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A reconfigurable array of processors (RAP) is defined to be an array of processors connected to a
reconfigurable bus system whose configuration can be dynamically changed. For an n x n image and
m x m template, a constant time algorithm for template matching is proposed on a RAP with
m x m x nx nx n processors when the domain of the image and the template is Boolean. Even if the
domain is integer and each integer is bounded and represented by a g¢-bits binary sequence, a constant
or O(log* m) time algorithm is still obtained. The number of processors needed is increased to
2gm? x 2qm* x maxim,n} x n x n and m*> x m* x max{m?, n} x n x n, respectively. An O(log m) time
algorithm also derived for the domain is integer or real but the number of processors is reduced to
mxXxmXxXnxnXn.
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1. INTRODUCTION

Most image processing and computer vision problems
are intensive in computation and involve parallel pro-
cessing on the pixels of the image. Several architectures
have been proposed for parallel image processing: these
include cellular arrays [27], pyramid structures [36],
reconfigurable meshes [19], hypercube machines
[8-12,24-26], and the reconfigurable array of pro-
cessors (RAP). The algorithm proposed in this paper is
based on a RAP.

In image processing and computer vision, template
matching is a basic operation used for filtering, edge
detection, image registration and object detection [32].
Template matching can be described as comparing a
template (window) with all possible windows of the
image. The result of each window operation is stored in
a location corresponding to the top left-hand corner of
the window. Let im(i,, i,) represent an n x n image where
0<i,iog<n. Let w(iy, i3) represent an m x m template
where 0 <i,, i3 <m. Assume the image and the tem-
plate have the same domain D. Then the result
c(iy, ip), 0<iy, ig <n, is given below:

m—1m—1

iy, ig)= >, Y im((i, +i,) mod n,

is=0i3=0

(ip + i3) mod n) X Wiy, i3) (1

From Equation (1), for each c(i,, iy) there are m by m
product terms. The sum of m by m product terms takes
O(m?) time in a unit processor. Therefore, Equation (1)
can be computed in O(n* x m?) time in a unit pro-
cessor system.

Many researchers have proposed their algorithms for
template matching [8-12,24-26, 32]. Unlike previous

algorithms, however, our algorithm runs in constant
time and uses polynomial processors.

Modern VLSI technology makes possible the con-
struction of parallel processing systems that employ
thousands of processors. Recent developments in VLSI
technology have inspired many researchers to do
research on parallel computation. Parallel computation
is not only of pure theoretical interest but also of
practical value in applications. Owing to the inherent
parallelism, the execution time of an algorithm cannot
be significantly improved even on the concurrent read
concurrent write (CRCW) model by simply increasing
the number of processors. Higher time complexity may
be required when algorithms are developed on more
feasible parallel systems which are constructed by an
interconnection network. One very attractive intercon-
nection scheme is the two-dimensional mesh-connected
computer (mesh) because of its simplicity and regularity.
However, the communication diameter of 2D n!/? x n!/?
mesh is @(n'/?). Hence, the lower bound for those
algorithms that require global exchange of data are
Q(n'/?). Recently, many researchers enhanced long dis-
tance communication by adding additional communica-
tion links to the mesh in order to improve the execution
time of an algorithm. These include the pyramid com-
puter [7,21,36-37], the mesh-of-trees [14,23], and
meshes with broadcast buses [1,3-5,13,34-35].
Nevertheless, these architectures are static in nature.
That is, the architecture cannot be altered during the
execution of an algorithm. There are many algorithms
that require their supported interconnection scheme to
be changed during their execution. Therefore, an array
of processors connected to a reconfigurable bus system
is more suitable for such algorithms.
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A reconfigurable bus system is a system whose config-
uration can be dynamically changed. These include the
bus automaton [28, 30], reconfigurable mesh [17], poly-
morphic-torus network [15] and an array of processors
connected to a reconfigurable bus system (RAP)
[2,38-41]. A bus automaton consists of a cellular auto-
mation augmented with a locally siwtchable global
communication network. Problems that have been
studied on the bus automaton involve pattern recognition
[16,29, 31], parsing of formal language [22] and longest
common subsequence [6]. A reconfigurable mesh consists
of a square array of processors which are connected to
a gird-shaped reconfigurable bus system. The processors
are situated at the grid intersection points of the bus.
Each processor has four locally controllable bus switches
to adjust the configuration of the bus system. Miller et
al. [18-207] have studied several problems such as graph,
image and geometry on reconfigurable mesh. The poly-
morphic-torus network is similar to reconfigurable mesh
except that in the polymorphic-torus network there are
arbitrary crossbars at each processor to control connec-
tions between the north, south, east, and west bus ports.
Therefore it can embed tree, ring, mesh, pyramid and
hypercube efficiently by establishing the programmable
local switches [15]. The RAP is similar to a recon-
figurable mesh except that in the RAP they are multi-
dimensional. Therefore, the reconfigurable mesh and
polymorphic-torus network are functionally equivalent to
a 2D RAP. Wang et al. [39] have shown that the 2D
RAP is at least as powerful as the CRCW shared-
memory computer. Efficient algorithms on a RAP have
been developed for many applications such as graph
[18,38], image [19], geometry [20], sorting [41] and
string processing [6].

In this paper, when the domain of both the image and
the template is Boolean, a constant time algorithm
for template matching is proposed on a RAP with
mx m x n X n x n processors. However, if the domain of
the image and the template are integers and each integer
is bounded and represented by a g-bits binary sequence,
a constant or O(log* m) time algorithm is still obtained.
But the number of processors is increased to
2gm? x 2qm® x max{m,n} x n x n and m? x m* x max
{m?, n} x n x n, respectively. Furthermore, we also derive
an O(log m) time algorithm for which the domain is
integer or real using m X m X n X n X n processors.

The rest of the paper is organized as follows. The
RAP on which the constant time algorithms are based
is described in Section 2. Section 3 presents several basic
data operations. The constant time algorithm for tem-
plate matching is proposed in Section 4. Finally, some
concluding remarks are included in the last section.

2. RAP AND BASIC NOTATIONS

A k-dimensional (k-D) RAP of size N contains N pro-
cessors arranged in a k-D grid. That is, the bus system
can be thought of as logically arranged as in a k-D array

Ay -y, M—2, ..., No), Where n;, 0<j<k, is the size of
the jth dimension and N =n,_; X n_, X ... X ny. Each
processor is identified by a unique k-tuple index
ig), 0<j<k, 0<i;j<n;. The processor
with  index  (it_y,ik_2,.--,ip) 1S denoted by
P, .. .. .- Each processor has 2k ports denoted by
—8; +8;,0<j<k. Processor P, _ ; i, ..., connects
its port +S; to the i-dimension bus and processor
P i avijern....ip AlSO connects its port —S; to the
i;-dimension bus, for 0 <j <k and 0 <i; <n;.

Each processor can perform arithmetic and logic
operations. We assume that each arithmetic (logic)
operation takes one time unit. Any configuration of the
bus system is derivable by properly establishing the local
connections among ports within each processor. Each
processor can communicate with other processors by
broadcasting data on the bus system. We also assume
that each broadcasting takes one time unit. If more than
one processor attempts to broadcast data on the same
bus simultaneously, then a resolution scheme should be
applied; otherwise, a collision occurs and the final data
received are unexpected. We allow multiple processors
to broadcast data on the different buses simultaneously
at the same time unit.

To represent the local connection within a processor,
we use the notation {go},{g,},...,{g_1}, where g,
0<i<t, denotes a group of buses that are connected
together [38—41]. That is, each processor has t connec-
tions and each connection is described by g;,0 < i < .

Let var(iy_q,ix—2,...,io) denote the local variable
var (memory or register) in a processor with index
ik—1,0k—2,...,0p. For example, sum(0,0,1) is a local
variable sum of processor P, . ;.

A RAP is operated in a single instruction stream,
multiple data streams (SIMD) model. An enable/disable
mask can be used to select a subset of the processors
that are to perform an instruction. Only the enabled
processors will perform the instruction. The remaining
processors will be idle. The set of enabled processors
can change from instruction to instruction.

The bus bandwidth between processors is not unlim-
ited. We assume the bus bandwidth is bounded by g-
bits wide where g is a constant. Therefore, g-bits data
can be transferred between processors in a unit time.
The I/O loading (upload or download) time is fully
dependent on how complex the I/O interface between
processors and peripherals will be. An application for
parity check of a binary sequence was proposed by Ben-
Asher et al. [2]. They used an initializing network to
deliver the input binary sequence to the switches of a
2D RAP. Therefore, the complexity of an algorithm is
assumed the sum of the computation time of processors
and the communication time among processors. This
assumption was also used by many researchers
[2, 6, 18-20, 38-41].

We show an example for a 2D 4 x4 RAP in
Figure I(a). By establishing the local connection
{—So, +8,}, {—S;, +S,} for each processor, a dog leg

(ik*19 ik—Z’ cees
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w

FIGURE 1. A 2-D n, x ny RAP, where n; =ny=4.(a) A
4 x 4 RAP. (b) A dog leg configuration.

configuration is shown in Figure 1(b). Figure 2 shows a
3D 4 x 4 x 4 RAP.

3. BASIC DATA OPERATION

Some data operations will be described in this section.
These data operations are used for deriving efficient
algorithms in Section 4.

3.1. Transpose of a matrix

Let A=a(i,, i), 0<i;, iy<n, be a data matrix.
Then the transpose of A, A', is defined to be
At =ta(i,, iy), 0<i,, io <n, where ta(i,,i,)=a(i, ig).
Consider a 3D n x n x n RAP. Conceptually, a 3D RAP
can be partitioned into n2Dn x n RAP,’s which are
denoted by 2D-RAP,’s, 0 < i, < n. A constant time trans-
pose algorithm is presented on a 3D nxnxn RAP.
Initially, the data matrix, A, is stored in the local variable
a(0, i, iy) of 2D RAP. Finally, the transpose matrix, A',
is stored in the local variable ta(0, iy, i;). The transpose
algorithm (TA) is listed as follows.

Procedure T A(a, ta):

Step 1://Step 1-3: Copy the i,th row of a(i,, iy) to
the diagonal of 2D-RAP; . //

FIGURE 2. A4 x4 x4RAP.

Set ta(0, iy, i) to a(0, iy, iy), 0<iy, ig<n.
Step 2:

Copy ta(0, iy,ip), 0<iy, iog<n, to ta(i,, iy, iy),
through the i,-dimension bus (all processors establish
the local connection {—S,, +S,}) on which it is
connected.

Step 3:

Copy taliy, iy, ig), 0<iy, ig<n, to ta(iy, ig, i),
through the i,-dimension bus (all processors establish
the local connection {—S;, +S,}) on which it is
connected.

Step. 4: // Step 4-5: Copy the diagonal of 2D-RAP;, to
the i, th column of ta(iy, i;).//

Copy taliy, iy, o), 0<iy, ig<n, to taliy, iy, iy),
through the iy,-dimension bus (all processors establish
the local connection {—S,, +S,}) on which it is
connected.

Step 5:

Copy taliy, iy, iy), 0<iy, ig<n, to ta(0, iy, i),

through the i,-dimension bus on which it is connected.

End TA.

LEMMA 1. The TA procedure can be executed in O(1)
time on a 3D n x n x n RAP. Initially, the data matrix, A,
is stored in the local variable a(0,i,,iy) of 2D-RAP, for
all 0<iy,ig<n.

Proof. Clearly, the algorithm is correct. The time
complexity is analyzed as follows. Steps 1, 2, 3, 4 and 5
take O(1) time, respectively. Hence, the time complexity
is O(1). QED

3.2. Rotation

Let A =a(i,, iy), 0<iy, iy <n, be a data matrix. Assume
the data matrix, A, is stored in the local variable a(0, i,,
ip), 0<iy, ip<n, of 2D-RAP,. Define RUA(a,i),
0 <i<n, as a circular shift up operation in which the
data of i; row of A in processor Py ;, ;,, 0 <iy, io <n,is
moved to the (i;—i)modn row of A in pro-
cessor Py (i, —iymodn.i,- Lhe rotate up algorithm (RUA) is
listed as follows.

Procedure RUA(a, i):

Step 1:

Copy a(0, iy, iy), 0 <iy, ig <n,toaliy, iy, ip) through
the i,-dimension bus.
Step 2:

Copy aliy, iy, ip), 0<iy, ip <n, to a(iy, (i; — i) mod
n, iy) through the i;-dimension bus.
Step 3:

Copy al(iy, (iy —i) mod n, iy), 0< iy, ig <n, to a(0,
(i, — i) mod n, iy) through the i,-dimension bus.

End RUA.

Define RLA(a, j), 0<j<n, as a circular shift left
operation in which the data of i, column of A4 in
processor Py ; ;,0<i;,io<n, is moved to the
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(ip —j) mod n column of A in processor Py ;. i, jymodn-
The rotate left algorithm (RLA) is listed as follows.

Procedure RLA(a, j):

Step 1:

Call TA(a, b).
Step 2:

Call RUA(b, j).
Step 3:

Call TA(b, a).

End RLA.

Finally, define RULA(a, i, j),0 <1, j<n, as a circular
shift up and left operation in which the data of i; row
and iy column of A in processor Py ;, ;,, 0 <iy,ip<n,is
moved to the (i; — i) mod n row and (i, —j) mod n column
of A in processor Py i, —iymodn, (io—jymodn- LNE TOtate up
and left algorithm (RULA) is listed as follows.

Procedure RULA(a, i, j):

Step 1:
Call RU A(a, i).
Step 2:
Call RLA(a, j).
End RULA.

LemMMA 2. The RUA, RLA, and RULA procedures
can be executed in O(1) time on a 3Dnxnxn RAP,
respectively. Initially, the data matrix, A, is stored in the
local variable a(0, i, iy) of 2D-RAP, for all 0 <i,, iy <n.

Proof. We prove that the RLA procedure is correct.
The correctness of other procedures clearly follows. Let
a'(iy, iy), 0 <iy, ip < n, be the matrix after matrix a(iy, io)
is rotated left j positions, where da'(iy,iy)=
a(iy, (ig +j) mod n). After Step 1 of RLA procedure, b(i,,
io)=aliy, i), 0<i;, ip<n, by Lemma 1. Let
f(iy, o), 0 < iy, iy < n, be the matrix after matrix b(i,, io)
is rotated up j positions by Step 2 of RLA procedure,
where f(i, io) = b((i, +j) mod n, iy). Let d(i,, iy) be the
transpose matrix of f. Then after Step 3 of the RLA
procedure,

d(iu io) = f(io, i1),
= b((iy +j) mod n, i)

0<i,, ig<n

=a(i,, (i +j) mod n)
=d'(iy, o)

The O(1) time complexity can be easily verified for each
procedure.

3.3. Logical operations

LEMMA 3. (Miller et al. [19]): Given a linear RAP of
size n (or an n x n RAP), in which each processor stores
a Boolean data, the logical OR (or AND) of these data can
be computed in O(1) time. Let the logical OR (or AND)
algorithm be denoted as ORA(data) (or AND A(data)).

CaCalwmOt
00—

3.4. Linear matrix

Let A=al(i,,ip), 0<i,, iop<n, be a 2D data matrix.
The linear matrix of A, A’, is defined to be A =
b(r),0 <r<n? where r=1i, + i, x n. Assume the data
matrix, A, is initially stored in the local variable
a0, iy, iy), 0 <iy, ip <n, of 2D-RAP,. Finally, the linear
matrix, A/, is stored in the local variable
b(0, i, + iy x n, 0). The linear operation algorithm (LOA)
is listed as follows.

Procedure LOA(a, b):

Step 1: //Copy the igth column of a(i;,i;) to the
diagonal of 2D-RAP, . [/
1. Copy a(0,iy,ip), 0<iy, ig<n, to ali,iy,io)
through the i,-dimension bus.
2. Copy alip, iy,i0), 0<iy, ig<n, to alip, iy, i)
through the i,-dimension bus.
Step 2: // Shift down the iyth column of a(i,, iy) at the
diagonal of 2D-RAP, by i, x n positions and put the
result to b.//
1. Copy aliy, iy, i), 0<iy, ip<n, to
a(ig, i; + i X n, i;) through the i;-dimension bus.
2. Copy aliy, i;+igxn, i), 0<i;, ip<n, to
a(ig, i; + ig X n, 0) through the i,-dimension bus.
3. Copy alig,iy +iy xn,0), 0<i;, ip<n, to
b(0, i, + iy x n, 0) through the i,-dimension bus.

End LOA.

LEMMA 4. The LOA procedure can be executed in O(1)
time on a 3D n x n®> x n RAP. Initially, the data matrix,
A, is stored in the local variable a(0,1i,, iy) of 2D-RAP,
for all 0 <iy, iy <n.

3.5. Summation

LEMMA 5. (Wang et al. [40] and Ben-Asher et al. [2]):
Let nis, the summation of i integers, be defined as

i—1
nis= Yy a,
ig=0
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where a;, and nis are bounded and represented by a g-bits

binary sequence and q is a constant. That is,
a,~0 = bio,q—17 bio.q—Z’ ceey bio.O and nis = Sm—1sSm—25++530>
where nis=(a;_+a;_, ... +ag) mod 2. Initially,
biyr, 0<ig<i,0<r<gq, is stored in processor

Piori1yi+iy,0 by Wang et al. [40] or a;,, 0 < ip <i is stored
in processor Py ; o by Ben-Asher et al. [2], respectively.
The summation of i integers can be computed in O(1) time
(Wang et al. [40]) and O(log* i) time (Ben-Asher et al.
[2]) on a 2D 2qix2qi RAP and 3D i xixi RAP, respect-
ively. log* i denotes log ... x times ... log i.

If A is a 2D integer matrix and matrix A is stored in
a 2D RAP, we can first transfer matrix A into a linear
matrix B by Lemma 4 then sum each element of matrix
B by Lemma 5. Each integer and the sum are bounded
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as those assumed by Lemma 5. This leads to the
following lemma.

LEMMA 6. The summation of ixi integers can
be computed in O(1) time and O(log*i) time on
a 3Dix2qi*x2qi* RAP and 3Di*xi*>xi* RAP,
respectively.

4. TEMPLATE MATCHING WITH n*m?
PROCESSOR ELEMENTS

Assume the domain D of the image and the template is
Boolean. The product and sum operators are logical EQ
and AND, respectively. Initially, the image and template
are stored in the local variables im(0, 0,0, i,, iy), 0 <i,,
ip<n and w(0,0,0,i,,i3), O0<i,, i3<m of
2D-RAPy 4.0.i,.i,» Tespectively. Finally, the result,
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cliy, ip), 0<i;, ig<n, is stored in the local variable
¢(0,0,0,i,,iy) of 2D-RAPy ¢ 0-

There are m x m product terms for computing each
element of Equation (1). Let the m x m product terms of
cliy, io), im((i; + iy) mod n, (iy + i3) mod n) EQ w(iy, i3), be
computed in processor P;, ;. 0.:,.:, of 2D-RAP;, ;, o for
all0<i,, iy <mand 0<i,, i, <n. Inorder to implement
this idea, first copy the image and template from the
2D-RAP, .o to all 2D-RAP;, ;. o,0<i,,i3<m. Then
each 2D-RAP,, ;. 0,0 <y, i3 <m, aligns the image and
the template data based on its index. That is, perform
RULA(im, iy, i3) and RULA(w, i, i3) in parallel, respect-
ively. Then copy w(is, i3, 0,0,0) to w(is, i3, 0, i, i) for
all 0 <iy,iz<mand 0<i;, i, <n.

Therefore, each processor has one image element and
one template element. All processors compute the prod-
uct terms simultaneously. Finally, the nxn sum of
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products are moved to 2D-RAP, . The template
matching algorithm (TMA) is listed as follows.

Procedure TM A(im, w, c):

Step 1: //Copy the image and template of 2D-
RAP, o, to all 2D-RAP;, ;, o, 0 <iy, iz <m.//

1. Copy im(0,0,0,i,, i) to im(0, i3, 0, iy, ip), 0 < iy,
ip <n, 1 <iy<m, through the i3-dimension bus
(all processors establish the local connection
{ - S3 > + S3 })

2. Copy im(0,i5,0,i;,i5) to im(iy,is3,0, iy, i),
0<iy,ig<n, 1<iy,<m, 0<iy<m, through the
i,-dimension bus (all processors establish the
local connection {—S,, + S4}).
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FIGURE 3. (a) A 4 x 4 image and 3 x 3 template. (b) Initially, the
image and template are stored in the local variables im(0, 0, 0, iy, iy)
and w(0, 0, 0, i, i3), respectively, of 2D-RAP, , o for all 0 < iy, i3 <m,
0<i,, iy <n.(c) After Step 1. (d) After Step 2.2. (e) After Step 2.3.
(f) After Step 3. (g) After Step 4.

3. Copy w(0,0,0,i,,iy) to w(0,is,0,i,iy), 0<1iy,
io <m, 1 iy <m, through the i;-dimension bus.
4. Copy w(0, i3, 0, i, iy) to w(iy, i3, 0,1, i), 0 <is,
iy, ip<m, 1 <i, <m, through the i -dimension

bus.
Step 2: // Align image and window. //
1. For each 3D-RAP; ;,, 0<i,, iy<m, call
RULA(im, iy, i3).
2. For each 3D-RAP;,;,, 0<i,, iz<m, call

RULAW, iy, i3).

3. Establish the local connection {—S,;, +S;,
—So, +S0} for processor Pi, 10000000
0<iy, i3<m 0<iy, ip <n. Copy w(iy, i3, 0,0,0)
to Wliy, iy, 0,1y, 1), 0<is,iz<m, 0<iy,io<n,
through the established bus.

Step 3: // Compute the product terms. //
Set iy, i3, 0,iy,i0) to im(is,is,0,iy,ip) EQ
W(iy, i3, 0,0y, 00), 0 < iy, iz <m, 0<iy,ip<n.

Step 4: // Accumulate the sum of products. //

Set  ¢(0,0,0,i,i,) to ANDA(c(iy,is,0,iy,io)),

0<iy,iz<m, 0<iy,ig<n.

End TMA.

We show a snapshot of template matching in Figure 3,
where n=4 and m=3. We use (im, w) to represent the
image and the template respectively in Figure 3(b—e).

THEOREM 1. The TM A procedure can be computed in
O(1) time on a SDm x m x nx nx nRAP. Initially, the
image and the template are stored in the local variables
im(0, 0,0, i,, iy) and w(0,0,0, iy, i), respectively, of 2D-
RAP, 4.0 for all 0 <iy, iy <m, 0<iy,ip<n.

Proof. The correctness of this algorithm directly
follows from Equation (1). The time complexity is ana-
lyzed as follows. Steps 1 and 3 take O(1) time, respect-
ively. Step 2 takes O(1) time, as shown by Lemma 2.
Step 4 takes O(1) time, as shown by Lemma 3. Hence,
the time complexity is O(1). QED

Note that when the domain D of the image and the
template is quantized into g-bits binary sequence, an
0(1) or O(log* m) time algorithm for template matching
can be obtained as the sum of products (Step 4 of TMA)
can be computed in constant time as shown by Lemma 6.
However, the number of processors is increased to
2gm? x 2qm* x max{m,n} x nx n and m? x m* x max
{m?, n} x n x n, respectively. The sum of products (Step 4
of TMA) can be obtained in O(logm) time by bus
splitting technique [19] for the domain D is integer or
real and the time complexity is increased to O(log m)
time but the number of processors is reduced to
mXmXnXnXn.

5. CONCLUSIONS

In this paper, we propose a constant time algorithm for
template matching using a RAP. Template matching is
a computation intensive task. It also requires inter-
processor communication. Although the communication
is localized to windows of size m x m, it may lead to
non-optional performance on the parallel processing
system if not carefully implemented [8-10, 12,24-25].
The architecture of RAP is not only simple and regular
but also reconfigurable. Therefore, the communication
overhead can be reduced to O(1). Hence, many problems
such as image, graph, sorting, geometry and string
processing can be solved in constant time by establishing
the suitable configuration of the bus system
[2, 6, 18-20, 38-41].

Note that the complexity of a switch in a RAP is fully
dependent on how many dimensions of a RAP and the
bandwidth between processors will be. It is still practical
as there are two VLSI implementations that have demon-
strated the feasibility and benefits of a 2D RAP, one is
the YUPPIE (Yorktown Ultra-Parallel Polymorphic
Image Engine) chip [15] and the other is the GCN
(Gated-Connection Network) chip [33]. Like the CRCW
shared-memory model, there is a gap between the theor-
etical RAP model and the physical implementations. We
agree the connection delay will depend on the problem
size so that the constant time for broadcasting delay is
not true. However, although it is not true, the broad-
casting delay is very small. For example, in a 10°
processors YUPPIE, only 16 machine cycles are enough
for broadcasting. Using the pre-charged circuits, the
GCN has further reduced the delay. With the advance
of VLSI technology, we believe that the gap will be
narrowed down and a practical RAP machine will be
built in the near future.
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