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Recently there has been a lot of activity in algorithms that work over real closed
fields, and that perform such calculations as quantifier elimination or computing
connected components of semi-algebraic sets. A cornerstone of this work is a sym-
bolic sign determination algorithm due to Ben-Or, Kozen and Reif [2]. In this
paper we describe a new sign determination method based on the earlier algor-
ithm, but with two advantages: (i) It is faster in the univariate case, and (ii) In the
general case, it allows purely symbolic quantifier elimination in pseudo-polynomial
time. By purely symbolic, we mean that it is possible to eliminate a quantified
variable from a system of polynomials no matter what the coefficient values are.
The previous methods required the coefficients to be themselves polynomials in
other variables. Our new method allows transcendental functions or derivatives to
appear in the coefficients.

Another corollary of the new sign-determination algorithm is a very simple, prac-
tical algorithm for deciding existentially-quantified formulae of the theory of the
reals. We present an algorithm that has a bit complexity of n(**1d%®)(clogn)(+
randomized, or n(*+1)g2*+*)(1+9 deterministic, for any ¢ > 0, where n is the number
of polynomial constraints in the defining formula, k is the number of variables, d is
a bound on the degree, c bounds the bit length of the coefficients. The algorithm
makes no general position assumptions, and its constants are much smaller than
other recent quantifier elimination methods.
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INTRODUCTION

Real quantifier elimination algorithms have enjoyed a
revival in interest in the last few years, and an impor-
tant impetus was the parallel sign determination algor-
ithm in [2]. Two of the latest quantifier elimination al-
gorithms, [21] and [14] have very good theoretical com-
plexity. Indeed the bounds in [21] are near the best that
can be hoped for the important case of problems with a
bounded number of quantifier alternations. Their work
builds on a large body of earlier papers, dating from
Tarski’s original paper [24], and following a line of pa-
pers that include [23, 9, 11, 10, 2, 3] and others.

Both [21] and [14], like the author’s earlier paper [4],
make use of a sign-determination lemma due to Ben-
Or, Kozen and Reif [2]. This lemma, henceforth called
“BKR”, takes a univariate polynomial p(s), and poly-

nomials ¢;(s),...,qn(s), and returns k sign sequences
o € {—,0,+}", where k is the number of real roots
of p(s) = 0. Each sign sequence o corresponds to

a particular root a of p(s) = 0, in such a way that
o; = sign(gi(a)). Indeed BKR is an indispensible com-
ponent of these works, providing two benefits: (i) The

*Supported by a David and Lucile Packard Foundation Fel-
lowship and by NSF Presidential Young Investigator Grant IRI-
8958577.

ability to work over any real closed field, (ii) The possi-
bility of efficient (NC) parallel implementation. In [18]
an ingenious parallel algorithm was given for approx-
imating all the roots of a univariate polynomial. His
algorithm can easily be used to parallelize earlier algor-
ithms, like [9], so that (ii) can now be achieved without
BKR. But the benefits of being able to work over ar-
bitrary real closed fields should not be underestimated,
and BKR remains the most effective tool for this. For
example, infinitesimal extensions of the reals, which are
themselves real closed fields, are extensively used in re-
cent algorithms for computing connected components
of semi-algebraic sets [3, 15, 11, 5, 6].

BKR also seems to perform well in implementations,
especially if the polynomial p(s) has few real roots. Al-
though definitive testing has not been done as yet, in
our recent implementations, it is often faster to deter-
mine the signs of polynomials symbolically using BKR
than to compute roots of p(s) = 0 numerically and then
substitute to find the signs of the g;(s)’s. Since any com-
parison can be reduced to a sign test of a single poly-
nomial, sign determination is a “universal” calculation,
or at least as general as root-finding and substitution.

Given the importance of BKR, it is natural to look for
improvements and simplifications. This paper is moti-
vated in part by a desire to improve BKR, and in part
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by a feeling that a more uniform algorithm (fewer po-
tential branches in the calculation) should be possible.
For the most part, these goals have been realised. In
BKR, the number of potential branches is exponential.
More precisely, BKR makes all its decisions based on
sign queries of various polynomials that it computes
along the way in the coefficients of p(s) and the g;(s)’s.
The number of potential queries in BKR is exponential.

In this paper, we present a sign determination al-
gorithm which has only a pseudo-polynomial number
of potential queries. This makes possible a very sim-
ple recursive algorithm for sign determination in the
multivariate case, where p(s) and g;(s) have coefficients
which depend on other variables. We simply compute
all the potential query polynomials, and return a for-
mula that depends only on their signs. This cannot
be done efficiently with BKR, and [14, 21] use clever
subterfuges. Both papers sacrifice generality for effi-
ciency, however. They work only if the coefficients of
p(s) and g(s) are themselves polynomials in other vari-
ables. Our new method does not have this limitation.
It works for any p(s) and g;(s), without restriction on
the coefficients, e.g. they may be exponential functions
or derivatives of other variables.

Our algorithm is also simple to implement. Like
BKR, it works by solving linear systems Az = b to
find the sign combinations. Whereas BKR recursively
computes the matrix A by tensoring, our new algor-
ithm allows A to be computed directly. We also get
better bounds on the degree of the query polynomials.
In this paper, multivariate sign determination follows
the method of [4]. An entirely different approach to
sign determination is the multivariate Sturm sequence
technique presented in [19, 20).

We then describe a simple, practical algorithm for
deciding existentially-quantified formulae of the theory
of the reals. We present a randomized algorithm for
that with a bit complexity of n(k+1)dOk)(clogn)(1+e)
randomized, or n(k+1) gO(k*) c(1+6) deterministic, for any
€ > 0. This takes as input a formula with n polynomial
constraints in k variables of degree at most d, and c-bit
coefficients. The algorithm makes no general position
assumptions, and its constants are much smaller than
other recent quantifier elimination methods. An imple-
mentation is underway, and the results will be reported
soon.

2. SIGN DETERMINATION

If f(s) and g(s) are polynomials, let the Sturm sequence
of f and g be denoted ro,71,...,r, where ro(s) = f(s),
r1(s) = g(s), and the intermediate remainders are com-
puted via

Tit1 = qiTi — -1 (1)
where g; is the quotient of the polynomial division of

r;—1 by r;. In practice, pseudo-remainders are often
used so that the r; have integer coefficients. For a real

value v, let SA(f, g,v) denote the number of changes in
sign in the sequence ro(v),r1(v),...,re(v).

Let SC(f,g) denote the quantity SA(f,g,+o0) —
SA(f,g,—00). The classical Sturm theorem states that
SC(f, f') equals the number of real roots of f(s) = 0.
The most general form of the theorem states that
SC(f, f'g) gives the sum of the number of real roots
of f(s) = 0 where g(s) > 0, minus the number where
g(8) < 0, common roots making no difference to the
count. A useful application of this result is to con-
sider SC(f, f'g?) which counts real roots of f = 0 where
g # 0. This observation was used by [22] to simplify the
BKR sign determination lemma.

LEMMA 2.1. [22] Let rt denote the set of roots of
f(s) = 0 where g(s) is positive, and similarly for r° and
r~. Then the numbers of roots in each set satisfy the
following identity

11 1 || SC(f, f')
1 -10 Ir~| = SC(f,f'g9) | (2)
1 1 0 [ SC(f, f'g%)
Now we can apply this lemma to find the signs of a
system of polynomials g;(8),...,qn(s) at the roots of a

single polynomial p(s) = 0. We start by applying the
above lemma to p(s) and ¢;(s). We can rewrite the
above identity in matrix form H, R, = S, where H; is
the 3x3 matrix, R; is the vector of root counts for q;
and S, is the vector of Sturm query counts for ¢;:

1 1 1 I SC(p,p')
1 -1 0 |y | = SC(p,p'q1) | (3)
1 10 9] SC(p,p'q?)

There is a more general identity which we can write as
H,.R, = S, where we define H,, inductively as

H, H, H,
Hyyw = | Hy —H, 0 (4)
H, H, 0

and where R, is the 3"*! vector obtained by listing
the elements of R, with r;},, appended to each con-
junction, then the elements of R, with r_, ; appended,
and finally a last copy of R,, with rQ, ;. Similarly, Sp4,
is obtained by listing first a copy of Sy, then another
copy of S, with g4+, multiplying the derivative in each
Sturm sequence, and then a third copy of S, with ¢2,.
We can write these definitions schematically as

R.nrt,, Sn
Royy= | RaNr Sn+1=| Snqnt1 | (5)
R.Nriy Sn-qi

and it is easy to verify that H,y1Ryy1 = Spy1. It
is also easy to see that H,;; is non-singular. Simply
add the middle rows to the last rows to give a block
diagonal matrix whose determinant is non-zero if the
determinant of H,, is.

Of course, the problem with doing things this way
is that we need to invert a 3" x 3" matrix to compute
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IMPROVED ALGORITHMS FOR SIGN DETERMINATION AND EXISTENTIAL QUANTIFIER ELIMINATION 411

the signs of n univariate polynomials. One of the major
contributions of [2] is a clever method to avoid all this
calculation. They observed that if p(s) = 0 has k real
roots, then at most k of the elements of R,, can be non-
zero, since the elements of R,, form a partition of the
roots of p(s) = 0.

Suppose then, that one has calculated the at most
m sign sequences of qi,...,qn, Which will be counted
in < m non-zero elements of R,,. When we come to
compute R,;; we can use the fact that there are three
possible signs for g,4+; at each root, hence only < 3m
possible non-zero elements in R,+;. For the other ele-
ments we can immediately fill in zeros, and in fact we
can delete the corresponding columns of H, 4, giving a
3" x 3m submatrix. To solve the system, we need only
find 3m independent rows of this submatrix, and solve a
3m x 3m system. Finding these rows might potentially
take a long time, but [2] show that one can use m in-
dependent rows from R, from the previous step, so the
whole calculation takes polynomial time (actually, the
description above is for a simplified sequential version of
their algorithm, the original [2] uses divide-and-conquer
to run in NC).

This is fine for univariate problems, since one never
needs to make more than 3mn Sturm queries. But it is
not known in advance which queries will be made, so the
number of potential queries is still 3”. This causes prob-
lems when one tries to use the algorithm symbolically.
This wasnt fully appreciated in [2], and while their uni-
variate analysis is correct, the multivariate generaliza-
tion given there is not. The present work was originally
motivated by an attempt to correct this error in the
simplest way possible, namely by finding good a priori
bounds on the number of potential Sturm queries.

It seems that this should be possible for the following
reason: The number of potential Sturm queries corre-
sponds to the number of rows of H, that might ever be
used during the algorithm. Since the basic operation
is to find 3m independent rows given 3m columns, a
natural step is to find a subset of rows of H, with the
property that any 3m columns are linearly independent.
Then whatever columns we need to work with, we can
still be guaranteed to find independent rows within our
new submatrix.

Ideally, this submatrix would have a polynomial num-
ber of rows. We will not succeed in this, but we do
not miss by much. The number of rows turns out to
be pseudo-polynomial in m. This is enough to give us
some interesting new bounds for more general quantifier
elimination.

DEFINITION 2.1. Our new matriz is denoted K,
which indicates that it has 3" columns and any m of
them are linearly independent. Thus it is defined only
ifm <3 Ifm=1, K, is just the first row of Hy,
i.e. a row of all ones. If m > 3" then K, is just

H,,. Otherwise, it is defined recursively as follows:

Kn-1ym  Kn-1)m Kn-1),m

Kym =

, Koy, 12y —K@m-1,12; 0
Koy, 2] Kp-ny,z2; 0
(6)

Now we must show that this definition does indeed give
us m independent columns whichever ones we choose.

LEMMA 2.2. Any m columns of K, n as defined
above are linearly independent.

Proof. For m > 3"~! the result is immediate, since
H, is non-singular. So we assume it is true for all values
of n less than or equal to our given n, and for all values
of m less than or equal to the given m.

Now consider the definition (6), and pick any set of
m columns. We suppose that there exists a linear com-
bination of these columns which is zero, and show that
all the coefficients are zero. We do this by considering
“top sections” of the columns, which are the rows in the
first group of rows in (6). Specifically, let c¢;,,...,ci,,
be the columns, and suppose that

i/\iicif =0 (7)
j=1

Now consider just the top sections of those columns,
whose rows lie in K(,_1) m. Let c; denote the top sec-
tion of c;;. Since up to three columns may have the
same top section, the number q of distinct ¢’’s is between
% and m, depending on how many columns match in
top sections. The linear combination (7) of columns

from the previous paragraph gives us
> Aiyci, =0 (8)

But the ¢’s are just columns of K(,_,),» and any m
columns of K(,,_;),m, which appears in the top section
of K, m, are linearly independent. So any column sec-
tion that appears once in (8) must have its A = 0.

For the other \’s, let us define for j = 0,1,2,3 a set
of column indices C(j) as

C@(j)= {i€l0,...,3""V) | precisely j elements of
Ais Ai43(n=1), Aj1243(n=1) are non-zero}

and by the argument just made, C(1) is empty.

Now consider C(2). For each i € C(2), the columns
Ciy Ciy3(n-1) and ¢;yq,3(n-1) all have the same top sec-
tion, c}, and its coefficient in (8) must be zero. So we
know

(i + Aigan-1) + Aig2.300-1)) = 0 9)
where exactly two of these A’s are non-zero.

But by considering the middle sections of those
columns, from (6) and (7), we see that

(/\,' —/\,'+3(n—1)) =0 (10)

This identity holds because there are at most | 3] el-
ements in C(2), and any | 7] elements of K1), |2,

THE COMPUTER JOURNAL,

VoL. 36, No. 5, 1993

¥20z Iudy 01 uo 1senb Aq GEZ6£/601/S/9¢/8101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq



412 JOoHN CANNY

which appears in the middle section of K, s, are lin-
early independent. But equations (9) and (10) imply
that the three \’s are scalar multiples of each other.
Since one of them is zero, so are the other two. So C(2)
is in fact empty.

Now consider C(3). Any ¢ € C(3) implies that both
the identities (9) and (10) hold, from which if follows
that

2A.’ = 2Ai+3(n—l) = —A,'+2,,3(n—1)

This time there are at most | 3! | elementsin C(3). Since
any || elements of K(,_1), 3 are linearly indepen-
dernit, considering bottom sections of the columns im-
plies the identity

i + /\,~+3(n—1) =0

So the only solution is again A; = Ajz0-ny =
Ait2+3(n-1 = 0. We conclude that C(3) is empty, also.
Since all X’s in (7) must be zero, we conclude any m of
the c;; are linearly independent. ]

Observation
of rows of H,.

K, n is a submatrix of H,, consisting

This observation is easily proved by induction using
the recursive definitions of H,, and K, ,, in equations

(4) and (6).

Next we make a simple observation which provides
good bounds on the degrees of the polynomials in the
Sturm queries. Since K, ,, is a submatrix consisting of
rows of Hy, the product K, R, is a subvector of S,,.
Let I',, ,» be this subvector, which consists of rows of S,
which correspond to the rows of K, ,,. Then

Fn,m = I(n,mRn (11)
and we observe the following:

LEMMA 2.3. The mazimum number of q;’s occuring
in any Sturm query in [y, o, is |logy(m)].

Proof. The proof is by induction on n and m. Now
I'n,m can be recursively defined analogously to (5) using
(6) as:

I1n‘m

LCnlz) gn41 (12)
Lo qhn

and the recursion leads eventually to one of the two
base cases (i) if m = 1, then I' ,, = S, or (ii) the
case m > 3""!, when I'n,;m = Sn. We prove the bound
for both of these cases, and then by induction for the
intermediate I'y, .

For the first base case, m = 1, none of the g;’s ap-
pear in a Sturm query, and the bound holds. For the
second case, since I'y, ,, = Sy, n is exactly the maxi-
mum number of ¢;’s occuring in Sturm queries. Now
n is less than logs(m) + 1, and since it is integer, it is

I-‘n+l,m =

bounded by |logz(m) + 1], which is less than or equal
to [logy(m)] for m > 2. Since m = 1 was already dealt
with, this shows that the bound holds for all base cases.

Now for the inductive step, we have only to inspect
(12) to notice that if the inductive hypothesis holds for
all cases on the right-hand side of (12), then it holds for
the left-hand side. The polynomial ¢,4; is only added
to Sturm query vectors Fnyl.%‘ jand I'y | =) which have
at most [log,(m)—1] polynomials, by hypothesis. Since
the recursion (12) produces a finite tree of intermediate
K, »’s with leaves which are base cases, and since the
bound holds for a parent whenever it holds for the de-
scendents, this completes the proof. |

COROLLARY 2.4. The number of rows in I'y, ., or
Knm is

(flogz(:l) +1]

Proof. Each entry in T, ,, is a Sturm query, and can
be uniquely indexed by (i) the set of (at most log(m))
gi’s that occur in it and (ii) the vector of exponents of
these g;’s which are all either 1 or 2. The bound comes
from first counting the number of subsets of at most
log(m) g;’s, which is (ﬂosg(?n)ﬂl) and then counting the

number of possible exponent vectors for each, which is
2“082("‘)] . [}

)2[1052("1)1 = (nOUesm) (13)

3. AN ALGORITHM FOR DETERMINING
SIGNS

In this section we show how to turn the results of the
previous section into a sign-determination algorithm.
Although there are similarities with BKR, there is a
major difference. Instead of constructing a submatrix
of H by tensoring submatrices from the previous step,
our method computes a submatrix of K directly from
the set of possible sign sequences. The algorithm works
inductively as follows (d is the degree of p(s)):

® We assume at the i‘" step that the algorithm knows
for each sign sequence of qj,...,q;—;, how many
roots of p(s) = 0 produce this sign sequence. Most of
these are zero, and the algorithm only stores the sign
sequences with at least one root, and the number of
these is m;_; <d.

® There are 3m;_, possible sign sequences for
q1,-..,q;, and each of these defines a column of the
matrix K sm,_,. These columns are linearly inde-
pendent, so there are 3m;_; rows which together
with the specified columns, define a square subma-
trix J; of K am,_,.

® We solve the 3m;_; x 3m;_; system corresponding
to this matrix, to find the actual sign sequences of
q1,...,qi, and repeat the above steps fori = 1,...,n.

The first task then, is to give a procedure that accepts
a list of m columns of the matrix K, m, and returns a
list of m rows, such that the resulting m x m matrix is
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non-singular. This procedure needs to run in polyno-
mial time in n and m and not the size of K, .

The second task, which is very easy, is to determine
the entries of this submatrix of K, ,,. Again this must
be in polynomial time in m, so we cannot afford to
construct all of K, . This task reduces to determining
the value of a single element of K, ,, given its row and
column indices.

3.1. Computing Rows Given Columns of K

To simplify our representation of I, we use the fact that
K, m is a submatrix of H,, consisting of rows of Hy.
To reference a row of K, ,,, we use the row index of the
corresponding row of Hyn. So (Knm)i;j = (Hn)ij. In
this representation, K, ,, has many missing rows, but
the row indices are always produced by the algorithm
we are about to describe, and we ensure that it always
returns a row index that does lie in Ky .

Each column index is a trinary number that corre-
sponds in an obvious way with a particular sign se-
quence. The sign sequence sign(q;),...,sign(g,) en-
codes as the trinary number ¢,t,_; - - - t1, where

0 if sign(g) =+
t; = 1 if sign(q) =— (14)
2 if sign(g;)=0

Let the trinary column indices corresponding to the
m sign sequences be ci,...,c,. The first observation
we make is that we do not need to pass the algorithm
the value of n. Each c¢; is an n-digit trinary number,
but it is possible that all the leading digits are zero, so
they look like (n — 1)-digit or shorter numbers. If this
happens, it is perfectly OK to treat them as shorter
numbers, because the corresponding set of rows would
come from the matrix K,_1) m, even if we had treated
them as n-trit numbers. A close inspection of the results
of the previous section will confirm this.

Algorithm Rows(L)
The input L = (c1,...,cm) is a list of m column indices,
and the output is a list of m row indices.

® If m = 0 return the empty list. If m = 1, return a
list of zero (the index of the first row).

® Otherwise, we determine n by computing n = 1 +
max(|logs(ci)]), ¢ = 1,...,m, which is the maxi-
mum number of digits in any column index.

® We compute from L, three lists L, L, and L3z whose
total length is m. These lists contain elements of L
reduced modulo 3"~!. The set L; consists of all
values c; mod 3"~ !, whereas L, and L3 consist of el-
ements which are duplicated or occur three times.

Specifically, we have
L, = {k | k = cimod3"~! for some i}
Ly = {k | k= cimod3"~! for > 2 values of i}

Ly = {k | k = cimod3™~! for 3 values of i}
(15)
® We then call our algorithm recursively on each non-
empty list, and return the list:

Rows(L;) o (3"~'+Rows(Lz)) o (23"~ ' +Rows(L3))

(16)
where o denotes concatenation of lists, and where
the plus sign between a number and a list means
that the number is to be added to every element of
the list. The two additions effectively shift the rows
returned by Rows(L2) and Rows(L3) to the middle
and bottom bands of K, , respectively.

The proof of correctness for the algorithm mimics the
lemmas of the previous section very closely, and we do
not repeat it here. The algorithm is easily seen to be
polynomial time, because the recursion depth is at most
n, and the total number of columns in all calls at any
level is m, so the total number of calls is not more than
nm.

3.2. Computing Elements of K

To compute the elements of the submatrix of K, ,, con-
sisting of a particular set of m rows and columns, we
need only show that there is an efficient method for com-
puting the element (K, m)rc given the row and column
indices r and c. Since we chose the row indices to cor-
respond to elements of H,, this element is the same as
(Hp)re. Finally, note that we do not even need to know
the value of n explicitly, because (Hy)r,c = (Hp—1)r,c if
r and c are both less than 371,

Algorithm Helt(r,c)
The input is a pair of trinary integers r and ¢, and the
output is the correponding element of H,,, which is in

{-1,0,1}.

® Determinen = 1+max(|logs(r)], [logs(c)]), the size
of the smallest H,, containing this element.

® Let the trinary expansions of r and cber,r,_;--- 1]
and cpcp—g -+ - ) respectively. Compute and return
the value of the product

H(Hl)ra,ci (17)
i=1

where H, is the 3 x 3 matrix defined earlier.

This expression for the value of (H,), . is obtained by

unrolling a recursive algorithm based on the definition
in (4).
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3.3. Complexity Analysis

Let m denote the number of real roots of p(s) = 0, then
m is not more than d, the degree of p(s). The algor-
ithm takes n steps to compute the signs of all ¢g;’s and
each step involves inverting a 3m x 3m matrix and the
calculation of 3m Sturm queries. Each Sturm query
involves p(s) and a product of at most 2log,(m) of
the ¢g;’s. The number of arithmetic operations for each
Sturm query is O(d log m log?(dlog m)), which simpifies
to O(dlogmlog? d) because d is at least as large as m.
So the total time per step for the Sturm calculation is

O(mdlogmlog® d) (18)

or O(d?log® d) in the worst case when the number of
roots is roughly d. The cost of inverting the matrix is
O(m?37) and so the overall running time is:

O(n(mdlogmlog? d + m?%%)) (19)

The cost of inverting the matrix dominates if m is close
to d. However, the actual number of real roots is often
much less than d, and is O(logd) for a random polyno-
mial. So the Sturm query time will often be the larger in
practice, especially if naive algorithms are used. Com-
pared to BKR in the univariate case, we have removed a
factor of at least n, since the Sturm queries in BKR may
contain polynomials of degree dn. This makes possible
the very simple existential quantifier elimination algor-
ithm of the next section.

4. A DECISION ALGORITHM FOR EXIS-
TENTIAL FORMULAE

The input to the algorithm is a formula of the form
B(A,,...,Apn) where B : {0,1}" — {0,1} is a Boolean
function and each A; is an atomic formula of one of the
following types:

(fi=0), (fi #0), (fi >0),(fi <0), (fi 20), (fi < 0;

(20
with each f; a polynomial in z;,...,z; with rational
(for our computational purposes) coefficients. In the
method that follows it will be helpful to assume (wlog)
a certain form for the defining predicate:

DEFINITION 4.1. A formula B(Ai,...,Ay) is said
to be in monotone standard form if the Boolean func-
tion B is monotone, and all atomic formulae A; are

either (fi = 0) or (fi > 0).

As shown in [6] we can go futher and assume that the
formula has log depth. But that will not be of advantage
to us for this simple algorithm.

Predicate complexity. We measure the com-
plexity of a predicate with four quantities, the number
of polynomials n, the number of variables k, the max-
imum degree of the polynomials d, and the maximum
coefficient length c of the coefficients of the polynomials.

4.1. Stratifications

DEFINITION 4.2. A stratification S of a set S C RF is
a partition of S into a finite number of disjoint subsets
S; called strata such that each S; is a manifold.

A regular stratification satisfies some additional con-
ditions which are well described in [13]. There are sev-
eral ways to construct regular stratifications. We will
only need two:

® Taking products. If C' and D are regular stratifi-
cations of the spaces C' and D respectively, then the
product C x D is a regular stratification of C x D.

©® Preimage of a transversal map. If F: M - N
is transversal to D for a regular stratification D of a
subset D C N, then F '1(2) is a regular stratifica-
tion of F~1(D).

Fm D means F is transversal to all the strata of D,
and F~!(D) is the set {F~!(o) | o € D}. If we now
define

DEFINITION 4.3. Let f; € Q[z], i = 1,...,n be
a collection of polynomials that define a map F =
(fis-os fa) : R*F 5 R™. Let R = {R_,{0},R4}, a sign
sequence o i3 an element of (R)". The sets F~!(0o) are
called sign-invariant sets of F.

Then we can view a semi-algebraic set S as a finite
union of sign-invariant sets of some polynomial map F'.
The sign partition (R)" of R" is a regular stratification
of R™. So if a map F : R¥ - R" is transversal to (R)",
then the preimage F~!((R)™), which is the collection of
sign-invariant sets of F, is a regular stratification.

4.2. Infinitesimals

We will make extensive use of extensions of real fields
by infinitesimals. This process is simple to implement
computationally, and has been well formalized in [1]
using the real spectrum. An elementary description of
the use of infinitesimal elements is given in [4] in an
algorithm for the existential theory of the reals.

One disadvantage of working over an infinitesimal ex-
tension field is that basic field operations become very
expensive. Typically, an element of R(e,d) is repre-
sented as a polynomial in € and . The degree of such
elements will typically be O(d°*)), and clearly with 3
or 4 infinitesimals, each field operation is enormously
expensive.

But in [6] a method is described for computing with
infinitesimals which costs only slightly more than in-
teger arithmetic in typical cases. The idea is to do
arithemetic using straight line programs, and recover
only the lowest degree rational coefficient of the field el-
ement by differentiation. Thus the use of infinitesimals
in quantifier elimination can be a practical proposition.

THE COMPUTER JOURNAL,

VoL. 36, No. 5, 1993

¥20z Iudy 01 uo 1senb Aq GEZ6£/601/S/9¢/8101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq



IMPROVED ALGORITHMS FOR SIGN DETERMINATION AND EXISTENTIAL QUANTIFIER ELIMINATION 415

DEFINITION 4.4. For a given real field R, we say
that an element € s infinitesimal with respect to R if
the extension R(e) is ordered such that € is positive, but
smaller than any positive element of R.

We will have cause to make use of towers of such field
extensions. We will use the suggestive notation § >> €
for two infinitesimals to mean that € is infinitesimal with
respect to the real closure of the field R(4).

4.3. Transformation Algorithm

The following algorithm takes the formula B defining
an arbitrary semi-algebraic set S and transforms it to a
new formula By defining a compact set, regularly strat-
ified by the signs of polynomials defining it. The set Sy
defined by By is non-empty if and only if S is. The size
of By is larger than B by at most a constant factor (2 if
B is in standard form, 4 otherwise), and only a constant
number of infinitesimals are needed (in the randomized
version).

® Convert the input formula to monotone standard
form.

@ Add to the formula a conjunction with the polyno-
mial inequality Z;?:l 2% < 1/p? (converted to stan-
dard form), where p is an infinitesimal. The resulting
formula defines a bounded set in the extension field
R(p).

® Choose an a € (R4)" at random, or let a; > a; >
-+« > a, > 0 be a series of infinitesimals.

® Construct a formula By from the input formula
B(A,,...,A,) as follows. For each atomic predicate
A;, replace A; with

if Ajis fi =0then (f;+ea; >0)A(fi—ea; <0)

if A;is f; >0 then (f; —da; >0)

(21)
where § > € are infinitesimals. Then the set Sy de-
fined by this formula is closed and bounded, therefore
compact. By the results of [6] the connected compo-
nents of the sign-invariant sets of Sy (but not of Sy
itself, that requires two more infinitesimals) are in
one-to-one correspondence with those of S. Return
B,.

The correctness of the steps of the transformation was
proved in [6].

4.4. Non-Emptiness for Compact, Regular Sets

Once we know that the set Sy is compact and regularly
stratified by the signs of polynomials f; in By, it is easy
to decide if it is non-empty. We choose a linear map
7 : R¥ 5 R and find all the critical points of this map
restricted to the strata of Sp. If Sg is non-empty, 7 will
attain a maximum value on it at some point P, which
will be a critical point. By determining the signs of the
polynomials f; at some candidate critical point P, and

evaluating the predicate By, we can check if P in fact
lies in Sy.

By testing all critical points in this way, we are guar-
anteed to find a “witness” P to So # 0 if it exists.
Conversely, if Sq is empty, no critical point will satisfy
the formula.

4.5. Enumerating Critical Points

Since we know the polynomials f; are in general posi-
tion, the intersection of any k + 1 of them in k dimen-
sions will be null. Any j < k of them will intersect in a
manifold of dimension k—j. Let P be an extremal point
of m in the set So. Then P is also an extremal of 7 in
a manifold M which is the set of zeros of some polyno-
mials f;,,..., fi;. These polynomials are precisely the
fi which are zero at P.

So to enumerate all potential witness points, we enu-
merate the critical points of 7 on the set of common
zeros of f;,,..., fi;, for every set of j < k polynomials.
First we define a polynomial

j
9=21
=1
and solve the system

9 99
ax;""‘az;‘o (22)
“in the limit” as u — 0. The coordinates z3,...,z}
are a basis for the kK — 1 dimensional linear space which
is the kernel of m. The process of solving this system
in the limit is described in [4, 6], and involves com-
puting the u-resultant of the system, arranging it in
powers of u, and retaining the lowest degree coefficient.
The result is a polynomial p(s) and rational functions
(r1(s),...,rk(s)) such that the solutions to the system
(22) are all the tuples (ri(a;),...,rk(;)) where a; are
the roots of p(s) = 0.

To compute the signs of the other polynomials at
these critical points, we substitute z; — ri(s) for
i=1,...,k, giving ¢i(s) = fi(r(s)) and the set of signs
we are looking for is precisely the sign sequences of

g=u

(q1(8),...,gn(s)) at roots of p(s) =0

and to find these we simply apply the sign determina-
tion algorithm of the last section (to numerator and
denominator, since the g; here are rational functions).

4.6. Existential Decision Algorithm

Given an arbitrary formula B(Ay,...,A,), we first ap-
ply the transformation agorithm described earlier to
produce a new formula B, defining a compact, regu-
larly stratified set Sp. Then we proceed as follows:

® Choose a generic linear map 7 : R* = R by ei-
ther selecting k random integers m,...,m, or for
the deterministic version, by choosing infinitesimal
T > me > 0.
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® Enumerate all subsets of j < k polynomials
{fi;»---»fi;}. Do this in order of increasing j, so
that “easy” witness points will be found early.

® For each subset, construct a representation of the
critical points of 7 as a polynomial p(s) and rational
functions ry(s),...,rk(s).

® Substitute r;(s) for z; in the other polynomials, giv-
ing qi(s) = fi(r(s)) for ¢ = 1,...,n. Determine the
signs of the g;(s) at roots of p(s) = 0 using the al-
gorithm of the last section.

® Substitute these signs into the formula By to check if
the corresponding critical point lies in Sy. If yes, Sp
is non-empty, so return “true”. If not, continue until
no more critical points, and then return “false”.

4.7. Complexity Analysis

First, observe that the transformation algorithm
changes only n by a constant factor, and leaves k, d
and c unchanged. Clearly it can be done in linear time
in these parameters.

The total number of j < k-tuples of polynomials is
O(n*). Constructing the representation for the solu-
tions of the system (22) can be done in time d°%)
[4]. Applying Bezout’s theorem to this system, we see
that the polynomial p(s) has degree O((2d)*), and the
numerator and denominator of the r;’s have the same
bound. Substituting r;’s into the other f;’s gives n poly-
nomials of degree O(d(2d)*) in s.

The sign determination step, using the bounds of the
last section, takes O(nk®d(2d)?*) arithmetic steps. Sub-
stituting each sign sequence and evaluating the predi-
cate By takes O(n) time. Multiplying by the number of
polynomial tuples, we get an overall bound of

n(k+1) (O(k))

arithmetic steps over the coefficient field. To get the bit
complexity, we must take into account the complexity
of calculations over this field. This depends on whether
we are using the randomized or deterministic version of
the algorithm.

4.7.1. Randomized Version

For the randomized version, we must take into account
the bit length of the randomly chosen a;’s and coordi-
nates m,..., T of the projection map. We could try
to figure out explicitly the conditions for a particular
a, © combination to be a good choice, but there is a
simpler argument we can use, which takes advantage
of the fact that our calculation can be expressed as an
algebraic decision tree. A particular (a,7) must be a
good choice if all the query polynomials in the decision
tree are non-zero at that value (excepting query polyno-
mials which are identically zero, which can be ignored).
This follows because for such an (a, 7), there is an open,
connected neighborhood N(a, 7) such that all the query
polynomials have the same sign over all of N(a,n) as

they do at (a,w). Thus the algorithm’s output is that
same for all these choices. But almost all of the points
in N(a,7) must be good choices, since good points are
dense. The algorithm must produce the correct output
at these points, hence it produces the correct output at
(a,m).

So it suffices to choose (a, ) to avoid the zero sets of
all the query polynomials. The query polynomials have
degree d°®) in field elements (and they are integral
over the input) and there are potentially n(k+1) gok) of
them. The union of the zero sets gives us a bad set
in the space R("*+¥) of possible (a,)-values which has
degree (nd)°¥). By Schwartz’s lemma, we will have
probability p of hitting the bad set if we choose the a;’s
and 7;’s randomly with log(p~!(nd)©®) bits. Fixing
p, we see that O(klog(nd)) bits suffice. For any € > 0,
the, the overall bit complexity is therefore bounded by

n(k+D GOk (clog n)(1+e) (23)

where c is the length of the input coefficients in bits.
This assumes that O(b(1*+€)) is the bound for arithmetic
on b-bit integers.

This bound still conceals many constant factors. We
must pay attention to the cost of the arithmetic over the
field extension Q[e, d, u, p]. This is of course, a polyno-
mial which is already taken into account in the bound
above, but the actual time may still be prohibitive. As
explained in [6] however, in most situations, we can per-
form this arithmetic for about the same cost as integer
arithmetic.

4.7.2. Deterministic Version

For the deterministic version, we assume a and 7 are de-
fined using infinitesimals. Specifically, we assume that

P>a1>D> D> ed>m D> - >u>0

are all infinitesimals. The order is forced by the se-
quence of steps in bounding, desingularization, com-
pactification, and computing projections.

Since the query polynomials in the Sturm algorithm
have degree d°*¥) as polynomials in the input coeffi-
cients, and there are O(n + k) distinct infinitesimals
in the coefficient field, the naive bound for the size of
a query polynomial would be do(""+’°2), assuming field
elements are represented as polynomials in the infinites-
imal elements with rational coefficients. Fortunately,
though, we can get by with queries that depend on only
O(k) infinitesimals.

Observe first that in step three of the decision algor-
ithm of section 4.6., p(s) depends on < k of the f;’s and
the coordinates of 7, and therefore on O(k) infinitesi-
mals total. The same holds true for the r;’s. If we can
distinguish the roots of p(s) and then we can enumer-
ate the sign sequences by making Sturm queries that
involve only one other f; at a time.

This can be done either with the Sturm sequence
of p(s), or with the signs of all its derivatives. Let
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Po(s),...,pn(s) denote one of those sequences. Then
the signs of po(s),...,pn(s) are distinct at each dis-
tinct root of p(s) =0

So for : = 1,...,n, we make separate calls to the uni-
variate sign determination algorithm to get the signs
of each sequence (po(s),...,pn(s), fi(r(s))) at roots of
p(s) = 0. The signs of (po(s),...,pn(s)) are distinct
at distinct roots of p(s) = 0, and in fact uniquely
determine the order of those roots. So we can sort
the sign sequences of (po(s),...,pn(s), fi(r(s))) in or-
der of these roots. After doing this for each f;,
and identifying those sign sequences with the same
signs of (po(s),...,pn(s)), we obtain all the signs of
(B()s- - DN (), F1(7(8))s -+ f(7(5))) which is what
we need. The number of arithmetic steps (over the coef-
ficient field) in each call to the sign determination algor-
ithm, since we have d°*) polynomials of degree d°(¥),
using the bound in equation (19) is d°(*). Since we are
making n calls to the sign determination algorithm, the
complexity is nd®®), as it was before.

Now since only p(s), the sequence (pi(s),...,pn(s))
and one f; appear in each call to the sign determination
algorithm, the total number of infinitesimals in each call
is O(k). Since the Sturm queries have degree d°(¥) over
the base field, and we have O(k) infinitesimals in the
base field, the cost per arithmetic step is dO(") inte-
ger operations. Multiplying this cost by the number of
arithmetic steps in the algorithm overall, and assum-
ing b(1+¢) complexity for multiplying b-bit integers, the
total bit complexity of the deterministic algcrithm is

n(k+l)d0(k2)c(l+z) (24)

for any € > 0.

4.8. Perspective

There are three reasons why this method offers better
practical efficiency than other methods. The first is
the way it deals with infinitesimals, as described in [6].
The second is in the form of the bound, which has a
“combinatorial” part n¥*! and an algebraic part dO(*),
The algebraic part is the same as the methods of [14,
21, 12] although the constant hidden in the exponent
is slighly better in our method because of the use of
the improved sign-determination algorithm of the last
section.

A more important difference is in the combinatorial
part. The other schemes achieve combinatorial com-
plexities only of n®*) where the hidden constant is
the same as for the algebraic part, and is at least 4. In
typical geometric problems, n is large compared to d
and k, so n**! is much smaller than n*, e.g. if n = 10,
k = 3, we have nF*! = 10%, but n** = 10'2. The lower
bound for the combinatorial complexity is n*, so we
have a near-optimal upper bound.

Note that the algebraic complexity can be improved
to O(n* log nd®®) using the techniques from [3]. Since
all the witness points lie on “silhouette curves”, one

simply enumerates the curves, sorts the points along
them as in (3], and then re-evaluates the predicate while
walking along the curve. No recursive calling is needed
in this stripped down version of [3], so the algebraic
complexity drops from d°**) to dO(). On the other
hand, this would be a less practical algorithm than the
one described here, because the constant factors in the
O(k) are larger, which will normally swamp the factor
of n difference.

Finally, although we do not discuss it here, recent
work on sparse resultants (7, 8] make it possible to elim-
inate large numbers of variables in a reasonable amount
of time. The issue of the elimination method is often
neglected in real quantifier elimination work, because
bounds of the form d°*) are in some sense optimal.
However, the constant factor in the exponent can cause
many orders of magnitude difference in running time,
and in practice many polynomial systems have far fewer
solutions than is predicted by the Bezout bound. The
sparse resultant methods exploit this, as do Grobner
basis methods. However, Grobner methods suffer from
either uncontrolled coefficient growth over the real num-
bers (conventional Grébner algorithms), or must sacri-
fice sparseness (enumerating syzygies by degree). In
either case, they are much slower than sparse resultant
algorithms when working with real coefficients [16, 17).
The sparse resultant is a key to the practical viability
of our quantifier-elimination algorithm.

5. CONCLUSIONS

In this paper we described a new algorithm for de-
termining the signs of a collection of polynomials
q1(8),--.,qn(s) at the roots of a polynomial p(s) = 0.
The idea of the algorithm was to find a certain mini-
mal submatrix of the Hadamard matrix H,, which was
sufficient for the sign sequence calculations. We showed
that such a matrix exists, denoted K, ,», and that it has
a pseudo-polynomial number of rows. We also showed
that each Sturm query involves at most a logarithmic
number of ¢;’s. Finally we described our method for
sign determination, the heart of which is an algorithm
for computing a non-singular submatrix of K, ,, di-
rectly from a list of column indices.

Our algorithm has better sequential complexity than
the original BKR method, and it has the important
property that the number of potential Sturm queries is
pseudo-polynomial, rather than exponential as in BKR.
This latter property allows us to do quantifier elimi-
nation for formulae constructed from polynomials with
arbitrary coefficients.

Finally, we obtained a simple, practical, quan-
tifier-elimination algorithm by combining the sign-
determination algorithm and a perturbation scheme
with a small number of infinitesimals in its random-
ized version. This algorithm is being implemented with
sparse resultants and straight-line programs to mini-
mize the cost of computing with infinitesimals.
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