The Formal Specification of the ISO Open
Document Architecture (ODA) Standard

W. APPELT* AND N. TETTEH-LARTEYT

* Gesellschaft fiir Mathematik und Datenverarbeitung, Bonn, Germany
+ The National Computing Centre, Oxford Road, Manchester M1 7ED, UK

This paper presents a survey on an application of a formal description technique called IMC and language
called IMCL in the context of an International Standardization project on Document Structure and
Processing and gives a brief tutorial on the use of IMCL.

Received April 1992, revised July 1992

1. INTRODUCTION
1.1. What is ISO 8613—ODA?

ISO 8613—O0pen Document Architecture (ODA) and
Interchange Format' is a multi-part International
Standard [5], the development of which was carried
out in harmony with the CCITT (the International
Consultative Committee for Telephony and Telegraphy)
Study Group VIII, who produced the T.410 Series of
Recommendations—technically identical to ISO 8613.
The driving force for the development of ODA was the
need for open transfer of ‘fixed’ or ‘revisable’ documents.
Open transfer means that a recipient and creator need
no a priori agreements and thus need not have any
understanding of each other’s systems in order to
exchange documents. For a complete and concise
description of the ODA standard see [1].

ODA was produced to satisfy an increasingly rapid
growing need for users to easily share electronically held
information across many different computer systems.
This is particularly true for large user organizations who
typically have a variety of equipment each with a number
of word/document processing packages. These organiza-
tions have turned to communication protocol Standards
to provide interconnectivity between different equipment
and harmonized interworking (i.e. open transfer).

To achieve open transfer it is expected that OSI (Open
Systems Interconnection) protocols such as FTAM
(ISO 8571—File Transfer, Access and Management) and
MHS (CCITT’s X.400 series of recommendations for
Message Handling Systems) or at a simpler level just
exchange of magnetic media will be employed. The ODA
documents are represented using the Open Document
Interchange Format (ODIF), Part S of ISO 8613. ODIF
(the transfer syntax) is encoded for system independent
data transfer using the standard ASN.1 encoding rules
(ISO 8825—the Specification of basic encoding rules for
Abstract Syntax Notation One). At present, ODA sup-

! The original title ‘Office Document Architecture (ODA) and
Interchange Formats® had been changed by ISO in 1991 to reflect the
broader scope of the Standard.

ports three kinds of content, i.e. character, raster graphics
and geometric graphics content which are based on
ISO 6937 (the Coded character sets for text communica-
tion) for character content architecture, CCITT T.4, T.6
(Group 3 and Group 4 facsimile coding schemes) and a
‘bitmap’ encoding for the raster graphics content archi-
tecture and ISO 8623 (the Computer Graphics
Metafile—CGM) for the geometric graphics content
architecture. ODA can achieve all this through standard-
izing the semantics of the structural and content elements
of documents.

The use of ODA is considered central by ISO and
CCITT for the transfer of information within and
between Open systems, and a framework of extensions
to ODA is currently being developed by these organiza-
tions to allow a proper interrelationship with existing
standards such as those for user-system interfaces and
data bases.

1.2. The ODA information model

ODA clearly separates the logical aspects of documents
containing elements such as author, chapter and para-
graph and the layout aspects containing elements such
as page, column and blocks from the type of content
(character text, raster and/or geometric graphics) which
is shared by both views. ODA thus clearly demonstrates
its object-oriented architectural model concepts, which
in the future will easily allow for additional content
types such as audio, mathematical equations and video
to be incorporated. According to this model a document
is viewed as a set of objects with each object consisting
of a set of attributes as shown in Figure 1. Here the
components of the ODA information model (sometimes
called the descriptive representation) are shown. These
being the specific structure (or description) which refers
to an instance of a document and not generic structure
which refers to a class of documents. The logical structure
(or description) groups the contents of a document
according to its logical view. Conversely, the layout
structure (or description) looks at a document from its
physical appearance and groups its contents accordingly.

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

270 W. APPELT AND N. TETTEH-LARTEY

DOCUMENT —
DESCRIPTION Profile
DOCUMENT BODY R
3
[GENERIC PART
e .
GENERIC LOGICAL DESCRIPTION GENERIC LAYOUT DESCRIPTION \
Logical Layout
t Cl
Bestpaon BastApion
1 1 1 1
1 1 1 1
i | 1 1 1
ical Content Layout Content
Lojsct Portion byjad Portion .
SS. . Description lass. Description
k escription escription
s
L ~ g
[STYLE PART)
N
[- LAYOUT STYLE SET PRESENTATION STYLE SET
Presentation|
K3 Style
\ J
[)
SPECIFIC PART
4 SPECIFIC LOGICAL DESCRIPTION A
.
Layout h
Boot .
escription
: | . |
1 1
Logical Content Layout Content
o%?ecg) Portion Ob’{ect Portion
Description Description Description Description
L.
L SPECIFIC LAYOUT DESCRIPTION J
\) J
= —

CONSTITUENT SETS OF CONSTITUENTS

FIGURE 1. The descriptive representation of a document.

The figure uses the terms specific and generic to qualify
layout and logical structures (e.g. the Generic Layout
Structure or the Specific Logical Structure). Additionally
there is a style part (a set of objects called layout style
set) which contains information for logical-layout-rela-
tionships such as starting a chapter on a new page, or
content-presentation features responsible for altering, for
example, line spacings (these are called the presentation
style set).

ODA documents may be in formatted, processable
and formatted-processable form. The first form allows
no processing, so that a document can be presented
(printed or displayed) as intended by its creator; the
second form allows a recipient to do whatever he/she
wishes to a document; the final form satisfies both
previous forms. In formatted form, for instance, an ODA
document does not contain a specific or generic logical
structure but must contain a specific layout structure.

In processable form, on the other hand, the specific
layout structure will be missing.

1.3. Information Modelling by Composition Language
(IMCL)

Information Modelling by Composition (IMC) is a
technique for describing information structures and
operations on those structures. It has an associated
language (IMCL) which is based on well defined syntact-
ical and semantic constructs [4]. The language is well
suited to expressing information structures which are
complex in nature, in a rigorous and unambiguous
fashion. One of its principal strengths is that it was
designed for a well delimited domain of application,
hence it does not try to incorporate an over-ambitious
ability to do everything, but rather applies itself to
succinctly and accurately specifying what it was designed
to do.

THE COMPUTER JOURNAL,

VoL.36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

THE FORMAL SPECIFICATION OF THE ISO ODA STANDARD 271

IMCL is a first-order language for modelling informa-
tion objects and their transformations. It is not a system
specification language although it can be used in com-
bination with such a language, for example, as an
annotation language for Petri Nets as demonstrated by
Richter and Durchholz with an earlier version of IMCL
[7]. So, IMCL does not address specification of proto-
cols and systems in general as other formal description
techniques do, e.g. SDL, LOTOS, Estelle, VDM, CSP,
etc., an up-to-date review of these specification techniques
(and others) can be found in [8].

To date IMCL has an important field of application
namely in the area of information systems standardiza-
tion and in particular to ISO 8613. However within and
around that scope many independent projects have been
initiated where IMCL has played an integral role. These
projects will be surveyed in general later in this paper.

1.4. Applying IMCL to ODA

In 1985 the ISO initiated formal specification work on
one of its Study Committee 18 projects on Text and
Office Systems® namely Document Structures. It was
decided a special working group (SWG) be formed, the
purpose of which was to carry out a feasibility study on
formalizing one of its standards—ISO 8613. A group
report was produced, several formal approaches were
considered and it was concluded that a formal specifica-
tion of the standard would be very useful for verification
of the standard and for future implementors. The report
also recommended that initial efforts should adopt an
approach that would be relatively easy to understand,
noticeably close to the standards textual description and
not necessarily dependent on any particular methodo-
logy. The SWG produced a first draft of the specification,
which although under-developed, did give a framework
for the full formal specification of the main part of the
standard, and also provided detailed terminology and
notation sections. This formal work was subsequently
endorsed by working group 3 (WG?3) which is responsible
for the ODA standard production (see Section 3 for
details).

In Germany the Gesellschaft fiir Mathematik und
Datenverarbeitung (GMD-—the German National
Research Centre for Computer Science) was responsible
for the development of the formal methodology (IMC),
description technique and language (IMCL). In addition
GMD has carried out studies on the application of
IMC/IMCL to describe test cases for testing conform-
ance to the Standard and submitted them to ISO for
consideration.

In the UK the National Computing Centre (NCC)
and in Germany DANET have adopted the formal
specifications of ISO 8613 as a basis for conformance
test tools which have been developed to test implementa-
tions of the standard.

2 This includes Open Systems.

In Canada Carleton University carried out a trans-
lation of a subset of IMCL into Prolog for its
Government’s Department of Communications (DOC),
thus giving executable semantics of the language for the
first time. The project resulted in the creation of a
specification of the standard being implemented using
this IMCL-to-Prolog translation process, giving an
executable and traceable version of its formal
specification.

2. IMCLTUTORIAL
2.1. Introduction

IMCL is based on the observation, that even very
complex structures, e.g. structures in data bases or
structures that model certain objects in the ‘real world’,
can usually be considered composite in nature, but
ultimately being constructed from very simple basic
elements.

IMCL semantics are given by specifying the meaning
of each expression (formula or term) in the language. As
usual, each entity of a given application is assigned to a
particular constant, a predicate on entities to each
predicate symbol and an operator on entities to each
operator symbol. Based on these assignments one finally
specifies how the meaning of any syntactically correct
expression is derived. There are several semantics pos-
sible for IMCL, depending on how such specifications
are carried out. Any application may choose its own
semantics according to the concepts relevant to its
problem area. However, IMCL comes with a body of
common semantic rules called the basic semantic speci-
fications, independent of the particular application and
valid for all applications. Semantics beyond the basic
semantic specifications are known as supplementary
semantic specifications. Some predicates and operators
of the basic semantic specifications are given in
Sections 2.4 and 2.4.

Provision has been made in IMCL to define new
predicates and operators as and when needed. In fact,
the Formal Specifications of ODA (FODA) is in essence
a large number of such application oriented definitions
(supplementary from an IMCL point of view), which
extend IMCL’s basic semantics for the world of ODA.

IMCL uses only a few basic element types, called
atoms. The actual choice of these atoms depends on the
application, i.e. on the nature of the objects which are
to be modelled by IMCL. There are only three different
composition principles in IMCL (called collection, cat-
enation and nomination) for building compound objects
using atoms. Although this number seems rather small
it turns out to be sufficient for modelling many different
kinds of structures, in particular those found in ODA
documents. The IMCL objects and the composition
principles will be explained in Section 2.2.

In many applications it is not sufficient to provide a
formal description for concrete structures only, but it is
also necessary to formally describe general ‘rules’ on

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

272 W. APPELT AND N. TETTEH-LARTEY

how such structures are composed. For instance, in an
application describing data base structures it is not
sufficient to say: ‘The date field in a data base entry
consists of 1990-12-24’. Rather, one wants to express the
general rule(s) for such an entry, e.g. “The date field is a
sequence of three numbers, the first giving the year, the
second giving the month (1...12) and the third giving
the day of a month (1...31 or 1...30 or 1...29 or

.. 28). To achieve the formal expression of such rules
IMCL provides a number of additional features such as
first-order predicate logic and operators.

Predicate logic is usually applied to express certain
‘facts’ about objects in a specific IMCL application.
There are a few pre-defined or basic predicates in IMCL,
but using these basic predicates additional ones can be
defined for each application. In fact, using IMCL for
formally describing objects or structures in a certain
application will often primarily consist of the specifica-
tion of application dependent predicates. The basic
predicates of IMCL will be discussed in Section 2.3.

IMCL comprises a number of operators which can be
applied to objects, e.g. arithmetical operations or set
theoretical operations. Importantly, several of the
operators provide for the addressing or selection of
substructures within composite structures. In addition,
application dependent operators can be built on top of
the basic ones which are already predefined in IMCL.
The basic operators will be described in Section 2.4.

Since a fully detailed description is not possible in this
paper we shall concentrate on those aspects which are
important for the application of IMCL to FODA. A
complete description of IMCL can be found in [4].

2.2. IMCL objects and composition principles

The formal objects in IMCL which are used for model-
ling certain structures in specific applications are called
constructs. There are two types of constructs, i.e. atoms,
which are not composed of other constructs, and compos-
ite constructs, which are composed of atoms and/or
other composite constructs. The objects which are con-
sidered as atomic (i.e. atoms) are dependent on the
application. For instance, in FODA the following objects
are IMCL atoms:

® Numbers, since the values of some attributes in an
ODA document are numbers.

® Characters from some defined character set or sets,
because obviously characters play a central role in a
document processing standard.

® Attribute and parameter names, since a name of an
attribute or parameter in an ODA document can be
considered as a terminal symbol, i.e. there is no
substructure in such a name from ODA’s point
of view.

Except for the numbers, atoms are enclosed in quotes
in IMCL notation. For example,
3 ‘3" ‘object type’

are three atoms, the first one being the number 3, the
second one the character 3 and the third one being an
atom (a character string) which happens to be the name
of an ODA attribute in the FODA application.

The first construction principle for composite con-
structs in IMCL is called a collection. A collection is a
set of constructs which may be atoms or composite
constructs. The term collection is equivalent to the
mathematical concept of the set, except that the compon-
ents of a collection must be constructs (such a restriction
does not apply in set theory). In IMCL, collections are
denoted by listing their components separated by semi-
colons and enclosing this list in square brackets. For
example,

[1; '] "abc’] [1;['1"; 'abe']]]

are three collections. The first collection has three com-
ponents, ie. the atoms 1, ‘I’ and ‘abc’. The second
collection has two components, namely the atom 1 and
a composite component which is itself a collection. The
third collection is the empty collection, i.e. a collection
without components.

The second construction principle for composite con-
structs is called a catenation. A catenation is a sequence
of constructs which may be atoms or composite con-
structs. Again, as with sets, there is a mathematical
equivalent of the catenation, the concept of the sequence,
however the components of a catenation must be con-
structs. Catenations are denoted by listing their compon-
ents separated by arrows and enclosing this list in square
brackets. For example,

[»1-'1">"abc' -]
[-'1"=>['1";"abc’] —] (-]

are three catenations. The first catenation has three
components, the first is the atom 1, the second the
character ‘1’ and the third is the atom ‘abc’. The second
catenation has two components, the first being the atom
1 and the second a composite component, i.e. a collection.
The third catenation is the empty catenation, ie. a
catenation without components.

The third, and last, construction principle for compos-
ite constructs is called a nomination. For the FODA
application it can be regarded as a set where each
element of the set is a (name,construct)-pair, in the sense
of a mathematical mapping. The name-part for each such
pair is an atom and the construct-part may be an atom
or a composite construct. Nominations are denoted by
listing the (name,construct)-pairs separated by semi-
colons and enclosing this list in square brackets. The
name-part and the construct-part for each pair are
separated by a colon. For example,

[‘abc': 7, 'cde’ : 'xyz’; 'def’ : [124 -52->]]

is a nomination with three (name,construct)-pairs. For
the first pair the name-part is ‘abc’ and the construct-
part is the number 7 (an atom). For the second pair the
name-part is the ‘cde’ and the construct-part is the xyz’.

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

THE FORMAL SPECIFICATION OF THE ISO ODA STANDARD 273

For the third pair the name-part is ‘def’ and the con-
struct-part is a composite construct, namely a catenation
consisting of three numbers (atoms).

As another example, consider the following composite
construct:

[‘object type': 'composite logical object’;
‘object identifier' : [1 53 -57-1];
‘subordinates’ : [»0—-2->1;

‘protection’ : ‘unprotected’]

This composite construct is a nomination with four
(name,construct)-pairs. For the names ‘object type’ and
‘protection’ the associated constructs are atoms, for the
names ‘object identifier’ and ‘subordinates’ the associ-
ated constructs are catenations whose elements are
numbers.

This example is an IMCL specification for a so-called
composite logical object in an ODA document. In fact,
it can be shown that any given ODA document can be
described in IMCL using only collections, catenations
and nominations, since all structures which may appear
in an ODA document can be mapped using these three
IMCL construction principles.

As mentioned in the introduction, it is usually not
sufficient to formally describe specific structures only
but rather it is more desirable to specify general rules
on structures in a formal manner. For this purpose it is
often necessary to ‘point’ to a certain component within
a composite construct or to ‘extract’ a certain component
or set of components from a composite construct. To
this end, the unique concepts of spot and spotset (a set
of spots) are defined in IMCL. To introduce these
concepts consider the following example of a nomina-
tion t:

t=[ab':1;'cd": 1;'ef' : [o'a'>'D'>'a" >]]

The number 1 appears at two places (spots) in the
nomination, namely at the construct-part of both the
components ‘ab’: 1 and ‘cd’: 1. Similarly, the atom ‘@’
appears at the first position and at the last position of
the catenation [»‘a’—>‘D’—‘a’—>]. In other words, the
spot where a certain component appears within a com-
posite construct is often not identified by the component
itself but additionally, ‘routing information’ might be
necessary.

Spots within a composite construct are usually identi-
fied by selection criteria based on operators such as
those described in Section 2.4. For instance

t. ‘ab’

addresses the spot ’ab’:1 within t. (This notation, in
particular the IMCL operators “and ., are described in
Section 2.4).

In many cases a selection criterion will not give a
single spot within a composite construct, but often a set
of spots (spotset). For instance, selecting all (name,con-
struct)-pairs in the previous example whose construct is
the integer 1, would return the spots ’ab’: 1 and ’cd’: 1,

i.e. a spotset. In fact, the IMCL operators are in general
defined for spotsets, not for spots, i.e. the argument for
an operator may be a spotset, rather than a spot, and
an operator may create a spotset, rather than a spot.
The (exceptional) case of a single spot is dealt with by
the concept of the so-called singleton spotset: a spotset
containing only one element. Dealing with single spots
always in the form of a singleton spotset avoids the
definition of similar operators both for single spots and
for spotsets.

2.3. Basic IMCL predicates

First-order predicate logic forms an integral part of
IMCL and several unary and binary predicates are
defined. A predicate is either True or False. These are
examples of some basic IMCL predicates:

IsAtom(t) s true, iff (if and only if) t is an atom
IsNumber(t) is true, iff ¢t is a number

IsCol(t) is true, iff ¢ is a collection
IsCat(r) is true, iff t is a catenation
IsNom(t) is true, iff ¢t is a nomination

IsSpotset(t) is true, iff ¢ is a spotset

is true, iff the entities ¢, and t, are identical
is true, iff ¢, is a collection and ¢, is a
component ¢,

tét, is true, iff ¢, is a singleton spotset and a
subset of the spotset ¢,

is true, iff ¢, is a subset of ¢, and ¢, and ¢,
are collections or spotsets, respectively

t1=t2
tiet,

t,St,

Furthermore, since IMCL is based on predicate logic
the usual logical quantifiers V (for all) and 3 (exists) as
well as the logical connectives not, and, or, iff (if and
only if) and impl (implies) are part of the language. For
successive quantification the usual notational simplifica-
tion is used, e.g.

V x(x € m and formula)
may be abbreviated to
V x € m(formula)

Based on these (and a few more) basic predicates further
predicates can be defined according to the specific
application, as the following simple example shows:

Vi

(IsPairOf Numbers(t) iff

dLr -

(t=[-1>r—]and
IsNumber(l) and
IsNumber(r)))

This example is the specification of a new predicate
called IsPairOf Numbers(t), which is True if and only if
t is a catenation of two components / and r and both of
these components are numbers. Further examples will
be shown in Section 3.

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

274 W. APPELT AND N. TETTEH-LARTEY

2.4. Basic IMCL operators

IMCL includes several basic operators. For instance,
when entities are numbers the usual arithmetical oper-
ators +, —, *, / (addition, subtraction, multiplication,
division) are defined. For collections and spotsets the
set theoretical operations U, M, \ (union, intersection,
set difference) are defined. Some additional operators
are, for example:

If t; and t, are catenations, t,//t, is the
catenation obtained by concatenating t; and
ts.

If t denotes a construct, t denotes the single-

ton spotset containing t. Loosely speaking, this

operator transforms a construct into a single-
ton spotset and is usually applied before apply-

ing further operations such as HEAD, N or C,

which are defined only for spotsets.

t. If t denotes a spotset containing no atom spots
(spots which are atoms), then t. (read ‘t next
inwards’) denotes the set of all spots which are
immediately inward of the spots of the spotset
t. Loosely speaking, this operator ‘unpacks’ all
spots within t and generates a new spotset
whose elements are all those returned after
this ‘unpacking’ procedure. This operator is
usually applied in the context of decomposing
composite structures into their substructures.

NAMS ¢ If t denotes a nomination, NAMS ¢ (read
‘nameset of ') denotes a collection whose
components are the names of the (name,con-
struct)-pairs of t.

Nt If ¢ denotes a singleton spotset immediately
inward a nomination spot, Nt denotes the
name at the spot given by t.

Ct If ¢ denotes a singleton spotset, C ¢ denotes
the component construct at the spot given by
t.

CARD ¢ If t denotes a collection or a spotset, CARD ¢
(read ‘cardinality of ¢’) denotes the number of
elements within ¢.

HEAD < If t is a catenation, HEAD ¢ returns the first

component of the catenation.

If t denotes a singleton spotset of a nomination

spot, t. ‘xyz’ denotes the singleton spotset with

(name,component)-pair for which the name-

part is ‘xyz’. Loosely speaking, this notation is

used to address a (name,component)-pair for

a particular name. Note, that C’t.‘xyz’

denotes the component-part for the name ‘xyz’.

ti//t,

~

t. xyz’

The following examples demonstrate the use of these
operators.
Let ¢t denote the following catenation:

[»1-']l">"abc’ —]

Then the following relation holds:

® HEAD(t) = 1, since the first component of the catena-
tion is the number 1.

Now let t denote the following nomination:
[‘abc': 7; ‘cde’: 'xyz’; 'def’ : [»1-4-52->]]
Then the following relations hold:

® NAMS(t) = ['abc’; ‘cde’; ‘def’],
since these are obviously the names appearing in the
nomination.

® CARD t. =3,
since there are
nomination.

® C't.abc’ =17,
since the construct-part of the (name,construct)-pair
with the name atom ‘abc’ is the number 7.

® Vxé&"t. (N x="‘cde’ impl

C x = ‘xyz),

because the name-part ‘cde’ has a construct-part
equal to ‘xyz’.

three components within the

3. THE FORMAL SPECIFICATIONS OF ODA
3.1. ODA in terms of IMCL

The Formal Specifications of ODA (FODA) is currently
an ISO/IEC JTC1/SC 18/WG3 project. FODA at pre-
sent pursues a declarative approach to information struc-
ture description by specifying the possible structures that
conform to the standard rather than how the structures
are obtained as the result of some output process. The
formal specification is concerned with the descriptive
representations of documents since constituents and
their attributes are the basis of the interchange stream
and their make-up and relationships the subject of ODA
conformance requirements.

FODA originally addressed the specification of The
Document Structures (ISO 8613-2), since that part plays
a central role in supporting the other parts of the
standard. The formal specifications of the document
structures have been published as Part 10 of ISO 8613
in 1991. The formal specifications of the document
profile and the three content architectures of ODA
(character text, raster graphics and geometric graphics)
started afterwards and have been progressed as Addenda
to ISO 8613-10. In the meantime, all these Addenda
have passed their final ballots and reached International
Standard status. (A further Addendum on the formal
specification of the defaulting mechanism for defaultable
attributes reached IS status in the autumn of 1992.)
Therefore, the FODA project has now reached its initial
goal, ie. to address all Parts of ISO 8613, except for
Part 1 which is of an introductory nature, and Part 5
which defines the binary interchange format for ODA
documents. These two Parts are not an issue for the
formal specification. Of course, the formal specifications
will be extended whenever extensions are made to the
ODA standard itself. In late 1992 a republication of the
ODA standard is expected, incuding a considerable

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

THE FORMAL SPECIFICATION OF THE ISO ODA STANDARD 275

number of modifications and extensions which were
added to the standard since its first publication in 1989.
Accordingly, ISO 8613-10 will be republished in early
1993, reflecting the natural language version of the
standard.

A major criterion for the application of a formal
description technique in addition to a natural language
text was for the provision of a single interpretation,
during the design, implementation and application phases
of the standard. This avoids different views on informa-
tion structures, functions and processes by ruling out
ambiguity in the interpretation of the natural language
text. In fact, the FODA project identified a considerable
number of ambiguous and even contradictory specifica-
tions in the natural language text of the ODA standard
which were then corrected accordingly.

By considering FODA, readers gain clearer in-sights
and can reason more thoroughly on the standard than
by relying on the natural language text alone. This
enhances the probability of producing fully conformant
implementations. Due to the mathematical basis of the
notation being elementary set theory and predicate logic
most software practitioners with a basic knowledge of
computing science should be able to understand the
specifications.

FODA is rigorous. This rigor is gained by using the
IMCL technique whose foundations stem from mathe-
matics and logic. The technique extends the IMC mathe-
matical and logic basis by providing structures and
operations.

The style of the specification is mixed; a formal IMCL
notation with semi-formal English text clauses (which
do not belong to the formalized definitions). However
these clauses do provide an explicit link by referencing
between the formal specification and those natural lan-
guage clauses in the standard that are under definition.
This also gives some indirect confirmation about the
completeness of the specification.

The formal specification of ODA is a single formula
specified in IMCL using first-order predicate logic. The
formula consists of sub-formulae which are joined by
the connective and:

formula, and formula, and ... formula,

These formulae are also called definitions. They define
either concepts used in the natural English description
of the standard, or subsidiary predicates and functions,
which are introduced to enhance readability.

The definitions are grouped into several sets. Slightly
simplifying, the first set of definitions specifies the overall
structure of ODA documents. For instance, these defini-
tions specify the rules for which constituents are required
or permitted in different classes of ODA documents.
They specify structural requirements (e.g. the objects in
the specific structures must form a tree structure) and
cross-relations between attributes and their values in
different constituents (e.g. if an attribute in one consti-
tuent has a particular value, the value of an attribute

in another constituent must satisfy some specified
constraints).

The second group of definitions specifies the structure
of the individual constituents of an ODA document such
as composite logical objects, pages or blocks. In particu-
lar, these definitions specify the required or permitted
attributes of a particular constituent and constraints on
their attribute values.

The third group of definitions specifies the permitted
values or value ranges of attributes described in
ISO 8613-2. Since many attribute values are substruc-
tured into parameters, sub-parameters or even sub-sub-
parameters, often with cross-relations between the values
of these parameters and sub-parameters, these definitions
are sometimes rather complex.

The Addenda to ISO 8613-10 mentioned above con-
tain further sets of definitions, namely those specifying
attributes and attribute values of the document profile
(described in ISO 8613-4) and of the different content
architectures (described in ISO 8613-6, -7, -8). The last
set of definitions in the Addendum on the formal speci-
fication of the defaulting mechanism specifies the rules
for deriving the value for each defaultable attribute.

Currently ISO 8613-10 and its Addenda contains over
600 so-called definitions (or formulae), each one defining
one or more of the technical specifications of the ODA
standard in IMCL notation, which sums up to well over
300 printed pages of text and formulae.

3.2. Examples

A simple example shall show how IMCL can be used
to specify ‘rules’ about structures in ODA documents.
Consider a so-called composite logical object which might
look as follows:

[‘object type' : ‘composite logical object’;

‘object identifier' : [»3->T-];

‘subordinates’ : [0 —>2-1];

‘protection’ : ‘unprotected’]

The composite logical object is modelled in IMCL as a
nomination where the names are ‘object type’,
‘object identifier’, ‘subordinates’ and ‘protection’. For
the name ‘object type’ the associated value is
‘composite logical object’, for the name ‘object identifier’
the value is a catenation of components 3 and 7, etc.

Instead of specifying a specific composite logical object
we now want to specify the rules which hold for such
an object. According to the ODA standard, these rules
are:

4. A composite logical object is a set of attributes, each
attribute having a name and an associated value.

5. The attribute names are ‘object type’, ‘object iden-
tifier’, ‘subordinates’ and ‘protection’.

6. For the attribute name ‘object type’ the value is
‘composite logical object’.

7. For the attribute name ‘object identifier’ the value is
a logical object identifier, which is a sequence of
numbers where the first number is 3.

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

276 W. APPELT AND N. TETTEH-LARTEY

8. For the attribute name ‘subordinates’ the value is a
sequence of numbers.

9. For the attribute name ‘protection’ the value is either
‘protected’ or ‘unprotected’.

The actual rules as specified in the ODA standard are
more complicated but these six rules shall be sufficient
for the example.

Modelling these rules in IMCL requires the follow-
ing steps:

1. We define a predicate ‘IsCompositeLogical
Object(obj) which has the value True if and only if
obj satisfies these rules.

2. In IMCL a set of attributes is modelled by a nomina-
tion, i.e. as a first condition obj must be a nomination.

3. The name set of this nomination must be specified
according to the ODA specifications, i.e. a predicate
for specifying the name set of the nomination is
needed.

4. For each of the four attribute names a predicate for
specifying its value range must be given.

This can be accomplished by defining the following
predicate:

V obj

IsCompositeLogicalObject(obj) iff

(IsNom(obj) and o

NAMS(obj) = [‘object type’; ‘object identifier’;
‘subordinates’; ‘protection”] and

YV aé "obj.

((N a = ‘object type’ impl
C a = ‘composite logical object’) and
(N a = ‘object identifier’ impl
IsLogicalObjectld(C a) and
(N a = ‘subordinates’ impl
IsSequenceOf Numbers(C a) and
(N a = ‘protection’ impl
C a e [‘protected’; ‘unprotected’])))

As can be seen, the specification of the value ranges
for the attributes ‘object type’ and ‘subordinates’ has
been ‘factorized’ into two further predicates called
‘IsLogicalObjectld’ and ‘IsSequenceOfNumbers’. This
kind of factorization approach is common practice in
IMCL and provides for a clearer, cleaner and more
structured specification of objects in a given application.
These two predicates could be defined as follows:

Vv

IsSequenceof Numbers(v) iff
(IsCat(v) and

Y aé "v. (IsNumber(C a)))

Vv

IsLogicalObjectld(v) iff

(IsSequenceOf Numbers(v) and HEAD(v) = 3)

A sequence of numbers is defined as a catenation whose

components are numbers, and a logical object identifier
is defined as a sequence of numbers with the first

component being 3, as is specified in the ODA standard.
Figure 2 shows another example of a FODA definition
taken from ISO 8613-10. This definition specifies the
value of the ODA attribute ‘separation’ in IMCL. The
semiformal description associated with this definition
reads as follows:

‘The value of the attribute “separation” is a nomination, i.e. a set of

pairs (name, value). The name is an element of the set

[“leading edge”; “trailing edge”; “centre separation”]; the value is a
non-negative integer. The parameters are independently dafaultable.’

In this case, an attribute value has a substructure, i.e.
the value of the attribute ‘separation’ is structured into
the three parameters ‘leading edge’, ‘trailing edge’ and
‘centre separation’. In IMCL such a substructure is
modelled as a nomination.

Furthermore, the parameter values are defaultable;
this is modelled in IMCL by using the special predicate
‘IsPlaceholder’.

Additionally, it can be seen that each definition
has a unique number in FODA. The definition of
‘IsSeparationValue’ has the number 2.117 and references
other definitions such as ‘IsNeNom’ with the number
1.2 and ‘IsNnInt’ with the number 1.4.

The previous examples have been used for clarity. The
actual FODA definitions can be more complex as can
be seen in the following definition which also shows the
equivalent Prolog and C+ + translations respectively
(see Figures 3-95).

Here it is shown how some quite complex inter-
relationships of ODA can be handled by IMCL in an
‘unambiguous’ way. An English translation of an IMCL
definition specifying such a concept is given for ease of
understanding (see below, also see Figure 1 for details
of constituent terminology). The example in Figure 3
shows the possible tests that can be performed on several
independent ODA objects which interrelate to form a
possible ODA document.

The IMCL definition could be read as:

‘For all entities called doc this entity is a document description if
and only if there exists an entity called prof which is a valid
document profile as stated in ISO 8613-2 (this is formally defined
in formula 2.20) and that the doc could be either a collection of a
single prof entity or if the doc is not equal to a collection of a single
prof entity it is an entity which is processable (this is formally
defined in formula 2.4), formatted processable (this is formally
defined in formula 2.5) or formatted (this is formally defined in
formula 2.6) depending on the value of the document profile attribute
“document architecture class”, and with a “resource document”
(which is not physically part of the document in question and is
thus external in nature) specified in the profile if any “resource”
constituent is specified in the document.’

3.3. Survey of FODA applications

As previously stated, ISO used IMCL to specify the
Document Structures and the OD A Defaulting Mechanism
(ISO 8613-2), the Document Profile (ISO 8613-4) and the
three content architectures (ISO 8613-6, -7 and -8,
respectively) of the ODA standard. In addition, the
Formal Specifications of ODA have been used in the
development of conformance testing software. Three

THE COMPUTER JOURNAL,

VoLr. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

THE FORMAL SPECIFICATION OF THE ISO ODA STANDARD

277

1Vy
2 (oIsSeparation Value(v) iff

3 IsNeNom!%(v) and

4 NAMS'"15(v) =[leading edge’; ‘trailing edge’; ‘centre separation’] and
S Vaé v

6 (1IsPlaceholder!-*(C a) or IsNnInt!-*(C a),),)

FIGURE 2. Example of a FODA definition.

1 Vdoc
2 (¢ IsDocumentDescription(doc) iff
3 3prof
4 (,IsDocumentProfilePart22-2°(prof) and
5 (ydoc = [prof] or IsProcessable-*(doc) or
6 IsFormattedProcessable?-(doc) or IsFormatted?-(doc),) and
7 doc # [prof] impl
8 (3(4C~ prof. ‘document architecture class’ = ‘processable’ iff
9 IsProcessable?#(doc),) and
10 (sC" prof. ‘document architecture class’ = formatted processable’ iff
11 IsFormattedProcessable?3(doc)s) and
12 (6C "~ prof. ‘document architecture class’ = formatted’ iff
13 isFormatted®®(doc)s) and
14 Y cst € doc
15 (;‘resource’ € NAMS! !5(cst) impl ‘resource document’ € NAMS!-*3(prof);)3)1)o)

FIGURE 3. IMCL version of the FODA definition IsDocumentDescription.

IsDocumentDescription(DOC) iff % 2
exists(PROF (% 3
isDocumentProfilePart2(PROF) and % 4
(DOC = s@[PROF] or isProcessable(DOC) or %5
isFormatted Processable(DOC) or isFormatted(DOC)) and % 6
(DOC\ = =s@[PROFT; impl (% 7
»(c ("PROF.!{"document architecture class’}) = ‘processable’) iff % 8

isProcessable(DOC) and %9
» (c(PROF.!{document architecture class’}) = formatted processable’) iff % 10

isFormatted Processable(DOC) and % 11
> (c("PROF.!{’document architecture class’}) = formatted’) iff % 12

isFormatted(DOC) and % 13

forall(CST e DOC(% 14

>» (resource’ e nams(CST)) impl > (’resource document’ e nams(PROF)) % 15
)

)
)-

FIGURE 4. Prolog translation of the FODA IsDocumentDescription.

such software projects based on and using ISO 8613-10
are briefly described below.

Around early 1988 a project funded by the Canadian
Department of Communications (DOC) was carried out
at Carleton University, Ottawa [6]. The project resulted
in a subset of IMCL (predefined functions and predicates,
data types and operators) being implemented in Prolog.
These were then combined with one-to-one FODA
definition translations in Prolog—since both FODA
and Prolog are based on predicate calculus this was an
easily performed task, and has the possibility of being
mechanically performed in the future. What resulted was
basically a prototype FODA Conformance Analyzer
(FCA). The input to this prototype analyzer is a Prolog
definition of an ODA document (at present the FCA
cannot handle the binary encoding of ODA documents

directly but rather clear text representations of the
encoding). The FCA checks for consistency of the input
ODA document against its FODA-to-Prolog translated
definitions and reports any errors, if present. The only
drawback of this system is the large amount of processing
time required to analyze a single average ODA document
containing a large number of constituents.

During late 1989 the NCC completed the first ‘phase
of its ODA conformance testing system—TODAC
(Testing ODA Conformance) [3] a collaborative project
between NCC and the Canadian DOC and from 1990
to 1992 produced a comprehensive ODA Implementation
testing system ODACT (ODA implementation
Conformance Tester) with INTAP (the Japanese
Interoperability Technology Association for Information
Processing) as collaborators. A component-module in

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

278 W. APPELT AND N. TETTEH-LARTEY

boolean Foda::IsDocumentDescription_2_3(Document* doc)

{
INITIALISE(IsDocumentDescription_2_3, 2, 3, doc)

OB(0)
LINE(3) THERE EXISTS_prof(doc)
OB(1)
LINE@4) IsDocumentProfilePart2_2_1(prof) AND
OB(2)
LINE(S) (doc-> No_Of_Constits() = = doc- > No_Of_Constits(CO_DOCUMENT_PROFILE) = = 1) OR
LINE(S) IsProcessable_2_4(doc) OR
LINE(6) IsFormattedProcessable_2_5(doc) OR
LINE(6) IsFormatted_2_6(doc) CB(2)} AND
LINE(7) (doc-> No_Of_Consists() > doc- > No_Of_Constits(CO_DOCUMENT_PROFILE)) IMPL
OB(3){ OB(4)
LINE(8) (E_VALUE_OF(prof, DOCUMENT_ARCHITECTURE_CLASS) = = PROCESSABLE) IFF
LINE(9) IsProcessable_2_4(doc) END_IFF CB(4)} AND
OB(5)
LINE(10) (E_VALUE_OF(prof, DOCUMENT_ARCHITECTURE_CLASS) = = FORMATTED_PROCESSABLE) IFF
LINE(11) IsFormattedProcessable_2_5(doc) END_IFF CB(5)} AND
OB(6){
LINE(12) (E_VALUE_OF(prof, DOCUMENT_ARCHITECTURE_CLASS) = = FORMATTED) IFF
LINE(13) IsFormatted_2_6(doc) END_IFF CB(6)} AND
LINE(14) FOR ALL_CS(cst, doc)
OB(7)
LINE(15) E_NAMS(cst, RESOURCE) IMPL
LINE(15) E_NAMS(prof, RESOURCE_DOCUMENT) END_IMPL

CB(7){ END_FOR CB(3)} END_IMPL CB(1)} CB(0)}

REPORT(IsDocumentDescription_2_3, 2, 3, doc)}

FIGURE 5. C+ + translation of the FODA definition IsDocumentDescription.

this system is the ODA Structure Analyser, based on the
formal specifications of the ISO 8613-2. However, unlike
the Canadian FCA the NCC’s chosen implementation
language for both collaborations was C+ +. This choice
of language significantly decreased the processing time
of analyzing the ODA document structure and hence
made the Structure Analyser more viable as a compon-
ent-module in the complete conformance testing system
in contrast with a prospective prolog FCA-like compon-
ent-module. In addition the Structure Analyser was
implemented to analyze documents which had been
automatically decoded and checked from their ODIF
encodings (ASN.1 data streams) and which had been
represented in the TODAC/ODACT systems own
internal structure representation of that document.

Furthermore, a conformance testing project has been
carried out by DANET in Germany recently. Their
approach is rather similar to the one taken by NCC.
The main difference seems to be that they used C as the
implementation language (private communication to the
authors, no written report is available yet).

4. CONCLUSIONS

There exists a need for a formal description technique
which has a rigorous mathematical basis for specifying
information structures (in particular when creating
standards for document processing systems). This applies
especially to complex structures such as can be found in
ODA documents and is demonstrated in natural lan-

guage specifications, where due to lack of precision,
ambiguities and even inconsistencies can be permanent
features.

It has proved worthwhile, even although a natural
English text following ISO regulations is still the final
form of a standard, to make the effort at formally
describing it. This has payoffs which improve the stand-
ard and can provide definitive reference documents (as
in ODA) to answer most of the questions arising from
attempted interpretations of the English text version. A
formal specification in addition to creating a rigorous
foundation for a standard can also be used in the
development of useful standards conformance test tools
amongst other things, as described in this paper.

For a contemporary review of different techniques,
methodologies, case studies and best practice in the area
of formal methods in standardization see [8].

ACKNOWLEDGEMENTS

The authors would like to thank Gernot Richter of
GMD (Bonn, Germany) for his invaluable help, advice
and comments on this paper. Thanks are also extended
to Gerald Karam of Carleton University (Ottawa,
Canada) for generously supplying code of the FODA
definition used in Figure 4.

REFERENCES

[1]1 W. Appelt, Document Architecture in Open Systems: The
ODA Standard. Springer Verlag, New York (1991).

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

THE FORMAL SPECIFICATION OF THE ISO ODA STANDARD 279

[2] W. Appelt, R. Carr and G. Richter, The formal specifica-
tion of document structures of the ODA standard. In:
Proceedings EP88 Conference. Electronic Publishing
(1988).

[3] R. Carr and F. Dawson, Conformance testing of Office
Document Architecture (ODA). Computer Communications,
pp. 00-00 (1989).

[4] R. Durchholz and G. Richter, Compositional Data Objects.
The IMC/IMCL Reference Manual. John Wiley, New
York (1992).

[5] ISO 8613, Office Document Architecture (ODA) and
Interchange Format International Standard ISO 8613.
ISO, Geneva (1989). To be republished as Open Document

Architecture (ODA) and Interchange Format International
Standard 1SO 8613 in 1993

[6] G.Karam, The FODA Conformance Analyzer: Prototyping
with Prolog. Technical Report, Carleton University,
Ottawa (1988).

[7] G. Richter and R. Durchholz, IML-inscribed high-level
Petri Nets. In: Information Systems Design Methodologies:
A Comparative Review. T. W. Olle, H. G. Sol and A. A.
Verrijn-Stuart (eds.), pp.333-368. North-Holland,
Amsterdam (1982).

[8] C. L. N. Ruggles (ed.), Formal Methods in Standards: A
report from the BCS Working Group. Springer Verlag, New
York (1990).

THE COMPUTER JOURNAL,

VoL. 36, No.3, 1993

20z udy 01 uo 1sanb Aq +/G1 | £/692/€/9€/9191e/|ulwoo/Wwod dnodjWepes.//:SA)Y WOy Papeojumod

