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The aim of this paper is to survey certain theoretical aspects of the complexity of
quantifier elimination in the elementary theory of the real numbers with real con-
stants, and to present some new results on the subject. We use the new model of
computation introduced by L. Blum, M. Shub and S. Smale that accepts as inputs
vectors of real numbers and allows the transfer of the stuctural approach to com-
putability and complexity for computations with real numbers. More concretely,
we give a proof of the existence of NPgr-complete problems. Also, we introduce
a new complexity class PATr which describes the complexity of the decision of
quantified formulae and, in order to study its relationships with the already exist-
ing complexity classes, a model for parallel computations is also introduced. Using
the classes resulting by bounding resources in this parallel model, some separation
results are finally obtained. In particular, we show that the polynomial hierarchy
over the reals is strictly contained in PATR .
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INTRODUCTION

The aim of this paper is to survey certain theoretical as-
pects of the complexity of quantifier elimination in the
elementary theory of the real numbers with real con-
stants, and to present some new results on the subject.

Algorithms for quantifier elimination in the theory of
the reals appear with the work of A. Tarski [27]. The
irruption of computers together with the extent of ap-
plications that quantifier elimination has had, focused
attention on the complexity of the problem. The com-
plexity of Tarski’s original algorithm was hyperexpo-
nential and in the early seventies Collins’s Cylindrical
Algebraic Decomposition (see [9]) reduced it to doubly
exponential in the number of variables. Later a sim-
ilar result was also obtained in [29] based on ideas of
Monk and Solovay. More recently, several algorithms
were developed in [17, 18, 20, 25], that eliminate quan-
tifiers with a time bound which is singly exponential in
the number of variables and doubly exponential in the
number of quantifier alternations. Of course, a natu-
ral related question is to seek for lower bounds to this
problem. An early result in [15] produced an exponen-
tial lower bound for the decision of quantified formulae
(i.e. to decide whether a quantified formula with no free
variables is true) by nondeterministic Turing machines,
and later, [28] and [14] gave a double exponential lower
bound for the elimination of quantifiers by deterministic
Turing machines.

At this point two important remarks arise. The first
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one is that the lower bound given by Davenport and
Heintz or by Weispfenning does not apply for the deci-
sional problem since it relies on the size of the output
for a certain set of inputs. The second one concerns the
model of computation considered. In general it is the
Turing machine so the inputs considered are formulae
involving polynomials with integer coefficients. It is
important to remark that although some of the men-
tioned algorithms also work with inputs given by real
numbers (instead of integers) they were designed for the
bit (or Boolean) model, i.e. the machine models used
to describe and analyse them are Turing machines or
families of Boolean circuits.

For decisional problems, a widespread approach for
studying lower bounds is the structural one in which
complexity classes are defined by bounding resources
between different computational models and their rela-
tions are studied. This approach, however, seems to fail
in our case since the complexities of basic problems of
elementary logic and geometry over the reals are hard
to capture by specific complexity models. For instance,
the decision problem for existential formulae is NP-hard
(see the Appendix of [16], problem AN10) and the best
upper bound we know for it [8, 19, 24] is that this prob-
lem belongs to PSPACE (but between this lower and
upper bound there is the whole polynomial hierarchy).

A change in this scenery came very recently when [5]
introduced a new model of computation that accepts
as inputs vectors of real numbers. This theory intends
to lay a theoretical ground for Numerical Analysis (see
[26] for a discussion about this subject) and moreover
provides a uniform machine model for the type of com-
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putations considered in Algebraic Complexity. These
new ideas allowed the transfer of the stuctural approach
to computability and complexity for computations with
real numbers and the first completeness results as well
as the existence of universal machines and undecidable
problems appear in their seminal paper above quoted.
In the future we shall refer to this approach as BSS
theory.

It is also remarkable that, from a logical point of view,
the complexity notion introduced in [5] reflects the com-
plexity of the elementary theory of the reals with a con-
stant symbol for every real number, and in this sense
the complexity of Tarski’s algorithm (or the complexi-
ties of Collins’s or any subsequent ones that work also
for real inputs) is exactly the number of arithmetical
operations it performs as a function of the input size.

In the present paper we will mainly deal with com-
plexity aspects of the BSS theory. Results concerning
computability (that link BSS theory with dynamical
systems, Julia sets and descriptive set theory) can be
found in [5, 6, 10, 22]. In the following section, we
briefly recall the definition of the BSS model of compu-
tation. We shall also define the complexity classes PR
(deterministic polynomial time) and NPg (nondeter-
ministic polynomial time) as they have been introduced
in [5]. In section 3, we give a proof of the existence of
NPR -complete problems and we establish its connec-
tion with the existential theory of the reals. In section
4, a new class PATR is introduced which describes the
complexity of the decision of quantified formul= and,
in order to study its relationships with the already ex-
isting complexity classes, a model for parallel computa-
tions is introduced in the following section. Using the
classes resulting by bounding resources in this model,
some separation results are obtained in section 6. In
particular, we show that the polynomial hierarchy over
the reals is strictly contained in PATR. This result
(whose Boolean analog is not known) roughly says that
deciding formulee with a bounded number of alterna-
tions is strictly easier than doing so for formulse with
an unbounded one. Finally, in section 7, some open
problems are discusssed.

2. THE BSS MODEL AND COMPLEXITY
CLASSES

Subsequently we shall denote the direct sum of count-
ably infinite many copies of R by R®. This direct
sum is the set of sequences of real numbers having only
a finite number of non-zero elements. For any such ele-
ment z we will denote by |z| its size, i.e. the largest n
such that z, # 0. Also, if z = (z1,2,...,2,,0,0...)
and z’ = (z},5,...,2.,,0,0...) belong to R*° with
sizes |z| = n and |2’'| = m we denote by (z,z’) the ele-
ment £ = (&1,Z2,...,%n, T, Th,...,Th;,0,0...) of R*
of size n + m.

We recall from [5] that a real Turing machine consists
of an input space I = R, an output space O = R,

(k < 00) and a state space S = N x N x R, together
with a connected directed graph whose nodes labelled
1... N correspond to the set of different instructions of
the machine and are of one of the five following types:
input, output, computation, branching and move nodes.
Let us describe them a bit more.

1. Input nodes. There is only one input node and it is
labelled 1. Associated with this node there is a next
node 3(1), and the input map g; : I = S.

2. Output nodes. There is only one output node and
it is labelled N. It has no next nodes, once it is
reached the computation halts, and the output map
go : S = O places the result of the computation in
the output space.

3. Computation nodes. Associated with a node m of
this type there is a next node B(m) and a map
gm S = S. The gn, is of the form gn,(i,7,2) =
('(3),4'(4), 2/ (2)), with ¢’ (i) = i+1or 1, j'(j) = j+1
or 1, and 2’ is a polynomial or rational map on a fi-
nite number of coordinates, and the identity on the
others.

4. Branch nodes. There are two nodes associated with
a node m of this type: 3% (m) and 8~ (m). The next
node is 8% (m) if z; > 0 and 8~ (m) otherwise.

5. Move nodes or fifth nodes. Nodes m of this type have
a unique next node S(m). If the current element of
S is (4,7, 21,...) it operates replacing z; by z; in the
7B place of the vector R™ in S.

The input and output maps can be any polynomial or

rational map. However, in what follows we shall take

as input map g; the one that places the input in the

2, with s odd (thus we reserve the even coordinates to

leave work space), and its size in z3. When O = R* we

will take go as the identity map on the real coordinates
of S. In the case O = R* with finite k we shall take go
as the identity restricted to the first k real coordinates

of S.

An instantaneous description (or configuration) at
any moment of the computation can be given by pro-
viding an element in S and the current node. After one
computational step the first one changes according to
the function associated with the current node and the
node itself according to the function g.

For a given machine M, the function yjs associating
its output to a given input z € R is called the input-
output function in [5] and we shall say that a function
f:R% = R is computable when there is a machine
M such that f = .

Also, a set A1IR™ is decided (or accepted) by a ma-
chine M if its characteristic function ¥4 : R*® - R
coincides with ¢as. So, for decisional problems we con-
sider machines whose output space is R.

We can now introduce some central complexity
classes.
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DEFINITION 2.1. A real Turing machine M 1is said
to work in polynomial time when there are constants
c,q € N such that for every input y € R™, M reaches
its output node after at most cly|? steps. The class Pr
is then defined as the set of all subsets of R™ that can
be accepted by a machine working in polynomial time.
Also, M 1s said to work in exponential time when there
are constants c,q € N such that for every input y €
R, M reaches its output node after at most 2¢I¥°
steps, and the class EXPR consists of all the subsets
of R that can be accepted by a machine working in
ezponential time. Finally, a set A belongs to NPg if
there is a machine M satisfying the following condition:
for all y, y € A iff there is a y' € R*® such that M
accepts the input (y,y’) within time polynomial in |y|.

In this model the element y’ can be seen as the se-
quence of guesses used in the Boolean model. However,
we note that in this definition no nondeterministic ma-
chines are introduced as a computational model, and
nondeterminism appears here as a new acceptance def-
inition for the deterministic machine. Also, we note
that the length of ¥ can be easily bounded by the time
bound p(|y|).

According to standard terminology in complexity the-
ory we shall freely use in the rest of the paper the word
problem as a substitute for subset of R*°.

A first trivial result is the following proposition.

ProprosITION 2.1. We have the inclusions PRr1

NPR and PRI EXPR .

3. EXISTENTIAL FORMULZ AND NPgr-
COMPLETENESS

A highly nontrivial (and to date open) question re-
lated to the proposition above is whether Pgr #NPg.
A standard approach to this question is to look for
NPg -complete problems, since the existence of such a
problem A reduces the equality of the classes to the
membership of A to Pg.

One of the main results in [5] is the existence of NPg -
complete problems. In this section we shall give a proof
of it.

DEFINITION 3.1. Let C be a class of subsets of R
and D a class of functions from R*™ to R*™. A set
A1R® is hard for C under reductions in D when for
every set B € C there is a function f : R® =5 R®™
which belongs to D such that for everyz € R™, x € B
iff f(z) € A. The set is moreover complete for C if it
belongs to C.

In general, the definition is used with complexity
classes satisfying the condition that the resources al-
lowed in D are smaller than those allowed in C. In that
case C-complete problems characterize the class C in the
sense that if a C-complete problem belongs to D, then
D=C.

A subset S of R" is called semi-algebraic if it is de-
fined by a Boolean combination of inequalities of the
form

f>0

where f is a n-variate polynomial with coefficients in R.
Such a Boolean combination is called a semi-algebraic
system and it is said to be satisfiable when the semi-
algebraic set it defines is non-empty. We shall denote by
L(d) the set of all semi-algebraic systems in any number
of variables such that all their polynomials have degree
bounded by d. Analogously, the space of polynomials
having degree bounded by d will be denoted by P(d).

Semi-algebraic systems correspond to quantifier-free
formulz in the elementary theory of the reals with con-
stant symbols. Since this theory has quantifier elim-
ination we conclude that semi-algebraic sets are just
the definable sets of the theory. Comprehensive intro-
ductions to the geometry of semi-algebraic sets can be
found in (3] and in [7].

Let us now consider the problems

dSAS={yp € L(d) | ¢ is a satisfiable system}
for d € N, and

dFEAS= {f € P(d) | f has a real zero}.

THEOREM 3.1. i) For every d > 2 the problem
dSAS is NPR -complete for reductions in Pg.

#) For every d > 4 the problem dFEAS is NPg-
complete for reductions in Pg.

Proof. i) For the membership to NPgr we consider
a machine that guesses values for the variables of the
input formula and then evaluates this formula in the
guessed values. We shall prove the hardness for d = 2
since for greater values of d the result easily follows.

Let us consider a machine M solving a problem B
in nondeterministic polynomial time. Without loss of
generality, we can suppose that the functions associated
ta the computational nodes are the arithmetic ones and
that they operate z; and 23 placing the result in z;
(i.e. these functions are of the form 2; = 23 % 23 for
* € {+,—,+,/}). It is clear that such simplification
only modifies the complexity of M within a constant
multiplicative factor.

Now, let = € R*> be an element of size n and let
p = p(n) be a bound for the running time of M over
z. We shall consider the variables I}, J;, Z; ; and Y; for
1 < i,t < p which represent the values of the state
space coordinates ¢,j and z; and the current node y
after t steps. Let us also denote in the following by C
the subset of {1,...,N} of computational nodes, and
by B and M the subsets of branching and move nodes
respectively.

The initial configuration (which is obtained after the
input is mapped in the state space, and corresponds to
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the values of the variables with subindex ¢t = 1) can be
described by the formula ®;,;;

Il"—‘l/\.]l:l/\Zl,z:n/\ZlA:.’L‘l/\
Z1,8=z2A---Azl,2n+2=anYI =ﬂ(1)

Also, for any t the change of configuration after ¢ com-
putational steps can be described by the formula &,

V [Y: = mA(Li41, Jet1, Zevr1) = gm(Lty Tty 2t 25 21 3))

mecC

v V Yo =mA ((Zey 20A Y41 = By (m) V
meB
(Ztq < OA Y41 = B-(m))] V

V v [Yg=m/\It=T‘/\Jt=8/\ZH.1’,=Z¢V,-]V

meM 1<r<p
1<s<p

Yi=2AY41 =2

In the preceding lines we must add additional equations
to require that the values of the rest of the variables
remain unchanged (we do not do it here to avoid un-
necessary complication of the formulz).
Moreover, we can describe the fact that M accepts z
with q’accept
Y,=2AZ,, =1

Thus, it turns out that M accepts z iff the sentence

32013202 ... 3Zp p(Binit A\ 1) A Raceept)
1<t<p

evaluates to TRUE.

If we define i, to be the semi-algebraic system ob-
tained from the above sentence by “deleting” its quan-
tifiers, we then have that M accepts z iff ¢, is satis-
fiable. Moreover, all the polynomials appearing in ¢,
are of degree smaller than or equal to 2 since the g,
are so. Thus, the polynomial time computable function
that associates ¥, to z reduces A to 2SAS.

ii) We now reduce the quantifier-free part of the sen-
tence above to a degree 4 polynomial. The reduction
performs the following steps.

a) Elimination of inequalities. We replace
p(X)>0 by p(X)=Y’
and
p(X)>0 by p(X)-¥P=1
since the existence of an element Y satisfying the
right hand equations is equivalent to their left hand
counterparts.

b) Elimination of connectives. We iteratively replace
a disjunction like

V p(X)=0 by J] pi(X)=0
1<i<s 1<i<s
and a conjunction like

A pi(X)=0 by > pi(X)’=0

1<i<q 1<i<q

Since the original formula has a constant number
of connective alternations the size of the resulting
polynomial is polynomially bounded.

c) Reduction to a system of quadrics. At this moment
we have a single polynomial equality

e Xp . Xr=0
v
that we replace by the conjunction of a linear equa-

tion
> aT, =0
v
in the new variables T,, toghether with a set of
quadratic equations of the form

Torp = TaTp

The number of new variables and equations needed
in this process is polynomial in n.

d) Reduction to a quartic. We finally obtain a single
polynomial of degree 4 by replacing the conjunction
of quadrics by the sum of its squares as in step b).
We then have that, if F; is the resulting polynomial,
then v, is satisfiable iff F, has a real root. |

It is important to remark that the degree of the poly-
nomials in our complete problems must be bounded by
some constant. This need is related to the sparse rep-
resentation of polynomials together with the fact that
in the BSS model large numbers have unit size. Thus,
a problem FEAS whose inputs were polynomials of ar-
bitrary degree would not belong to NPg. In fact, it
would not belong to any complexity class given by a
deterministic or nondeterministic time bound.

Some other complete problems with an algebraic or
geometric meaning are exhibited in [13]. More precisely,
it is shown there that the following sets

dCONVEX= {p € L(d) | the semi-algebraic set
defined by ¢ is convex},

dFINITE; = {¢ € L(d) | ¥ has at most k solutions},
dPOSITIVE= {f € P(d) | for every z € R"
f(z) > 0},
dREGULAR= {f € P(d) | f is regular}

are coNPg-complete for every d > 2 in the first two
cases, (and for any k € N in the second one) and for
every d > 4 in the other two. Also, [30] shows that
problems coming from neural net learning are NPg-
complete.

4. DECISION OF QUANTIFIED FORMULZAE

In the Boolean setting the complexity of the decision
of existential formula is captured by the class NP, and
a similar thing happens with quantified Boolean for-
mula and the class PSPACE. In the real case, the use
of space bounds does not produce natural complexity
classes since it has been shown in [21] that all recur-
sive sets can be decided in linear space. However, since
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PSPACE coincides with polynomial alternating time
(see [2, ch. 3]) we can define alternation for real Tur-
ing machines (modifying the acceptance definition in
a similar way as is done for nondeterminism) and an
analogous result easily follows.

On the other hand, a hierarchy of complexity classes
is defined between P and PSPACE that reflects the com-
plexity of deciding Boolean formulze with a bounded
number of quantifier alternation (see [1, ch. 7]). In
this section we shall introduce the real analogy of these
classes.

DEFINITION 4.1. We shall say that a set S is ac-
cepted in Polynomial Alternating Time if there exists
a polynomial p and a machine M such that for every

yeR>®, ye S iff

Jz,Vz, ... Bxp”y“Vzp“y,) M accepts

(Y, T1, 215+, Tp(ly))s Zp(ly))) 0 time p(|y|)
and we shall denote this fact by S € PATR .

We now define for any d > 1 the problem dQRF to
be the set of true formule like

Q1X1,Q2X2, e ,QanL,D(Xl,Xz,. . ,Xn)

where the (@; are quantifiers—either existential or
universal—and ¢(X, X2,...,X;,) is a semi-algebraic
system whose polynomials have degree bounded by d.

Similar arguments as those used in the proof of the-
orem 3.1 imply the following result.

THEOREM 4.1. For every d > 2 the set dQRF 1is
PATR -complete for reductions in Pg.

We consider the set Sy (resp. Pi) for k > 1 consisting
of the formule in 2QRF that have at most k—1 alterna-
tions of quantifiers and the first one is existential (resp.
universal).

DEFINITION 4.2. For every k > 1 we define the
classes ©F and TIf as the class of subsets of R*° that
reduce in polynomial time to S, and Pi respectively.
Also, we define A,’: to be the intersection of E,’: and
17, and the polynomial hierarchy PHg to be the union
of all the TF.

REMARK 4.1. It is possible to introduce the classes
Tf and II{ using oracles, just defining £f,, to be the
class of sets accepted by a nondeterministic machine
that asks queries of an oracle in £f, and IIf to be the
class of sets whose complements are in £f. We have
not done it here in such a way (much more conceptual)
to avoid defining the oracle version of the real Turing
machine.

5. PARALLEL COMPUTATIONS
COMPLEXITY CLASSES

AND

DEFINITION 5.1. An algebraic circuit C over R is
a directed acyclic graph where each node has indegree

0, 1, or 2. Nodes with indegree 0 are either labeled as
input or with elements of R (we shall call the last ones
constant nodes). Nodes with indegree 2 are labeled with
the arithmetic operations of R, i.e. “+”, “” “~” and
“/”. Finally, nodes with indegree 1 are of a unique kind
and are called sign nodes. There is a set of m > 1 nodes
with outdegree 0 called output nodes. In the sequel the

nodes of a circuit will be called gates.

To each gate we inductively associate a function of
the input variables in the usual way (note that sign
gates return 1 if their input is greater than or equal to
0, and 0 otherwise). In particular, we shall refer to the
function associated to the output gates as the function
computed by the circuit.

DEFINITION 5.2. For an arithmetic circuit C, the
size s(C) of C, is the number of gates in C. The depth
d(C) of C, is the length of the longest path from some
input gate to some output gate.

Acceptance of subsets of R in nonuniform parallel
polynomial time can be now easily defined using for a
given set S a family of circuits C, having depth poly-
nomial in n such that C, computes the characteristic
function of S restricted to inputs of size n. We intro-
duce now a uniformity condition and its corresponding
class of uniform parallel polynomial time, and we show
that this class is contained in EXPg.

DEFINITION 5.3. Given an algebraic circuit C, the
canonical encoding of C is a sequence of 4-tuples of the
form (g,0p,qg1,9-) € R* where g represents the gate
label, op is the operation performed by the gate, g is
the gate which provides the left input to g and g, its
right input. By convention g; and g, are 0 if gate g
18 an input gate, and g, s 0 if gate g is a sign gate
(whose input is then given by gi) or a constant one (the
associated constant being then stored in g;). Also, we
shall suppose that the first n gates are the input ones
and the last m the output ones.

DEFINITION 5.4. Let {Cp}nen be a family of cir-
cuits. We shall say that the family is P-uniform if there
exists a real Turing machine M that generates the ith
coordinate of the encoding of C, with input

n—1

(,1,...,1)

in time polynomial in n. We shall say that the family is
EXP-uniform when there is a real Turing machine M
as above but working in time exponential in n.

REMARK 5.1. Note that an input like the one in the

- preceding definition is introduced in a real Turing ma-

chine together with its size n in the fourth coordinate
of the state space. Thus, the only relevant informa-
tion of the input (the numbers i and n) are reachable
without cost. An equivalent condition is considering a
two-dimensional real Turing machine that performs the

THE COMPUTER JOURNAL,

VoL. 36, No. 5, 1993

¥20Z Iudy 01 uo 1senb Ag ¢£Z6£/001/S/9¢ /8101 e/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj papeojumoq



ON THE COMPLEXITY OF QUANTIFIER ELIMINATION: THE STRUCTURAL APPROACH 405

same computation with input (n,4) also in time n®(!)

(but this choice has the undesirable feature of making
time depend not on the size of the input but on the
input itself).

DEFINITION 5.5. We shall say that a set S can be
decided in parallel polynomial time (S € PARgr for
short) when there is a P-uniform family of circuits {C,}
having depth polynomial in n and such that C,, computes
the characteristic function of S restricted to inputs of
size n. In the same way, we define the class PEXPg of
sets decided in parallel exponential time.

An alternative definition of parallel polynomial time
could be given by assembling an exponential number of
real Turing machines and letting them work together
within polynomial time. It is however not difficult to
prove (see [12] for details) that we would obtain the
same class PARR we have defined here.

The defined parallel complexity classes give the for-
malism within which the algorithms for eliminating
quantifiers given in [20] and in [25] are analysed. In
fact the following theorem—whose proof is out of the
scope of our paper—is shown in the quoted papers.

THEOREM 5.1. The following inclusions between
complezity classes hold

PHgr1 PARR and PATgr1 PEXPgr

We have the inclusion

PARR1 PATR.

THEOREM 5.2.

Proof. It closely follows some results of the Boolean
case (see [2] 4.3 and [1] 3.9) and is a straightforward
consequence of the two following lemmas. ]

LEMMA 5.3. Every set in PARR can be decided by
a real Turing machine working in exponential time and
using polynomial space.

Proof. Let S be a set belonging to PARRr and let M
be the real Turing machine that generates the circuit
gates.

Given a circuit C with only one output gate let us
denote this gate by out(C). Moreover, if out(C) is a
gate with indegree 2, let us denote by C! and C" the two
subcircuits of C that have as output node the left and
right predecessors of out(C) respectively, and if out(C)
has indegree 1, let us denote by C* the subcircuit of
C that has as output node the unique predecessor of

out(C).

EVAL(C,, x)
if C,, is a leaf then RETURN its value
elsif out(C,) has indegree 1
then y :=EVAL(CY, z);
RETURN sign(y)
else y' :=EVAL(C.,z);
y" :=EVAL(C}, z);

operate y' and y" acording with the type
of out(C,) and RETURN the result
fi

The space used by M’ is bounded by the depth of the
circuit C, (which is polynomial on n) plus the space
used by M (which is also polynomial on n). We note
that the circuit C,, is never entirely stored along the
computation. Instead, its nodes are generated by M
when they are needed. |

LEMMA 5.4. If a set SIR™ is decided by a real Tur-
ing machine in ezponential time and using polynomial
space, then it reduces to 2QRF.

Proof. Let S and M be as above with p(n) the
polynomial that bounds the space used by M. Then,
for any ¢ € R of size n the configuration of the
machine M at time t can be described by the vector
(Y,I,J,X1,...,X,) containing the actual node and the
contents of the state space (but only the p = p(|z|) first
real coordinates since the machine does not use more
coordinates by hypothesis). Now, given £ € R" and
vectors a, 3 with p+ 3 coordinates we consider the for-
mulae

Next(a, 8), Equal(a, 8), Initial(a, z), and Accepts(a)

whose respective meanings are “g is the configuration
resulting from a after one step of M”, “a and 3 are the
same configuration”, “a is the initial configuration of M
with input z” and “a is an accepting configuration”.

In the same way as in theorem 3.1 we see that the
five formulee can be constructed by a machine—that
depends on M—in polynomial time. We will now con-
struct a new formula Access2™(a, ) describing the
fact that the configuration g is reached from « after 2™
steps of M.

If m = 0 then, we have

Access 2°(a, 3) = Equal(a, 8)V Next(a, 8)
For m > 0 our first choice would be
3y Access 2™ (a,y)A Access 2™~ 1(, 8)

but, it is easy to realize that the resulting expanded
formula would have a size exponential in m. Thus, we
take advantadge of the fact that the last two terms in
the formula above have the same format to avoid writing
both of them. In fact, we define Access2™(a, 3) in the
following way

IWVa'Vp' [(Equal(a’, )A Equal(g’, 7)) V
(Equal(a’,y)A Equal(8’, 8)) = Access2™~}(o/, #')]
The length of this formula, once recursively expanded,

is linear in m and it can be written down in a number
of steps polynomial in m.

The reduction from S to 2QRF can be now simply
described since, given an z € R it associates to z the
formula Accept(z) defined as

a3 (Initial{a, z)A Accepts(B)A Acceslezlo(l)(a, B))
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which is constructed in polynomial time in |z|, and
whose polynomials have degree bounded by 2. ]

6. LOWER BOUNDS AND SEPARATIONS

We show in this section a general lower bound for par-
allel time given in [23] and deduce from it some other
results. The lower bound is an extension for parallel
computations to the well known bound of [4].

We begin by a lemma whose proof can be found in
17, 20, 23].

LEMMA 6.1. Let F be a finite family of polynomials
in R[X),...,Xp) and D = Y degree(f). Then we
fEF

have:
i) the number of satisfiable systems of the form

Xty s Xn) 20N A fo(Xiyerny Xn) 20
f,+1(X1,...,X")>0/\.../\fr(X1,...,Xn)>0
For1 (X1 ee s Xa) = OA o A fo(Xiyerny X) = 0

where f1,..., fi are all the polynomials of F, is bounded
by DO

11) the number of connected components of the solu-
tion set in R" of any of the above systems is bounded
by DO,

REMARK 6.1. The preceding lemma also holds if

we replace the polynomials for rational functions in
R(X1,...,X,) and define the degree of such a func-
tion f/g to be the sum of the degrees of f and g.

We give now a proof of the main result of [23].

THEOREM 6.2. Let SIR* be a set recognizable in
parallel time t(n). If we denote by S, the subset of S
consisting of its elements of size n, then

t(n) = Q ( \/ log, (# connected components (Sy,)) )

n

Proof. Let C, be the circuit accepting S, and let
t = t(n) its depth.

For each i < tlet g;1,...,0i s, be the sign gates of C,,
whose depth is ¢, and let f; i,..., fi s, be the functions
of (X1,...,X,) they respectively receive as input. Note
that for each input (z,,...,z,) € R", f; ; is a rational
function of (z,,...,z,).

Now, at level : we know that the number s; of sign
gates is bounded by 2!~* (since the indegree of the gates
is bounded by 2) and that the degree of their input
functions is bounded by 2* (since at each parallel step
the degree can at most get doubled). Thus, applying
part i) of the preceding lemma we see that at level 1
there are at most

(2t—1 . 2)O(n)

satisfiable s;-tuples of sign conditions for f; 1,..., fis,.
Let n; be this number.

Each s;-tuple of satisfiable sign conditions determines
the output of the s; sign gates at level 1 and thus, de-
termines specific rational functions f3 1,..., f2 5, in the
variables (X},...,X,) as inputs for the sign gates at
level 2. Since the number s, of these gates is bounded by
2t=2 and the degree of their input functions is bounded
by 22, applying again the preceding lemma we deduce
that for each s;-tuple o we have at most

(2t—2 . 22)O(n)

satisfiable sz-tuples of sign conditions for f7,,..., f7,,
(the superscript o is written to recall that these input
functions depend on the preceding tuple of sign condi-
tions o).

We then conclude that the number of satisfiable (s +
s2)-tuples of sign conditions is bounded by

m - (2t—2 . 22)0(71) — 2t-O(n)2t-O(n)

Iterating t times this argument we obtain a bound for
the number of sign conditions satisfied for all the sign
gates of C,, of

t times

A

'2z.0(n) . 2:.0('.)‘: 9t?-0(n)

By part ii) of the preceding lemma the sets defined
by one of these (s; + ...+ s,)-tuples of sign conditions
have at most

(2! . 2!)0(7]) = 2t~0(n)
connected components.

Since S, is a finite union of some of these sets, we
deduce that

# connected components (S,,) < 9t*-0(n)

Solving t from this inequality we get the desired
bound. u

We can now use this lower bound to produce two
separations, the first of them with a proof different from
its original one given in [11].

THEOREM 6.3. The inclusions PARR1 EXPgr and
PARR1 PATR are strict.

Proof. Let us consider the set
Iz|
S={z e R®| (21 +iz2)? = 1}

For a given size n, S, is the set of points whose first
two coordinates are a 22"*! root of the unity. Thus, S,
has 22" connected components and from the preceding

theorem we deduce that S ¢ PARR.

The membership of S to EXPg is given by the algo-
rithm

input(z)
n:=|z|
m:=2"

for j=1...mdo
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a) =T
Ty = 22 — 23
To = 2a,Zy
od
if z; =1 A z2 =0 then ACCEPT
else REJECT
fi

whose running time is in O(2/*!).

For the membership of S to PATg, we shall reduce
S to 2QRF using the idea of lemma 5.4 as it is laid out
in [14].

Thus, we shall construct a sequence of formulae
gy, P;,... in two free (complex) variables z and t the
meaning of ®, being “t is a 22" " root of 2”.

The formula ®¢(¢, z) simply says

z = t?
As in lemma 5.4 we define for m > 1 the formula
®,,,(t,2) to be

FyVoVw|(t = vAw = y)V(v = yAw = 2) = &, (w, )]

When expanded, ®,(t, z) is a formula whose length is
polynomial (in fact linear) in n and logically equivalent
to
z= t22~
Now, replacing each complex variable in ®,(t, z) by two
real ones and the equalities

z=1t2 by y1=xf—m§/\y2=2zlmg

v=w by ry =8 Arg = 89

we obtain a formula in four real variables
U,(z1,22,Y1,y2) whose length is also linear in n and
such that the meaning of ¥,(z;,x2,1,0) is “the com-
plex point z; + iz is a 22" " root of the unity”.

The function

(.’El,... ,.’l?n) — \Iln(xlaa"?al’o)

is the reduction we look for. [ |

The two separations shown in the theorem above have
an additional importance since their Boolean analogues
are not known. Thus, the classical question of whether
NP equals EXP (which usually comes togheter with the
P vs. NP one) has in the real case a negative answer.
In fact, one of the weak sides of the structural approach
to complexity has been up to now the lack of nontrivial
separations. In this sense, theorem 6.3 can give us the
hope that in the real setting things will behave better.

We can summarize the relations of the complexity
classes considered in this paper in the following dia-
gram, where the arrows mean inclusion and an arrow

# .. .
- means a strict inclusion.

NPr
Il
TP . EXPg
» N >N
Pr PHr — PARR PEXPgr
\. b N
nr ... PATR
I
co-NPRr

7. OPEN PROBLEMS

Together with the decision of whether the inclusions
in the preceding diagram are strict or not, one of the
main problems that remains open is to understand the
relation between EXPr and PATR. In the Boolean
case, the decision of quantified formulz is a PSPACE-
complete problem and it is known that PSPACE 1 EXP.
In our case, however, the decision of quantifier formula
does not seem to be a problem solvable in exponential
time, and nothing is known concerning the inclusions
PATR1 EXPgr and EXPgr1 PATR. An open problem
strongly related with this one is to find natural complete
problems for EXPg, since such a problem would give
us a good insight about the difficulty of the problems
lying in EXPR.
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