On Exploiting the Structure of Martin-Lof’s
Theory of Types*

ANDREW IRELAND
Department of Artificial Intelligence, University of Edinburgh, Edinburgh EH1 IHN, UK

Program synthesis in Martin-Lof’s Theory of Types is a theorem proving activity. We show how the

uniform structure of the deductive system may be exploited in the mechanization of this activity. Basic

properties of data type constructors are shown to exhibit a general structure in the way in which they

are expressed and derived. A proof procedure for negation is developed, based upon uniqueness, closure

and cancellation properties. As a consequence our proof procedure may be extended uniformly to
incorporate new data types.

Received December 1990

1. INTRODUCTION

Martin-Lof’s Theory of Types [14, 16, 20] is a rich logic
in which provably correct programs can be synthesized.
Program synthesis is a theorem proving activity. This
paper investigates how the structure of the theory can
be exploited in the mechanization of this activity. In
particular we develop a proof procedure for negation
based upon general properties of data types which can
be constructed mechanically. Following this methodo-
logy leads to a proof procedure which is uniformly
extendible.

In Section 2 the general structure of the deductive
system is presented. Based upon this presentation we
show, in Section 3, how properties of data type
constructors may be expressed and derived within the
theory. By way of illustration, we consider the formula-
tion of uniqueness, closure and cancellation properties.
The derivations of these properties also exhibit a
general structure. This general structure provides the
basis for mechanically deriving properties of arbitrary
data type constructors. In Section 4 we develop a proof
procedure for negation based upon uniqueness, closure
and cancellation properties. Related work and conclu-
sions are presented in Sections 5 and 6, respectively.

2. THE STRUCTURE OF THE DEDUCTIVE
SYSTEM

Martin-Lof’s theory builds upon the Curry—Howard
[11] isomorphism. That is, a proposition is identified
with the type of its proofs. Given a proposition repres-
ented by the type A, proof corresponds to demonstrating
that the type A is non-empty. Because of the constructive
nature of the logic this involves constructing an object

' A shorter version of this paper appeared in the proceedings of the
Seventh Austrian Conference on Artificial Intelligence 1991, Springer-
Verlag, Informatik-Fachberichte 287.

a that inhabits the type A. In programming terms types
are identified with specifications and objects are identi-
fied with programs. As a consequence program and
proof development are one and the same. Our presenta-
tion of the deductive system draws upon Backhouse’s
[2] explanation of Martin-L6f’s theory.

2.1. Judgements

Assertions are expressed within the logic through
four judgement forms. The first two judgements take
the form:

A type A=B
The first states that 4 is a type while the second states
that A and B are equal types. The remaining judgements
relate objects and types:

a:A a=b:A

The first states that the object a inhabits the type A.
The second states that a and b are equal objects in
the type A.

Judgements which depend upon assumptions are
called hypothetical. We adopt Backhouse’s [2] scoping
notation for representing hypothetical judgements.
To illustrate, consider the following hypothetical
judgement:

[x1: X1 Xn: X, B> at A(xy, ..0s X,)]|

Note that |[and]| delimit the scope of the variables
Xi,...,x, and that [> separates assumptions from the
conclusion. Collectively, the assumptions denote a con-
text. The scoping notation extends to the level of
derivations providing a block structured style of
presentation.

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

388 A. IRELAND

2.2. Rules

Rules are presented in a natural deduction style [6]. A type is defined by four kinds of rules: formation, introduction,
elimination and computation. To illustrate their structure we present the rules for the List type. Note that the first
three kinds of rules have equality versions which are not presented for reasons of space.

The well-formedness of a type expression is prescribed by formation rules. The formation rule for the List type
constructor takes the form:

A type
—— List-formation
List(A) type

Following Backhouse we call A and B formation variables. For an arbitrary type constructor ® with formation
variables A4, ..., 4,, we will abbreviate the type expression (4, ..., 4,,) as O(A).

An introduction rule prescribes how canonical (data) objects are constructed. The List type constructor has two
canonical constructors nil and :: and consequently two introduction rules:

A type u;:A u,:List(A)
—— List-introduction,; List-introduction.,
nil: List(A) Uy ::u,: List(A)

u, and u, are called introduction variables. Because u, is a member of the type List(A) it is also referred to as a
recursive introduction variable. For the arbitrary type constructor ® with k canonical constructors there exists k
introduction rules. The ith introduction rule defines the canonical constructor 6;. Assuming 6; is non-nullary then it
will have introduction variables u;,, ..., u;,, which we abbreviate as #;. In addition we use B;; to denote the type of
u;;. Note that if u;; is recursive then B;; will denote the type @(A).

Each type constructor has an unique most general non-canonical (program) object constructor which is introduced
by its elimination rules. The elimination rule for the List type takes the form:

ILy: List(4) > D(y) typel|

x : List(A)

zy : D(nil)

|[uy : A; uy: List(A); vy : D(uy) > z5(uy, Uy, v1): D(uy :1uy)]|

List-elimination
elimList (x’ Z1, 22) . D(X)

Note that z, denotes the abstraction [u,, u,, vy]z,(uy, u,, v,) and that u, and u, correspond to the introduction
variables. For each recursive introduction variable there exists a corresponding elimination variable, in this case
denoted by v,. The elim;;, constructor enables us to define primitive recursive functions over the List type. For
example, list concatenation may be defined as follows

x<> y= elimList(xa Vs [ul; Us, Ul]“l - Ul)

The non-canonical constructor associated with the arbitrary type © is elimg. Assuming that ® has k canonical
constructors then ®-elimination introduces a non-canonical object of the form elimg(x,, zy, ..., z,) where x belongs to
O(A). If 6; is non-nullary then z; denotes an abstraction of the form [i;, #;]z;(i;, ;) where #; and #; denote introduction
and elimination variables, respectively.

The evaluation of a non-canonical constructor is defined by computation rules. For each canonical constructor
there exists a corresponding computation rule. Consequently, the List type has two computation rules:

ILy: List(4) > D(y) type]|
zy : D(nil)
[[uy : A; uy: List(A); vy : D(v) D> z,(uy, ua, v1): D(uy :iuy)]|

List-computation,;
elimp;,(nil, z,, z,) = z, : D(nil)

ILy: List(4) &> D(y) typel|

h:A

t: List(A)

zy : D(nil)

[[uy : A; uy: List(A); vy : D) D> z,(uy, 4y, 01): D(uy 2uy)]|

List-computation..
elimList(h e A Zy, zZ) = ZZ(h’ L elimList(ta Z1, 22)) : D(h - t)

THE COMPUTER JOURNAL, VoL.36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

ON EXPLOITING THE STRUCTURE OF MARTIN-LOF’S THEORY OF TYPES 389

3. DERIVING PROPERTIES OF DATA TYPES

We now exploit the uniform structure of the deductive
system presented in Section 2. Given an arbitrary data
type constructor we show how uniqueness, closure and
cancellation properties may be expressed within the
theory. For each property, inspection of the correspond-
ing derivation reveals a general structure. This general
structure provides the basis for mechanizing the deriva-
tion of these properties. This work provides the founda-
tions for the proof procedure for negation presented in
Section 4. A detailed account of this work appears in
Ireland [12].

3.1. Uniqueness Properties

An uniqueness property states that distinct object con-
structors build distinct object expressions. Consider, for
instance, the canonical constructors nil and :: associated
with List type. The corresponding uniqueness property
is expressed by the type?

(Y h: T)(V t: List(T)) 1 (h::t = Ligyr)nil)

The equality type (a = 4b) expresses the proposition ‘a
and b are equal objects in the type 4’. Negation is not
a primitive of the theory. The proposition 14 is defined
as A — false. Note that we use false and true as abbrevi-
ations for the empty type and the one element type,
respectively. Toprove —1(h:: t = p;qr) nil) werequireafunc-
tion which maps an arbitrary object in (h::t = pigr) nil)
into an object in false. That is, we must show that
(h::t = Lig(r) nil) is contradictory. The required contradic-
tion is achieved by assuming the equality

hit=pigmnil
from which an equality judgement of the form
elimy;,(h::t, false, [uy, u,, v, Jtrue)
= elimy;,(nil, false, [u, u,, v, Jtrue): U,

follows by the rules defining List, U; and the general
rules of the theory. Note that U, denotes the ‘type of
types’, the first in a cumulative hierarchy of universes.
By transitivity and the computation rules for the List
type a judgement is derived of the form

true = false: U,

from which it is trivial to derive an object in false.

The above reasoning exhibits a general structure. To
demonstrate this, consider an arbitrary data type con-
structor ©. Assuming that ® has k canonical object
constructors 0, ..., 0,, then for each pair of distinct
constructors 6; and 6; there exists a uniqueness property
which can be expressed by the type:

(¥ pir i Bir) o (Y Piny: Bin)(Y pj1 i Bj1) .. (V Pjn,: Bjn))
71(0:(p:) = o0 9;(P;)
21n the interests of wider readability the IT and X type constructors

have been translated into the V and 3 quantifiers which they are
identified with, respectively.

To establish this property we assume the equality
(0:(p:) =8(Z)9j(ﬁj))

and derive, using the rules for ® and U, an intermediate
equality judgement of the form

elimg(0:(p:), 215 - 2k) = elime(oj(ﬁj)a Zy, e 2) Uy

We take z; to be the abstraction [X]true and we take all
the other z’s, including in particular z; (z; and z; are the
only relevant ones), to be [j]false. The computation
rules for ® yields the required contradiction:

true = false: U,

3.2. Closure Properties

A universal closure property expresses completely the
structure of the canonical objects defined by a type
constructor. Such a property can be expressed, in general,
as a universally quantified disjunction, where each dis-
junct corresponds to a distinct canonical constructor.
For instance, the universal closure property for the List
type may be expressed as

(¥ x: List(T))((x = List(ry 1il)
v @h:T)@3 t: List(T))(x = Ligry B :: 1)) (1)

Alternatively, the closure may be expressed using a single
equality type

(V x: List(T))(elimp g, (x, nil, [uy, u,, vy Juy S U2) = Lisr) X).

Although this formulation is more uniform we selected
(1) because the resulting justification provides a function
for discriminating between distinct canonical forms. We
make use of this function in Section 4.2 where rules for
reasoning about equalities are developed.

A proof of (1) proceeds as follows. Firstly, we assume

x: List(T))
Secondly, in the nil case we construct the judgement?
eq: (nil = pigrynil)
from which we derive
inject, (eq): (nil = Ly nil)
v @ h:T)@A t: Lis(T))(nil = Ligryh:: 1) 3)

Secondly, in the :: case we introduce assumptions for
the introduction variables associated with List-
introduction..:

u,: T
u,: List(T)

Since u, is a recursive introduction variable we introduce
an additional assumption of the form:

01 (X = Lise(ry 1il)

v 3 h:T)@ t: List(T))(u3 = pisxry h 32 1))

3The constant eq is the trivial construction demonstrating equality.

THE COMPUTER JOURNAL,

Vor. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

390 A. IRELAND

In this context we can derive:
eq:(Uy Uy = Ligyr) Uy 3 U3)
and by 3-introduction derive:
Cuy, Cuy,eqp):(3h:T)3 t: List(T))(uy 1ty = Ligyry B2 1)
By v -introduction we get:
injecty(uy, <uz, €9))):(uy 21y = Liger) nil)

V(3 h:T)3 t: List(T))(uy -ty = iy b1 1) 4)
Finally, from (2), (3) and (4) by List-elimination followed
by V-introduction we get:

Ax.closurey ;o (x): (¥ x: List(T))(X = pise(r) nil)
V(3 h:T)3 t: List(T))(x = Ligcr b 1)
where closurey;4(x) is an abbreviation for the object

elimp ;g (x, injecty(eq), [uy, uy, vy Jinject, ({uy, {u,, eq))))
The structure of the derivation presented above is deter-
mined completely by the rules which define the List type.
To demonstrate the general structure of the above
reasoning consider again the type constructor ®. The
closure property for ® may be expressed by the type

(V x:O(A)Py(x) v - Vv Py(x)

Note that the ith disjunct (1 <i< k) expresses the struc-
ture of the canonical constructor defined by
©-introduction,,. Proof is by induction on x giving rise
to k cases. We begin by assuming

x:0O(A4)
A proof of the ith case involves constructing an injection
into the type
Py(0:(;)) v -+ v P(0:(i;)
where P;(0;(i1;)) denotes, for j=1, ..., k, the type
(3 aiy:Biy) ... 3 @i, 2 Biy,)
(0;(uiy,s ..., ”in,-)=e(j)0i(ai1a ooy Aip,)
Note that the case where 6, is nullary is a simplification
of the general case presented here. Construction of an

object in this type takes place in a context C; which is
constructed from assumptions of the form:

Uy Bir
2 Pk(uis)

Note that r and s range over the introduction and
recursive introduction variables respectively while ¢
ranges over the elimination variables associated with ©.
Within this context a judgement is constructed of the
form

ILC:
D Cuyyy oo (Ui, €9) ..)
‘Fai:Biy)... (3 Ain, Bin,)

Vi Py(ui) v -

(0:(usys .., uin..)=e(,i) O:(a;y, ..., ain,-))

1l

Denoting the ith injection operator by inject; then the
process described above generates k judgements of the
form

ILC; & inject;(Cuiy, ... {Uin,> €9) ...))
:P(0:;@) v - v P(0:(;))]1

By an application of the ®@-elimination rule followed by
V-introduction the closure property is established:

Ax.closureg(x): (¥ x: O(A)P,(x) v = Vv P(x)
Note that closureg(x) is an abbreviation for the object
elimg(x,z,,...,z). In the cases where 6, is non-
nullary z; denotes the abstraction
[, 0 Jinject;(Cuyy s ... in, €9 ...))
3.3. Cancellation Properties

Cancellation properties express the fact that for two
canonical objects to be equal implies that their compon-
ent parts are also equal. For example, two non-empty
lists to be equal implies that the first elements from each
list are also equal. Such a cancellation property may be
expressed by the type

Va:T)(Vc:T)V b: List(T))(V d: List(T))
(@:b=Liwnc:d)—>(a=rc) ®)

As is the case with uniqueness properties for the type
List, the construction of an object in this type is com-
pletely determined by the rules defining the List type. In
the context of the assumptions:

a:T
b: List(T)
c:T
d: List(T)
a proof of (5) may be constructed by assuming
x:(azb=pigmc:d) (6)

and then using the computation rules for the List type
to construct judgements of the form:

eq:elimy;g(a:b,a,[uy, u,,v,Ju;)=ra 7
eq:elimy; (c::d, a, [uy, uy, v Ju)=rc (8)
eq:elimy;,(w, a, [uy, uy, v, Ju;)=r
elimp;,(w, a, [uy, uy, vy Ju,) 9)
From (6) and (9), by substitution, we get:
eq:elimy ;g (a::b,a, [uy, u,, vy Ju;)
=relimyy(c::d, a, [uy,uy, vy u;)
Together with (7) and (8), transitivity gives us
a=rc
Finally, by —-introduction, we discharge (6) to give

ix.eq:(a:b=pgm(cid)>(@a=rc)

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

ON EXPLOITING THE STRUCTURE OF MARTIN-LOF’S THEORY OF TYPES 391

To demonstrate the generality of this reasoning consider
the ith canonical constructor associated with ® type
constructor. The constructor 6; has n; associated cancel-
lation properties and the jth cancellation property may
be expressed by the type

(Y pir:Biy) .- (Y Pin,: Bin,)
(¥ qi1:Biy) .- (Y Gin,: Bin,)

(0:(P:) = o4y 0:(q:) — (pi; =B gij)
where j ranges over the introduction variables associated
with 6;. Establishing a- cancellation property in general
we construct a context from assumptions of the form:

pij: Bij
qij Bij
Extending this context with the assumption
x:(0:(p:) = o(4) 0:(d:))
we can construct judgements of the form
eq:elimg(0:(Pi), 21, .-, Z) = B, Pij
eq:elimg(6,(q:), 21, .-, 2k) = B, 4ij
eq:elimg(w, 2, ..., z;) = p,, elimg(W, zy, ..., Zx)
where z; denotes an abstraction of the form [u;, v;]u;;.
By substitution we get
eq: elimg(6:(p), 21, -, Zk) =al«jelime(9i(‘7i), Zyyeees Zk)
and transitivity yields
eq:(pijzﬂijqij)
Finally, by —-introduction we get
Ax.eq:(0:(P;) = o) 0:(q:) = (Pij =5, 4ij)
4. APROOF PROCEDURE FOR NEGATION

The construction of a formal proof typically involves a
few key steps and many tedious ones. A principal
objective of mechanizing formal proof is to bridge the
gaps between the key steps. Proof procedures provide
the basis for achieving this objective. In the context of
program development within type theory proof obliga-
tions which have no computational content are prime
candidates for the use of proof procedures since the
structure of such proofs has no effect on the structure
of the synthesized program.

Propositional equality is the simplest example of what
has been described as this mismatch between programs
and proofs. Another basic example is the proof of a
negation. In terms of our intuitions as programmers, a
proof of a negation denotes an error state. This is
illustrated by considering Chisholm’s [4] derivation of
a parsing algorithm:

(V w: Word)Parse(w) v —1 Parse(w)

A program satisfying this specification is a function
which maps an arbitrary object of type Word into an

object in the disjunction Parse(w)v 1 Parse(w). A left
injection is generated in the case of a parsable word
while a right injection denotes an error. Another example
of this general form of specification is given in Ireland
[12], where a table look-up function is derived. Both
derivations were formally checked using machine assist-
ance. In each case a significant proportion of the overall
proof effort was taken up with proving negations.

This observation motivated the development of a
proof procedure for negation which is presented below.
Our approach to proving negations is based upon a
process of reduction and decomposition at the level of
equalities which builds upon the uniqueness, closure and
cancellation properties described in Section 3. Given a
negated goal —1 4 our process generates an AND/OR tree of
logical consequences of A. If successful, then for each
AND branch a contradiction is identified. Backward
propagation of these contradictions yields a proof of =1 4.

4.1. Proving Negations in Type Theory

As mentioned in Section 3 a proof of a negation is
constructed by establishing a contradiction. Given a
proposition —1 4, and a list of assumptions C, proof pro-
ceeds by adding A4, as an assumption, to C and showing
that a contradiction follows. Contradictions arise in type
theory either at the level of propositions or through the
surrounding context. Propositional contradictions are
based upon uniqueness properties, whereas contextual
contradictions are established by arguing forwards from
the assumptions.

4.2. Derived Rules for Reasoning about Equalities

In our procedure a reduction corresponds to either a
case separation or an evaluation while a decomposition
results in the breaking down of data objects into their
component parts. Each operation is formalized as a set
of derived rules of inference. We present schemata and
outline the basis for mechanizing the construction of
these rules.

4.2.1. Case Separation Rules

In order to illustrate case separation, consider the follow-
ing equality type

ax<>y)=5sp

where < > is the list concatenation operator. Note that
a, B and y denote arbitrary terms, and x is a variable
covered by an assumption x: List(T). Case separation
on x yields a disjunction which may be expressed as

(nil <> y)=5p)

v @h:T)At:List(T))(h::t <>y)=5p)
In general, the number of disjuncts corresponds to the
number of introduction rules associated with the type

over which the case separation is being performed. The
general form of the derived case separation rule is:

THE COMPUTER JOURNAL,

VoLr. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

392 A. IRELAND

Pl |[w:©(4) > (uw) = 1 B) type]
P2 x:0(A)
P3 r:(ax)=1p)

O-case

caseg(x): Ry v ... v Ry

Pl is a well-formedness premise while P2 specifies the
object on which case separation is to be carried out. P3
is the judgement within which the case separation is to
be performed. The derivation of the case separation rule
for © is based upon the closure property for ® defined
in Section 3. Establishing the conclusion to the rule,
given the premises, corresponds to building a method
which constructs an injection into R, v ... v R, from an
arbitrary object in ®(A). The forms of R, ..., R, will be
discussed shortly. Consider the injection into the ith
disjunct. The injected value belongs to the type R;, the
structure of which is determined by the introduction
rule for ;. Assuming that 6; is a non-nullary constructor
with n; associated introduction variables then R; will
denote the type

(Fai;:B;y)...3 Ain, " Bin)((0;(a;; ... ain,-)) =rp)

To construct an object in this type we introduce an
assumption of the form

yi:(3a;:Byy)...(3 Qin, - Bin.-)(x =8(Z)0i(ai1’ ooy Qip,)

Stripping off the existential quantification gives rise to
a judgement of the form:

I[yi:Gai:Biy)...(3 Ain, Bin)(x = () 0:(ay, ..
D> (x = 0,(fst(yy), ..., fst(... snd(y;) ...)): ©(A4)
1l

Taken together with P2 we can construct a judgement
of the form:

Ilyi:Qai:Byiy)...(3 Gin, - Bin) (x = 01) 0i(ai1, ..., Ain,))
D> r:(aO:(fst(y:)s ..., fst(... snd(y;) ...)) =1 B)
1l

from which the required value of the injection is derived
using 3-introduction:

i ain,-))

Ilyi:(Ga;:By)...(3 i, By,)(x =eu bilair, ..., Ain,))
D> {fst(y;), (... {fst(... snd(y;)...), r> ..>>
(3 a1 :Biy) ... (3 Qin, - Bin.-)(a(gi(aila s Qi) =1 P)

1l

From an object in R;, the required injection is con-
structed by using the rule for v -introduction. Denoting
the type of y; by P;(x), then the process described above
generates k judgements of the form

ILyi: Pi(x) B> inject;({ fst(y;),
oo St snd(yy)), > .)R v ... v R]

To combine these k judgements a function is required
which yields an injection into P(x) Vv ... v Py(x), given

an arbitrary object x in ©(A). The universal closure
property for ©, as defined in Section 3, provides such a
function. By V- and v -elimination the required conclusion
is established. Note that in the conclusion to the derived
rule caseg(x) is an abbreviation for the object
elim, (closureg(x), zy, ..., zy) where elim,, is an abbrevi-
ation for k— 1 applications of elim, and z; denotes the
abstraction

Lyidinjecti({fst(yy), <. <fst(... snd(yy) ...}, 1) ...)))

4.2.2. Evaluation Rules

Evaluation in the context of the equality type

w(h:t) <>y)=5p
yields

afh::(t<>y)=gp.

The general form of the evaluation rule is:

P1 |[x:©(A4); y: D(x) B> (y) = 1 B) type]|
P2 b;;:B;; ... by, : By,
P3 |_[C1 D> zy (g, 01): DO, ()]l

I[Cw > zi(ity, 5): DO)|
P4 r:(a(elimg(0;(b;), z1 4y ..., z2)) =1 B)

evaloi . (“(Zi(l;i, w))=r .B)

where w; is the vector of expressions corresponding to
the step cases in a recursive definition. There is a direct
correspondence between ; and w; which is explained in
Backhouse [2]. The premises are divided into four parts.
P1 is a well-formedness premise. P2 and P3 correspond
to the major* premises of the computation rule for 6,.
The assumption lists C,,..., C, are constructed in the
manner described in Backhouse [2] for elimination rules.
P4 denotes the quality in which the evaluation is to be
performed. The required conclusion is derived as follows:
From the premises the evaluation of the subexpression
elimg(0,(b;), z1, ..., z) is achieved using the computation
rule for 6;. By substitution the resulting judgement taken
together with a reflexive instance of P1 yields the equality
judgement

(a(elime(gi(l;,-), 2 e) =1 h)= (“(Zi(l;i, W) =rpB)

This judgement and P4, by an application of the type
equality rule, yields the required conclusion.

®-eval,,

4.2.3. Decomposition Rules

A decomposition is possible when both sides of an
equality are non-atomic canonical forms with matching
outer structure. For example, consider the following
equality type

azb=pgmecnd
By decomposition this equality yields a conjunction of

*A major premise is any premise which is not a well-formedness
premise.

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

ON EXPLOITING THE STRUCTURE OF MARTIN-LOF’S THEORY OF TYPES 393

the form
(a=rc) A (b= Liswr) d)

For an arbitrary canonical constructor 6;, the number
of conjuncts is determined by the number of introduction
variables associated with the ®-introduction,, rule. The
general form of the decomposition rule is:

P2 d;y:B;; ... din,: Bin,
Pr r:(0:(b:) = o4 0:(d}))

decompy,:(b;; =p, diy) A ...

A (bin,- = Bin; dini)

©-decomp,

4.3. A Framework for Searching for Contradictions

The premises are divided into three parts. P1 and P2
correspond to the major premises of the introduction
rule for 6;. P3 denotes the equality in which the decom-
position is performed. If 6; has n; associated introduction
variables, then there exist n; cancellation properties as
described in Section 3. These cancellation properties,
taken together with the premises, give rise to n; judge-
ments of the form

eq:(b;;=sg,,dij)

The required conclusion follows by n;_, applications of
A -introduction.

Our proof procedure builds upon the rules derived above for reasoning about equalities. It is similar to a tableau
style proof procedure. The application of the derived rules is controlled by a procedure called analyse. Given a
judgement of the form [[B > r:(« =1 B)]| analyse constructs a judgement of the form |[[B > r': P]| where (¢ =1 f)— P.
This construction process works in outline as follows: If either o or f is non-canonical then a reduction is performed.
If a non-canonical expression contains a free variable in its recursive argument position then a case separation is
performed. A non-canonical expression is open to evaluation if a canonical expression appears in the recursive
argument position. If both « and § are non-atomic canonical forms with matching outer structure, then a decomposition
is performed. Note that reductions may introduce choice points into the search space. We are primarily concerned
with the general framework for supporting the search for contradictions rather than the actual search strategies. The
application of analyse is controlled by a procedure called contra-chk. Assuming we wish to prove —1(x =7 f) in the
context of a list of assumptions C, then contra-chk first constructs trivial judgement

TC;ri(a=7B) D> r:(@=1p)]l

to which analyse is applicable. Assuming the analyse constructs the judgement

I[C;ri(@=7B) > r:P]

then by discharging the assumption denoted by r, a judgement is derived of the form

I[C > Ar.r: (e =7B)— P]|

contra-chk is then recursively applied to P and C. This recursive process generates an AND/OR tree of logical

consequences of the initial assumption:

ri@=rp)

Depending on the structure of P, the search for a contradiction may branch. The structure of P may take one of four

forms, each of which requires different treatment. Firstly, if P takes the form

(051=T,ﬂ1)

and assuming that the analysis («; =1, ;) gives rise to Py, then the AND/OR tree is extended as follows:

ILC

> Arri(a=1B)—> (%, =11 81)

1l

ILC

1l

D lr.i:(a1=1‘1ﬁ1)_’[_’1

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

394 A. IRELAND

Secondly, P may take the form of a conjunction:
P, A AP,

where each conjunct embodies an equality. A conjunction arises by decomposition. Assuming that P;(1 <i<n) is of
the form («; =, f;), and that the analysis of («; =, B;) gives rise to P, then the AND/OR tree is extended as follows:

ILC
D> Ar.decompy:(x=rB)—> (=1, B1) A = Aay=1, Br)
1l
ILc ILC
> /Av"‘fﬁ(“l:nﬂx)_’Fl Dir'fn:(anzT,.'Bn)_)Fn
1l 1l

In order for a contradiction to be established it is sufficient for only one conjunct to be shown to be contradictory.
Therefore, a v -node is generated. As mentioned earlier, a choice may exist in applying a reduction. The choice is
accommodated within the framework by the introduction of a v -node. Thirdly, P may take the form of a disjunction:

P,v - vP

where each disjunct embodies an equality. A disjunction arises from case separation on an object level variable. In
order for a contradiction to be established, each disjunct must be shown to be contradictory, therefore a A -node is
introduced. Assuming that P; (1 <i<k) is of the form («; = r, B;), where either «; or f; may depend upon the variable
x, then case separation on x extends the AND/OR tree as follows:

ILC
D> Ar.caseg(x):(x=rf)= (=71, b1)V = V(% =1, Pi)
1l
»/ g \
I[c ILC
> Ar.Fy (e =1, B1)— P, D Ar.f (=1, B)— Pi
1l 1l

Finally, a case separation will usually generate existentially quantified equalities. For instance, consider the equality
(a(x) = 1 B) where the variable x is of type ®@(4). Case separation on x will, in general, generate a disjunction with k
disjuncts where the ith disjunct takes the form

(3 a1 Biy) ... 3 @i, 2 Bin) ((0;(a;s5 ..., ain.»)) =1B)

Note that analyse is not directly applicable to this type because of the proof obligations introduced by the existential
quantification. This problem is overcome by a pre-analysis step in which the existentially quantified equality is
assumed from which follows the judgement

ILC
D> Az.snd(... snd(z) ...)
:(Vz:(3aiy:By) ... 3 Gin,: Bin) ((0(aiy 5 -, @in)) =1 B))
(o(O;(fst(2), ..., fst(... snd(z) ...)) =1 B)
1l

This dependent function removes the existential quantification. By extending the initial context with an assumption

THE COMPUTER JOURNAL, VoL.36, No.4, 1993

20z udy 01 uo 1s8nb Aq 62ZS8E/28E//9€/0191E/|UlWOoo/Wod dNo dlWepeo.//:SA|Y WOy Papeojumod

ON EXPLOITING THE STRUCTURE OF MARTIN-LOF’S THEORY OF TYPES 395

of the form

z:(3 a;y: Biy) ... 3 Gin, 2 Bin)((0:(ai15 -5 i) =1 B)
thus enabling the search for a contradiction to proceed with the equality
o(0;(fst(z), ..., fst(... snd(2) ...))) = B

The application of the pre-analysis step is reflected in the analysis tree by the introduction of an intermediate node:

ILC
> Ar.Fi(x)=7B)— P, Vv

(F a1 :Biy) ... (3 ain,: Bi,,)

(0:(air; ..., Ain)) = rB) Vv

Pk
1l
ILC
> Ar.pre
:(Vz:3a;:Biy) ... A ain,: Bin)(@(0i(air ..., Qin,) =1 B))
(UB;(fst(2), ..., fst(... snd(z) ...))) =1 B)
1l

4.4. Proof Extraction

Given the arbitrary equality (x=7f) and a list of
assumptions C, a successful search for a contradiction
generates a tree in which every leaf directly descendent
from a A -node gives rise to a contradiction, and at least
one leaf directly descendent from a v -node gives rise to
a contradiction. This tree structure embodies a proof of

[[CD ix.x: (=1 p)]l

The process of proof extraction involves propagating
the contradictions held at the leaf nodes back up through
the tree structure. Given the implication

(@=rB)—-P
and assuming that by analysis of P a contradiction is
identified

P

then the required negation

a=1rp)

can be derived by the application of the —-elimination
and —-introduction rules. This propagation gives rise
to a derived rule similar to the modus tollens rule of
inference:

A type
f:A—>B
g: B

Ax.x: 1A

Note that for simplicity the derived proof object is
replaced by the identity function Ax.x. If a negated type
is non-empty, then the identity function will be present
[1]. P may also take the form of a conjunction or a
disjunction. If P takes the form of a conjunction

Py A AP,
then an implication follows of the form
@=rB) =P A AP,

In order to establish that (« = 7 f) is contradictory, it is
sufficient to show that at least one of Py,...,P, is
contradictory. Assuming that the analysis of P; (1 <i<n)
gives rise to a contradiction

— Pi
then a proof of the negation
T(e=rp)

can be derived using the A- and —-elimination rules

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

20z udy 01 uo 1s8nb Aq 62ZS8E/28E//9€/0191E/|UlWOoo/Wod dNo dlWepeo.//:SA|Y WOy Papeojumod

396 A. IRELAND

together with the —-introduction rule. The resulting
derived rule takes the form:

A type
f:A->B, A - AB
g:7B;

n

Ax.x:71A
Alternatively, P may take the form of a disjunction
P, v v P
giving rise to an implication of the form
(o=rp)>PyVv ... VP

Assuming that analysis of each disjunct gives rise to a
contradiction then a proof of the negation

x=71p)

can be derived using the v- and —-elimination rules
together with the —-introduction rule. The correspond-
ing derived rule takes the form:

A type

B, type ... B, type
f:A->B;v - v B,
igl:ﬁB1

g 1By

AX.x:T1A

If P takes the form of a disjunction, then one or more
of the disjuncts may involve existential quantification
resulting in the application of a pre-analysis step. Our
process for propagating contradictions must take
account of this. As described earlier, if P is a disjunction
which contains an existentially quantified disjunct, then
the pre-analysis step constructs a dependent function
type of the form

(VY u:P)P'(u)

allowing the analysis to proceed with P’(v), where v
belongs to P. Assuming that P’(v) gives rise to a contra-
diction, then a proof of P can be derived using the
—-elimination together with the —- and V-introduction
rules. The resulting derived rule takes the form

P type
f:(Vu:P)P'(u)
|[[v:P

> g:P'(v)
1l

Ax.x: P

4.5. Generalizing the Search for a Contradiction

In order to generalize the search for contradictions
transformations are provided which convert a goal into
the required negated equality form. These transforma-
tions involve pushing negations through quantifiers and

logicals. The transformations operate both at the level
of the goal type and at the level of the assumption types.

4.5.1. Goal Type Transformations

In general, a goal type G must be refined before contra-
chk can be applied. This refinement process is carried
out within the context of goal-directed proof and is
achieved by the application of goal transformations.
These transformations correspond to the subset of
DeMorgan’s laws for the logicals and quantifiers given
by the following implications:

(3 x:A4)1 B(x)— (Y x: A)B(x)

(Vx:A)1 B(x)—> (3 x: A)B(x)
(mMAv 1B)> (A A B)
(A A 1B)-> (A Vv B)

4.2.2. Assumption Type Transformations

Given a goal of the form
[ay:Aq;..5a,: A4, v:G]|

then A; (1<i<n) denotes an assumption type.
Assumption type transformations represent forwards
inference and, like the goal type transformations, corre-
spond to a subset of DeMorgan’s laws for the logicals
and quantifiers. In general the following implications
are not constructively valid:

(VY x: A)B(x)— (3 x: A)1 B(x) (10)
(A A B)»(114Av T1B) (11)

The missing laws, however, are not important. For
example, consider the following hypothetical judgement

I[f:(3a:A4) Ba)> v:G]|

Note that the assumption denoted by f corresponds to
the consequent of (10). Such an assumption is too weak
to be useful. It relates to a particular object v, for which
B(v) is contradictory, without specifying which object it
is. Similarly, consider the hypothetical judgement

I[fiAv B> v:G]|

where the assumption denoted by f corresponds to the
consequent of (11). Again this assumption is too weak
to be useful. It does not provide a method for determin-
ing which disjunct holds. The presence of the missing
laws would, therefore, not enhance the generality of the
proof procedure.

4.6. An Example

We illustrate the use of our proof procedure through its
application to the proof of a negation arising from the
synthesis of a table look-up function, the details of which
can be found in Ireland [12].

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

ON EXPLOITING THE STRUCTURE OF MARTIN-LOF’Ss THEORY OF TYPES 397

4.6.1. Program Specification
Our table look-up function is specified by the type®
(Va:A)V I: List(A x B))

Member(a, I, A, B) v -1 Member(a, I, A, B) (12)

where A4 and B denote arbitrary types in U,;. Member®
is defined as

Member =[a,l, A, B](3 h: List(A x B))3t: List(A x B))
(@b:B)h <> ({a,b)::t) = Liguxp])

4.6.2. Proof of a Negation
In the course of satisfying (12) a goal type of the form
=1 Member(a, u::v, A, B) (13)

is generated in a context which includes the following
assumptions:

x:(a= 4 fst(u))
y: 1 Member(a, v, A, B)

Using the transformations outlined in Section 4.5 (13)
may be reduced to

Ah<>Ka, b):it) = Ligaxp Ui 0) (14)

In addition to the assumptions for h, t and b the context
is extended with the following assumption:

y':(V ' : List(A x B))(V t': List(A x B))(V b": B)

(b <>(Ka, b)) = Ligaxp V)
(14) is of the required negated equality form and by case
separation on h a disjunction is generated giving rise to

the following two types:
nil <> ({a,b) 1 t) = igaxp v (15)

(3p:A x B)3 q: List(A x B))
(pg)<>(Ka,bY:t)=pigaxpUiiv) (16)
Evaluation reduces (15) to
{a, byt =pigaxp it (17)

and by decomposition (17) is reduced to a conjunction,
where the left conjunct

{a,b) = 4xpu

taken together with the assumption denoted by x gives
rise to a contradiction. To deal with (16) the existential
quantification is first removed introducing the
assumption

z:(3p: A x B)3 q: List(A x B))
(prg)<>(a,by:t)=pLigaxpU::v)

5Note that A is defined in terms of the cartesian product type x.

This specification of Member would be improved with the use of
the subset type. However, the subset type was not supported by the
underlying implementation of Type Theory [17] with which our proof
procedure was developed.

thus allowing the search for a contradiction to proceed
with

(fst(z) :: fst(snd(2))) < > ({a, b) ::t) = Ligaxpy UiV (18)
By evaluation (18) is reduced to
fst(2) :: fst(snd(z)) < > ({a, b) ::t)) = Liaxpy U=V

which decomposes giving rise to a conjunction from
which the right conjunct

fst(snd(2)) < > (@, b) ::1) = Lisica x5y V

taken together with a specialization of the assumption
denoted by y’ yields a contradiction. Both branches of
the case separation have been shown to give rise to
contradictions. Backward propagation gives rise to a
proof of (14). The proof of (13) follows by the correctness
of the goal transformations.

4.7. Implementation

The proof procedure outlined has been implemented
and integrated within a proof assistant [8] which is
similar in design to the Nuprl [5] interactive proof
environment. The goal transformations which generalize
the applicability of the proof procedure are implemented
using LCF [7] style tactics and tacticals. An implementa-
tion of Milner’s type check algorithm [13] is used for
satisfying well-formedness proof obligations.

5. RELATED WORK

An underlying assumption of the work presented here is
that the theory can be extended mechanically to incorp-
orate new data type constructors. Backhouse [2] pro-
poses such a scheme for introducing user-defined
extensions. This idea has been taken a stage further in
the Calculus of Constructions where a mechanism for
introducing inductive definitions has been implemented
[18]. This work strengthens the argument for the basic
approach we have adopted in developing our proof
procedure.

Proofs of negations are an example of what has been
called the mismatch between programs and proofs [3].
In Nuprl [5] the subset type is used to hide the computa-
tionally uninteresting component of an object expression.
The need for the subset type is a consequence of the
rigid type structure of Martin-Lof’s theory. This was a
motivation behind the flexible typing adopted by Henson
[9] in his constructive set theory TK. In the Calculus of
Constructions [15] and PX [10] a syntactic notion of
non-informative propositions is introduced. These mech-
anisms, however, do not address the problem of satisfy-
ing computationally uninteresting proof obligations. In
contrast to the approach adopted here Smith [19] argues
for the use of nonconstructive methods in dealing with
such proof obligations. By adding the law of the excluded
middle to Martin-L6f’s theory Smith is able to make
use of classical logic in reasoning about programs.
Whether the use of classical logic simplifies the theorem

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

398 A. IRELAND

proving task remains to be seen. Smith admits to not
knowing of any programming example where the cor-
rectness proof is considerably simplified by the use of
classical logic.

6. CONCLUSIONS

In this paper we develop a proof procedure for negation
based upon general properties of data type constructors.
We outline the basis on which these properties can be
derived mechanically. As a consequence our proof pro-
cedure may be extended uniformly to incorporate new
data type constructors. The rich type structure of the
theory provides an expressive specification language.
The price paid for this expressiveness, however, is the
loss of decidable type checking. With completeness not
an achievable goal, our criteria for evaluating our proof
procedure must be based on empirical study. The work
presented here represents a starting point; a framework
and an algorithm which is both tunable and extendible.

Acknowledgements

I am indebted to Alan Hamilton for numerous discus-
sions during the course of this work and his detailed
comments during the preparation of this paper. Paul
Chisholm provided useful feedback on an earlier version
of this paper for which I am very grateful. The work
described here was funded by the Carnegie Trust for the
Universities of Scotland and was carried out at Stirling
University in partial fulfilment of the requirements for
the Ph.D. degree.

REFERENCES

[1] R. C. Backhouse, Notes on Martin-Lof’s theory of types,
parts 1 and 2. FACS FACTS (1986).

[2] R. C. Backhouse, On the Meaning and Construction of
the rules in Martin-Lof’s Theory of Types. Computing
science notes cs 8606, Department of Mathematics and
Computing Science, University of Groningen (1986).

[3] R. C. Backhouse, Overcoming the mismatch between
programs and proofs. In Proc. of the Workshop in
Programming Logic, pp.116-122, P. Dybjer,
B. Nordstrom, K. Petersson, and J. M. Smith, (eds.).
Marstrand, June (1987).

[4] P. Chisholm, Derivation of a parsing algorithm in
Martin-Lof’s theory of types. Science of Computer
Programming, 8, pp. 1-42 (1987).

[5] R. L. Constable et al., Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, NJ.

[6] G. Gentzen, Investigations into logical deduction. In The
Collected Papers of Gerhard Gentzen, pp.68-213,
M. E. Szabo (ed.). North-Holland, Amsterdam (1969).

[71 M. J. C. Gordon, R. Milner and C. P. Wadsworth,
Edinburgh LCF. Lecture Notes in Computer Science.
Springer-Verlag, Berlin (1979).

[8] A. G. Hamilton, Program Construction in Martin-Ldf
Type Theory. Technical report 24, Department of
Computing Science, University of Stirling (1985).

[9] M. C. Henson, Program development in the constructive
set theory TK. Formal Aspects of Computing, 1,
pp. 173-192 (1989).

[10] S. Hayashi and H. Nakano, Px, A Computational Logic.
Technical report, Research Institute for Mathematical
Science, Kyoto University, 1987.

[11] W. A. Howard, The formulae-as-types notion of construc-
tion. In To H. B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism, pp. 479-490, J. P. Seldin
and J. R. Hindley (eds.). Academic Press, New York,
(1980).

[12] A. Ireland, Mechanization of Program Construction in
Martin-Lof’s Theory of Types. PhD Thesis, Department
of Computing Science, University of Stirling (1989).

[13] R. Milner, A theory of type polymorphism in program-
ming languages. J. Computer and System Sci., 17,
pp. 348-375 (1978).

[14] P. Martin-Lof, Constructive mathematics and computer
programming. In Logic, Methodology and Philosophy of
Science VI, pp. 153-175, L. J. Cohen, J. Los, H. Pfeiffer,
and K-P. Podewski (eds.). North-Holland, Amsterdam
(1982).

[15] C. Mohring, Extracting f,,’s programs from proofs in the
Calculus of Constructions. In Proc. of the 16th ACM
Symposium of Principles of Programming Languages,
pp. 89-104 (1989).

[16] B. Nordstrom, K. Petersson and J. Smith, Programming
in Martin-Lof’s Type Theory, Clarendon Press, Oxford
(1990).

[17] K. Petersson, A Programming System for Type Theory.
Lpm memo 21, Department of Computer Science,
Chalmers University of Technology, Goteborg (1982).

[18] F. Pfenning and C. Mohring, Inductively defined types
in the calculus of constructions. Presented at:
Mathematical Foundations of Programming Language
Semantics (1989).

[19] J. Smith, On a nonconstructive type theory and program
derivation. In Mathematical Logic and its Applications,
pp- 331-340, D. G. Skordev (ed.). Plenum, New York
(1987).

[20] S. Thompson, Type Theory and Functional Programming.
Addison-Wesley, Reading, MA (1991).

THE COMPUTER JOURNAL,

VoL. 36, No.4, 1993

¥20z Iudy 01 uo 1senb Aq 622G8¢/28€/7/9¢ /8101 e/|UulWwoo/wod dno-ojwepede//:sdiy wolj papeojumoq

