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Stability analysis is an important tool for constructing time-stepping finite dif-
ference schemes for partial differential equations. This paper describes how von
Neumann stability analysis can be reduced to a quantifier elimination problem
over the reals. We report our experience in analysing some difference schemes by
using a quantifier elimination package based on the partial cylindrical algebraic

decomposition algorithm.
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1. INTRODUCTION

Stability is one of the most important properties of dif-
ference schemes used for numerically solving time de-
pendent partial differential equations (PDEs). Its im-
portance is stressed by the Lax-Ritchmyer equivalence
theorem which states that under certain natural as-
sumptions a scheme is convergent if and only if it is
stable. If the algorithm is not stable, then numerical
errors will increase with each time step, the solutions
usually begin to oscillate with increasing amplitude and
become unusable.

There is a condition for stability called the von Neu-
mann condition that is obtained through a Fourier anal-
ysis of the difference scheme. The von Neumann con-
dition is an universally quantified formula including
equality and inequality which involve rational functions
of the trigonometric functions of the quantified variables
and the parameters of the differential equation and the
difference scheme.

This condition is quite difficult to analyse, even for
simple problems. Von Neumann analysis has not yet
been done in a completely symbolic way, although such
an analysis can be done using symbolic-numeric meth-
ods.

This paper first shows how to convert the von Neu-
mann stability condition to a real polynomial quanti-
fier elimination problem following the ideas presented
mainly by Ganzha and Vorozhtsov in [19, 6, 5, 14, 7, 8]
where different symbolic-numeric approaches for stabil-
ity analysis have been described.

However, in principle, the von Neumann condition
can be solved completely symbolically by quantifier
elimination algorithms, for example, by using the cylin-
drical algebraic decomposition algorithm developed by
Collins [3]. Unfortunately, the original implementations
of this algorithm can only handle small problems. How-

ever, the original algorithm has been greatly improved
by Hong and Collins [10, 2, 11] so that its present im-
plementation in the QEPCAD package [10] is capable
of handling decidedly non-trivial problems.

This paper presents the results of our first experi-
ments on checking the von Neumann stability condi-
tion using the QEPCAD package. Several elementary
model problems whose stability properties are already
known are presented to show that the method can at
least handle simple problems. The most complex prob-
lems attempted are the MacCormack difference scheme
for one equation in two space dimensions and a dif-
ference scheme for a system of three equations in one
dimension.

To simplify the notation, only first-order constant-
coefficient systems of partial-differential equations
(PDEs) and only two time-step numerical schemes for
such equations are considered. Note that such systems
are time and space translation invariant which will also
be used to simplify the discussion.

However, the methods described here apply to sub-
stantially more general problems. Fourier method can
be applied to numerical schemes including more than
two time steps, either directly or by transforming such
schemes into a two step numerical scheme by introduc-
ing additional discrete functions and additional discrete
equations. The characteristic polynomial of the scheme
is the quantity of interest for this analysis, and this
polynomial is essentially an invariant of such changes
in the numerical scheme.

Higher-order systems of PDEs can be reduced to first-
order systems by introducing more dependent variables.
For linear PDEs with variable coefficients the method is
applicable locally by replacing the variable coefficients
by constants. For non-linear problems the method can
be used locally after linearization.

THE COMPUTER JOURNAL,

VoLr. 36, No. 5, 1993

¥202 Iudy 60 U0 1s9nb Aq GGGZ6E/.61/S/9¢/8101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq
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2. STABILITY PROBLEM

The initial-value problem for a system of first-order
linear constant-coefficient partial differential equations
(PDESs) is given by

g—‘: +D(u) =0,
where u = u(¢,x) is a vector function depending on the
time coordinate t and on space coordinates x, D is a
linear spatial differential operator with constant coeffi-
cients, that is, a linear combination of spatial deriva-
tives, and f is a given vector function. Let K be the
number of PDEs in (1) and M be the number of spa-
tial dimensions in this problem. The pure initial-value
problem is considered here, so (1) is solved on a spa-
tial region @ = RM for time t € (0,T). The following
vector and multi-index notation will be used:

u(0,x) = f(x), (1)

X = (z1,22," " TM);
u = (up,uz, - UK);
= >l
1<k<K
i = (i im);
j-m = Z jpmp;
1<p<M
Bl = ,max, lils
ix = (hz, -, jmTM).

The Fourier analysis requires a uniferm grid, so let
hy > 0 be the time step and h = (hy,---,hpy) with
h;j > 0, be the space steps. Now the discrete set of
points in space-time is given by

X; =jh, t,=nh,
and the continuous function u is approximated by the
grid function uj‘,
uj‘ ~ u(t,,,xj).
The L? norm of the grid function u” is defined by

ni2 n|2
™[ = 3 g
J

where h = hy hy -+ hy.
A linear two-step numerical scheme of width N (fi-
nite) for the PDEs (1) at the point (t,,X;) can be writ-

J
ten in the form

> A{nujrjl‘n +
Im|<N

> Am Wom =0,
mi<y§

ug = Vi, (2)

where the v; are given and the Al and AY, are K x K
constant matrices whose entries depend on the param-
eters of the PDE and the numerical scheme.

A numerical solution of (1) is obtained by solving of
the discrete equations (2). However, a numerical so-
lution gives only approximate values of the solution of

the PDEs at the grid points. Any numerical solution
has some error and, of course, a good numerical solu-
tion has an error which is small in some sense. A very
important property of a numerical scheme is: How are
the errors propagated as the calculation proceeds from
time step to time step? When the numerical error of
the solution increases with increasing time, the solution
may begin to oscillate with larger and larger amplitudes,
and consequently be unusable. Intuitively, a numerical
algorithm is stable when the numerical errors are not
amplified with increasing time. More precisely, stability
requires that for 0 < nhy; < T, there exist a constant
C'r such that for each n

Jhag* ]| < Cr w3l ®)

Here Cr is independent of the step sizes and n but may
depend on any other parameters in the PDE or the
discretization scheme. Because of the time-translation
invariance, condition (3) only need be required for n =
0. Note that the stability is purely the property of the
difference scheme (2) and has nothing to do with the
original initial-value problem (1).

3. REDUCTION TO QUANTIFIER ELIMI-
NATION PROBLEM

This section provides description of the steps which are
taken in applying Fourier analysis to the scheme (2) and
in transforming the von Neumann stability condition to
a quantifier elimination problem over the real field.

3.1. Fourier Transformation

Using the Fourier method the substitution

uj' = w"e‘k % , (4)
where 2 = —1, w" is a fixed vector and k € RM is
a vector of wave numbers, is applied to the difference
scheme (2) resulting, after dividing by the exponential
on the right-hand side of (4) and setting n = 0, in the
equation

A]WI + A()Wo =0, (5)
where the matrices A; and A are given by
Aj= Y Ajpek*m, j=10. (6)
m|<N

We assume that A is invertible, which is not a signifi-
cant restriction, and from (5) we get

w! =Gw’, (7
where the matrix G is given by
G = —(Al)_le . (8)

The matrix G is the amplification matrix of the nu-
merical scheme (2). It depends on the parameters of
the PDE, the discretization, and the Fourier parame-
ters. The wave numbers and the step sizes play the
most important role, so G is written as G (k, hy, h).
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3.2. The von Neumann Condition

The von Neumann stability condition [17] for solutions
which do not grow exponentially, which is the case as-
sumed here, requires that the spectral radius of the am-
plification matrix (8) be less than or equal to 1 for all
values of the wave numbers k. The characteristic poly-
nomial for the numerical scheme (2) is the characteris-
tic polynomial of the the amplification matrix G and is
given by

P(A) =det(\E-G), 9)
where E is the unit matrix. The eigenvalues
Ap(k,he,h), 1 < p < K, of the amplification matrix
(8) are roots of the characteristic polynomial (9). So
the stability condition can be expressed as

VKERM P(K)=0, &)<,

p=1,-, K . (10)

Generally this stability condition is only necessary.
It is sufficient, for example, in the case of one equation
(K = 1). Verifying the sufficient condition is usually an
even more complicated problem. In any case, the neces-
sary condition for stability gives substantial insight into
the stability properties for the difference scheme.

3.3. Initial Transformations

The transformations of the characteristic polynomial
(9) performed in this step include:

1. Various simple rational expressions in the parame-
ters of the PDEs and the numerical scheme are re-
placed by a single symbol, for example, by introduc-
ing the CFL (Courant-Friedrichs-Lewy) number, in
order to minimize the number of variables appear-
ing in the polynomial. Here, all parameters are real
parameters.

2. The exponentials are replaced by trigonometric func-
tions for each space component p:

eijp Wp — (e’.“’P)jP = (cos(w,,) +1 Sin(wp))jp ) (11)

where wp, = kp hp.

3. For every p the substitutions Cp, = cos(wp) and
Sp = sin(wp) eliminate all of the trigonometric func-
tions. The universally quantified variables k, only
appear in the arguments of the trigonometric func-
tions, so the original quantifier Vk, € R in (10) can
be replaced by the constraint S;‘; + C;‘; = 1 and quan-
tifiers VS, € [-1,1], and VC, € [-1,1]. For effi-
ciency reasons it is better to have only one quantified
variable for every space dimension p, so one of the
following eliminations is usually used:

(a) If possible, eliminate one of the Cp, or S, by using
the identity S + CZ = 1.

(b) If possible, use trigonometric transformations
(e.g. to multiple angles) so that in P()) there
remains only one trigonometric function depend-
ing on wy.

(c) Use the transformation T, = tan(wp/2), which al-
ways eliminates the trigonometric functions, but
increases the degree of the polynomial. The cases
for which tan(wp/2) is not defined have to be
checked separately. The quantifier VI, € R is
used in this case.

4. The polynomial, which has generally rational coeffi-
cients, is transformed to a polynomial with the same
roots and polynomial coefficients by multiplying it
by the least common multiple of the denominators
of the coefficients.

5. If the polynomial is of first degree, then its only root
A1 is trivially calculated and then the required real
quantified formula containing |A;|? < 1 is easily con-
structed.

6. If the polynomial has non-real coefficients then, as in
[19], it is replaced by the product of itself by the poly-
nomial with complex conjugate coefficients, which
results in a polynomial with real coefficients that de-
pend on real parameters. The new polynomial has
roots that are the roots of P()) and their complex
conjugates. Note that |Ap| = |Ap| < 1, so the von
Neumann stability condition (10) for the new poly-

nomial is equivalent to the von Neumann condition
for P()\).

The characteristic polynomial, (9) after these trans-
formations, is denoted by P(\). Now the von Neu-
mann stability condition has been transformed to a
universally-quantified polynomial logical formula that
contains a polynomial in A with real polynomial coef-
ficients. Actually it is possible, by denoting the real
and imaginary part of A by new real variables, to trans-
form this formula to a quantified formula over real field.
However, it is better to use a complex transformation to
eliminate A, which is the only remaining complex vari-
able in the formula. The next subsections are devoted
to a method for this elimination. How to produce the
best form of the von Neumann stability condition is still
a topic of research.

3.4. Conformal Mapping

The conformal map of the unit circle to the left-half
plane: A = (z 4+ 1)/(z — 1) is used, as proposed by
Ganzha and Vorozhtsov (19, 6], to transform the von
Neumann condition to the Routh-Hurwitz problem,
which is the task of deciding if all roots of a polynomial
have negative real parts. Note that even for a charac-
teristic polynomial of degree 2 it is better to use this
approach than to directly solve the polynomial equa-
tion. The map is applied to the polynomial P(A) giving

Q) = (-1 P (). (12)

z—1

where k is the degree of the polynomial P()). All roots
A; of polynomial P() lie inside the unit circle |A;| < 1
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500 RICHARD LISKA AND STANLY STEINBERG

if and only if all roots z; of the polynomial Q(z) have
negative real part Re(z;) < 0 [16]. Note that if P())
has the root A = 1 then the degree of polynomial Q(z)
is equal to kK — m; where m, is the multiplicity of the
root A = 1. However, for this root the von Neumann
stability condition (10) holds, so there is nothing to
check.

3.5. Routh—Hurwitz Problem

A polynomial all of whose roots have negative real
part is called stable polynomial or sometimes a Hur-
witz polynomial. By the transformation (12), de-
termining if a difference scheme is stable has been
changed to a Routh-Hurwitz problem, i.e. verifying
that the polynomial (12) is stable. There are sev-
eral methods for solving the Routh-Hurwitz problems
(16, 4, 15, 19, 6, 14, 7, 8]. Some of these methods, which
apply to polynomials with real coefficients, are based on
computing the minors of the Hurwitz matrix. We de-
note the real coefficients (actually real expressions) of
polynomial (12) by a;:

Q(z)=az"+a;2" '+ +a,. (13)

The Hurwitz matrix has rows that contain shifts of the
coefficient of the odd and even powers of z:

Al A3 A5 ce ettt e a2n—-1
Ao A2 A4 oottt ittt agn—-2
0 Al A3 ottt i it a2n -3
0 A A2 ci ittt aA2n—4
0 0 0 0 aj; Qajy2 o an

where j = 0 for even n, j = 1 for odd n and a; = 0 for
k > n. The principal minors of the Hurwitz matrix

= — ay ag
Dl-—al, Dz—det(ao a2),

a as as
D3 = det ap az a4 ,
0 a; ag

are called Hurwitz determinants. The polynomial (13)
with ag > 0 is stable if and only if [4]

ar >0, Dp>0, k=1,---,n.

However the sufficient conditions for the polynomial
to be stable can be more simply expressed by the
Liénard-Chipart stability criteria [4] which state that
the polynomial (13) with ag > 0 is stable if and only if
any of the four statements

ap>0Aa,>0Aap—2>0Aa,_4>0A---
ADy >0AD3 >0A---

ag>0Aa, >0Aa,_2>0Aap_4>0A--..
ADy; >0ADs>0A---

ap>0Aa, >0Aan-1>0Aapn_3>0A--.
AD, >0AD3 >0A---

ag >0Aan, >0Aa,-1>0Aan_3>0A---
ADy; >0ADs>0A---

holds. From these criteria, the simplest can be cho-
sen for a particular problem. Checking that the last
Hurwitz determinant satisfies D, > 0 usually requires
analysing the most complicated formulas. This can be
avoided by using the Liénard—Chipart stability criteria.
As the von Neumann stability condition (10) includes
the equality |\;| = 1 for the roots A; of (9) which cor-
responds to the equality Re(z;) = 0 for the roots z; of
(12) we will replace > by > in (14).

Now the von Neumann condition (10) has been trans-
formed into the set of inequalities (14) connected by log-
ical operators. These inequalities are universally quan-
tified over the variables resulting from trigonometric
functions (usually S, Cp or T), variables). Quantifier
elimination by the cylindrical algebraic decomposition
algorithm (3, 10, 2, 11] can be used to eliminate the
universally quantified variables from this problem. The
result is a set of quantifier free inequalities which in-
clude the parameters of the difference scheme but not
the wave numbers. This is exactly what is needed to
understand the stability of the difference scheme.

All steps of this procedure are algorithmic and can
be carried out in a computer algebra system.

4. SOFTWARE TOOLS

To verify the applicability of the outlined approach
for stability analysis of difference schemes by quanti-
fier elimination the package FIDE [12] realized in the
REDUCE (9] computer algebra system and quantifier
elimination by the partial cylindrical algebraic decom-
position package QEPCAD [10] realized in the SACLIB
(1] computer algebra system have been used.

The FIDE package performs the first steps of the
method, i.e. calculation of the amplification matrix and
characteristic polynomial, transforming the von Neu-
mann condition to a Routh-Hurwitz problem and ap-
plying the Liénard-Chipart criteria (14).

The system of inequalities, which is the output of the
FIDE package, is the input to the QEPCAD package.
The QEPCAD package performs all the tasks necessary
for quantifier elimination and returns the quantifier free
formulas, the desired stability conditions. The interface
between the two packages is not automatic and requires
human interaction.

5. EXAMPLES

In this section, several examples are provided that
demonstrate how the method for stability analysis of
difference schemes, which is described in previous sec-
tions, works in practice.

EXAMPLE 5.1. As the first example consider the
following family of difference schemes [18] with param-
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eter a € [0, 1],

1, n+l _ n n—1y _
H(uj 2uf +uj )=

02 n
fr [a(ujly = 207" +uil)) (15)
+(1—2a) (u}y, — 2u? +u?_;)

+a(ufr =20} +ulT))]

which approximate the one dimensional wave equation

O*u 5 B%u
otz = 922
To transform the difference scheme (15) into a two-step
scheme, the variable v}'“ = u} is introduced. Then the
difference scheme to be analysed, which is equivalent to
(15), contains two difference equations.
The amplification matrix (8) of this scheme, resulting
from the Fourier transformation, is
-1
0 ) ’

where C' = ¢? h?/h2 > 0. The characteristic polynomial

(9) of the scheme is

P(\) = A% +2X(—=2cos(kz hz)aC + cos(kz h;) C
+2aC—-C+1)/(2cos(kzhz)aC —2aC —-1)+1.

2 (2 cos(kz hy) aC—cos(ky hy) C—=2aC+C—1)
2 cos(ky hy;)aC—-2aC-1
1

The polynomial (12), transformed by the conformal
mapping, is

Q1) = 22C(C,—1)+4CraC—-C,C—4aC

+C -2=aqapz?+ay,

where C; = cos(k; hz). The Routh-Hurwitz problem
for this polynomial is to be investigated. Because this
polynomial has degree two and one zero coefficient, the
Liénard-Chipart criterion (14) is (ap > 0 Aaz > 0) V
(a0 < 0 Aay <0) which is equivalent to agaz > 0 and
gives the quantified formula

VC, € [-1,1], (16)
C(Cy —1)(4C,aC —C,C—4aC+C—2)>0,

which is equivalent to the von Neumann stability condi-
tion (10) for the scheme (15). So far all of the algebraic
calculations have been performed by the FIDE pack-
age. The formulas presented above are generated by
computer so they are typically not written in the sim-
plest human-style form.

Using the QEPCAD package, the universal quantifier
is removed from the formula (16) resulting in the final
stability condition of the difference scheme (15):

1 h2
>-(1-==25).
0_4(1 c2hf>

Of course this example is very simple and C, can be
eliminated from (16) quite easily manually. However,
the example demonstrates all the steps of the method.
The next examples require non-trivial quantifier elimi-
nation.

4aC-C+12>0, ie

EXAMPLE 5.2. Here the first MacCormack differ-
ence scheme [13] in the form

1 . ah, . N
it =g [ o+ G, — )
bhy . .
+',';'y_(u?,j+l _uij)] ) (17)
. ah,
a = "?J"*'K(“?j"“?—l,j)
bh,

2l = ),
y

for the 2D advection equation

Ou _ Ou b Ou
m =a 52 + 5—5 .
is considered. Note that the variable 4}}; can be elimi-
nated from the scheme, producing a standard two-step
scheme.
The characteristic polynomial (9) of the scheme (17)

P(X) A-1
+ AB/(—sin(k; h;) sin(ky hy)
—cos(kz hg) cos(ky hy)
+cos(kz hz) + cos(ky hy) — 1)
+ A?(cos(kz hz) — 1) + B% (cos(ky hy) — 1)
+ i (A sin(k; hy) + Bsin(ky hy))]

where A =ahy/hy, B=bh¢/h,.

As pointed out in subsection 3.3, item 5, the root
A1 of P(A1) = 0 is evaluated and the von Neumann
condition (10), which has the form |A\;|?> < 1, directly
gives the quantified formula

VI, € RNT,€R,
[A2T2(T?2+1)+2ABT. T, (T: T, + 1)
—AT? (T2 +1)+ B*T? (T2 +1)
—BT?(T? +1)] (18)
[A’T? (T2 +1)+2ABT. T, (T. T, + 1)
+ATZ(TZ+1)+ B*TZ (T2 +1)
+BT?(T?+1)] <0,

where T, = tan(k; h;/2), T, = tan(k, hy/2). Note that
transforming the trigonometric functions into tangents
of half angles allows the factorization of the real polyno-
mial |A;|? — 1. This factorization greatly simplifies the
quantifier elimination task. However, as already men-
tioned, using the tangents requires checking the special
cases in which tangents are not defined. These special
cases produce several other quantified formulas, which
all together after quantifier elimination, result in the
condition

|A+B|<1A|A-B|<1. (19)

The calculated quantifier free formula equivalent to (18)
in which (19) is included is

[((A>0ANB>0)V(A<SOAB<O0)]A|A+B|<1.
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Thus the stability condition of the scheme (17) is

a b

hy ' hy

EXAMPLE 5.3. In this example, the system of dif-
ference equations [17]

[(@20Ab>0)V(a<OAb<LO0) AR <1.

n+l _ . n n — w"
Uj Ui Wiyie Wi
24 3 = ¢
hy hz
n _n
_(7_1)6j+1/2 €i-1/2
h, ’
n+l  _ n n+l _  n+l
Wir172 ~ Wit1/2 Uiy — U
Yivip " Winip o Min ZWT (20)
h, hs
nt+l _ _n n+l n+1 n+1
€ir1/2 ~ €j+1/2 €ivs/2 25512 T € 1)
hre h2
ntl . ntl
Yit1 — Y
——
hs

with ¢ > 0, 0 > 0, approximating the system of partial
differential equations for coupled sound and heat flow

du _ dw=(r-1))
ot oz ’
ow Ou

9t - ‘9z’

de O%e Ou

ot = %822 ‘8z’

is investigated.

Again the amplification matrix of the difference
scheme (20) and its characteristic polynomial P()) (9)
are calculated giving
P(A) = [N (—4pC; +4pu +1)

+ N (=479 Cp + 470 +160%uC?
-3202uC, + 1602 u+8uCy — 8 —3)
+ A4y C, -4y —4uC, + 4pu+3)
- 1)/(4pCr—4p-1),
where y = o hy/h2, v = ch¢/hs, Cr = cos?(kz he/2).
This polynomial is transformed, by the conformal map-
ping, to the polynomial (12) to which the Liénard-

Chipart criteria (14) are applied. The calculated in-
equalities are (using the first line of (14));

a = 162u(C2-2C,+1)>0;
a; = D1=8u2(—'7Cz+'7+2uC§

—4pCy +2p) > 0; (21)
ag = 8(71/2(},——')'112—21/2;403+41/2;1CI

202 u—2uC +2u+1)>0;
12802 u(yC2 - 24Cy +v - C?

+2C; —1) > 0;
where the quantifier applied to these inequalities is

VC; € [0,1]. The quantifier elimination of (21) results
in the stability condition of (20):

Dy =

. 14+2p
2uv? + vyt =2 -1<0, re. vr<
© v I < SVyr2n

Quantifier elimination problem  CPU time [s]

Example 1, (16) 1
Example 2, (18) including (19) 194
Example 2, (18) without (19) 2891
Example 3, (21) 10

TABLE 1. Time requirements for quantifier elimination (DEC
5000/25 with 4 MB of heap memory)

which is the condition presented in [17].

6. DISCUSSION

The bottleneck in the analysis of stability is the ex-
tremely high complexity of the quantifier elimination by
the cylindrical algebraic decomposition algorithm. Qur
limited experience with the QEPCAD package shows
that either the quantifier elimination problem is solved
rather quickly (usually less than a few minutes on a
DECstation 5000/25 or PC 486/33) or the solution is
not completed at all (not in a few hours of CPU time).
Probably the complexity curve is extremely steep quite
early. In fact, the complexity of the algorithm is dou-
ble exponential in number of variables appearing in a
quantified formula and polynomial in the total degree
of polynomial in the formula.

This complexity estimate and our experience indi-
cates that the number of trigonometric functions ap-
pearing in the inequalities (14) which are related to
any one coordinate should be minimized, preferably to
one function as described in subsection 3.3, item 3. Of
course any other substitutions decreasing the number of
variables in the formula simplifies the quantifier elimina-
tion task. In some cases (see example 2) the polynomial
in the inequality can be factorized to produce a simpler
quantified formula.

The time requirements for the first part of the method
up to the formulation of a quantifier elimination prob-
lem are not high. To give an insight into the time re-
quirements of the quantifier elimination task we present
here Table 1 which summarizes the time taken by the
QEPCAD package for quantifier elimination in exam-
ples presented in this paper. The quantifier elimina-
tion problem (18) without the conditions (19), which
are obtained from the special cases, demonstrates the
importance of including all available restriction on non-
quantified variables in the quantified formula. The cal-
culations of the conditions (19) requires several runs of
QEPCAD. Each run took only several seconds since the
number of variables for the special cases is less than the
number of variables in the quantified formula (18).

Clearly, further research is needed to find better ways
of transforming the von Neumann condition to a quanti-
fied formula and doing the quantifier elimination. Hope-
fully, we will have further insights as we tackle further
examples.

THE COMPUTER JOURNAL,

VoLr. 36, No. 5, 1993

¥202 Iudy 60 U0 1s9nb Aq GGGZ6E/.61/S/9¢/8101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq



APPLYING QUANTIFIER ELIMINATION TO STABILITY 503

7. CONCLUSION

A practical method for stability analysis of difference
schemes that uses quantifier elimination by cylindrical
algebraic decomposition has been presented. The full
algorithm can be implemented in a computer algebra
system and is capable of producing an analytic formula
for the stability condition of the difference scheme being
analysed. The examples section presents the results of
some of our first experiments with this method. Several
simple examples show the applicability of the method.
However, we have to point out that, at present, the
method is not usable for very complicated difference
schemes mainly because of extremely large computa-
tional time and storage requirements for quantifier elim-
ination by the cylindrical algebraic decomposition algo-
rithm. In any case, it is reasonable to hope that the
algorithm can be improved sufficiently so that it can be
used for analysis of schemes whose stability condition
is not yet known.
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