]0f0 19
010|011 7 010101 19
Table 0111001 8 Table 011 |(1]1{1 15
2) 1001101 8 ©) 1000 |1]1 15
101 ({1]1]1 9 101 (0|01 20
1101110 9 110{0]0]O 20
111 }1]0(0 10 111 {0110 1
000(0]0}]O 11 000|10]0¢}0 21
00111010 1 00110]1¢}60 2
010|1]11]60 010]1]1]60 2
Table 011{0|1/{0 12 Table 011 (1]0f0O0 19
3 100j0(|1]1 12 @) 1001101 19
101 1|11 13 101 j1(1]1 15
1101101 13 11010 1(1 15
111 {001 14 111 {0|0]1 22
000(1]0]1 15 000|0]1¢(1 13
00110]0]1 16 001]0]0]1 20
010(0]0/fO0 16 01010010 20
Table 011 (1]0¢(0 1 Table 011(0]1/{0 2
)] 100(1]1{0 1) 1001|110 2
101 j0f1]0 12 101 {1]0]0 19
110{0|1]1 12 110101 19
111 ({1]1]1 8 111 {1]1]1 4
THE COMPUTER JOURNAL, VoL. 36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

THE MILLAR POLYHEDRON

193

Digit Next Digit Next
Triple | x | y | z | Table Triple | x | y | z | Table
000|101 23 000f(0]1]1 8
001 j1]1(1 15 001111 5
0100111 15 010 (|1]1]0 5
Table 011|001 20 Table 011]0]1}0 10
® 100|]0]01]0 20 (13) 1001010710 10
101 |]0}11}0 2 101111070 3
1101(1]0 2 110110} 1 3
111 |1]0]0 24 11110011 15
000j1]1]0 6 00011011 16
001 (0]1]0 12 00111010 23
0100111 12 010]1}1]0 23
Table o11|1]1]1 13 Table O11|1]1}1 18
(10) 100|11]0]1 13 (14) 1000111 18
1011001 16 10101110 22
1100|010 16 110|000} O0 22
1111|010 2 111 (0]0}1 3
000(0]0]0 3 000}j1]0)1 4
00110011 21 001 |)1]1]1 9
010|0|1]1 21 010f1]11]0 9
Table 011]0}11]0 17 Table 011(1]01}0 6
(11) 100|1|1]0 17 (15) 100j]0]10}0 6
101|111 24 101101110 7
110101 24 1101011 7
111]11]10]0 16 1111001 13
000j1]1}0 18 000]1]0]1 14
001)]0]11]0 10 001(0]0]1 4
010]0]0}0 10 0100 1}1 4
Table 01111010 3 Table oO11f1]1]1 S
(12) 1001101 3 (16) 100j1]11]0 S
1011001 4 101j]0|1}0 10
1101011 4 1100|010 10
111 {111 17 1111110710 11
THE COMPUTER JOURNAL, VoL.36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

194

R.J. MiLLArR, M. E. C. HuLL AND J. H. FRAZER

Digit Next Digit Next
Triple [x | y | z | Table Triple | x | y | z | Table
000)0]1]1 5 000(0]0¢}0 7
001|10]1]|0 22 001|001 11
010(0]0¢}0 22 010|101 11
Table 011001 11 Table 011({1}0]0 23
a7 100j1(07]1 11 21) 100(1]1{0 23
101 (1}0]0 23 1011111 18
110{1]1{0 23 110({0|1}1 18
111 (1}1}1 12 11110]11}0 20
000f1]1¢}0 12 000 (0)1}1 20
001|111 24 00110]1]0 17
010]1]0]1 24 010j1]1{0 17
Table 011111010 14 Table 011)]1]1{1 24
(18) 100(0|0]O0 14 (22) 100]1]10]1 24
101 {001 21 101 ({1]0f0O 14
1101011 21 110100} 0 14
11110110 5 111 {001 7
0oo0|1]1]60 24 000[1]0¢}1 9
00111]0}0 6 001 (1]0|0 14
010(0]0}O0 6 01010070 14
Table 01110]11}0 7 Table 011 (0|01 21
19 100{0|1]1 7 (23) 100011 21
101 {0|O0]1 8 101 (0]1(0 17
110101 8 110(1]1{0 17
111|111 23 111 (1]|1{1 1
000{0]|1{1 22 000 (f1]1]0 19
001001 8 001 |1]1}1 18
010101 8 010|011 18
Table 0111|111 9 Table 01110]11}60 22
(20) 100|1|1]0 9 (24 100[(0]0}O0 22
101 {1]0{0 6 101 {00} 1 11
110({0]0f0 6 1101]0}1 11
111 {0]1{0 21 1111110} 60 9
THE COMPUTER JOURNAL, VoL.36, No.2, 1993

20z 1udy 01 uo 1sanb Aq G9¥SGE/981/2/9€/8191E/|UlWOo/Wod dNodlWepeo.//:SA)Y WOy PaPeojumMod

