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In this paper we study the problem of determining whether two points lie in the
same connected component of a semi-algebraic set S. Although we are mostly
concerned with sets S C R¥, our algorithm can also decide if points in an arbitrary
set S C R* can be joined by a semi-algebraic path, for any real closed field R. Our
algorithm computes a one-dimensional semi-algebraic subset R(S) of S (actually of
an embedding of S in a space R* for a certain real extension field R of the given
field R). R(S) is called the roadmap of S. The basis of this work is the roadmap
algorithm described in [3, 4] which worked only for compact, regularly stratified
sets.

We measure the complexity of the formula describing the set S by the number of
polynomials n, their maximum degree d, the maximum length of their coefficients
in bits ¢, and the number of variables k. With respect to the above measures,
the bit complexity of our new algorithm is (n"logn)do("z)(clogn)(”“) randomized,
or (n"logn)do("‘)c(“") deterministic, for any ¢ > 0. Note that the combinatorial
complexity (complexity in terms of n) in both cases is within a polylog factor of
the worst-case lower bound for the number of connected components Q(n*).
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INTRODUCTION

Good sequential and parallel algorithms have been
available for some time for deciding the theory of the
reals [10, 11, 3], and for real quantifier elimination
[2, 14, 21]. Geometrically, these problems amount
to deciding the emptiness or non-emptiness of semi-
algebraic sets and their projections. Recently, atten-
tion has turned to computing geometric properties of
semi-algebraic sets, such as counting the number of con-
nected components. The first algorithm for connectiv-
ity was described by Schwartz and Sharir [22] who ob-
served that a cylindrical algebraic cell decomposition
provides a convenient substrate from which to extract
connectivity information. This idea was pursued by
Kozen and Yap [18], who gave a simple formula for
deciding adjacency between cells, and made use of a
parallel algorithm for constructing the cell decomposi-
tion [2] (this paper contains errors that were fixed in
(8], see also [6]). Their algorithm was fully parallel,
and had single-exponential parallel running time. From
Kozen and Yap’s results it follows that all geometric
properties of semi-algebraic sets are at hand, because a
semi-algebraic set can be represented as a regular cell
complex.

However, all known methods for constructing alge-
braic cell decompositions require double exponential se-
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quential time and improving this bound remains a ma-
jor open problem. So these two cell decomposition al-
gorithms run in sequential time double exponential in
the dimension, with the latter taking single exponen-
tial time in parallel. Neither looks practical in the near
future even in low dimensions.

A different approach was taken in [3] and [4], based
on the construction of a one-dimensional skeleton of
the set. This construction, called a roadmap, gave
much lower (single exponential) complexity. The orig-
inal roadmap papers [3] and [4] (see also [24]) made
use of regular stratification [13], rather than a cell de-
composition, which allowed a very coarse (and efficient)
partition of the set. The complexity of finding paths in
3] was (n* logn)d®*)c2, and since the lower bound on
the number of components is Q((nd)), this algorithm
is nearly optimal in terms of n. This is important for
applications in geometric modeling and robotics where
d and k are small and fixed, but n, representing the
number of surfaces, may be large. The disadvantage of
the algorithm in [3], which we will henceforth refer to
as the roadmap algorithm, is that it required the semi-
algebraic set to be compact and in general position.

Later Grigor’ev and Vorobjov [12] gave a (dn)O*™)
algorithm for finding paths in arbitrary semi-algebraic
sets, and the Franco-Argentine school in [15] and [16]
gave a solution for the general case with a running time
of (dn)"om. However, the double exponents of both al-
gorithms appears to make them impractical for robotics
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or geometric modeling applications. The problem of ac-
tually finding the connected components in exponential
time, i.e. giving quantifier-free formulae for them, was
solved in [7] (see also [17]). In [9] roadmaps are de-
fined using arbitrary, not necessarily generic, projection
maps.

In this paper we describe a method for path-finding
in the general case which has a running time of
(n* log? n)do('°2)c2 randomized, which is within logn
of the original roadmap algorithm. Making the
algorithm deterministic increases the complexity to
(n* log n)do(kq)c“’. Note that the combinatorial com-
plexity in terms of n in both cases is again close to
the worst-case lower bound of Q(n*) on the number of
connected components. The new method performs a
direct reduction from the general case to the compact,
regularly stratified case, so that the algorithm of [3]
can be applied. This reduction increases the length of
the formula by a constant factor, and its coefficient size
by a factor of klog(dn). Each polynomial in the in-
put formula is replaced by polynomials which differ in
their constant coefficients by various infinitesimals. The
new collection of polynomials define a semi-algebraic set
which is compact and regularly stratified, and has the
same connected components as the original.

2. PRELIMINARIES

The input to the algorithm is a semi-algebraic set S
defined by polynomials with rational coefficients. For
a set defined in k-dimensional space, the polynomials
lie in the ring Q[z] = Q[z1,...,zk]. Formally, a semi-
algebraic set is defined as:

DEFINITION 2.1. Let fi,..., fn € Q[z] be a collec-
tion of polynomaals with rational coefficients. A semi-
algebraic set S C R¥ is a set derived from the sets

Si = {z € R*| fi(z) > 0} (1)
by finite union, intersection and complement.

A semi-algebraic set can be defined as the set of
points in R* satisfying a certain predicate of the form
B(A,,...,Ay) where B : {0,1}" — {0,1} is a Boolean
function and each A; is an atomic formula of one of the
following types:

(fi=0), (fi #0), (fi >0), (fi <0), (fi 20), (fi £0)

(2)
with f; € Q[z]. In the analysis that follows it will be
helpful to assume a certain form for the defining predi-
cate.

DEFINITION 2.2. A formula B(A,,...,A,) is said
to be in monotone standard form if the Boolean function
B is monotone, and all atomic formulae A; are either

(fi =0) or (fi > 0).

An arbitrary formula can be converted to monotone
standard form with a constant factor increase in size.

Assume we are given a Boolean circuit C to represent
the function B. This circuit can be converted to a
negation-free, and therefore monotone circuit Cps as
follows. For each node v € C there are two in Cyy,
one of which represents v and the other ~v. Now all
primitive logical operations between nodes in Cjs can
be implemented with A and V, e.g. if C7 = C3V =Cs in
the circuit C, in C)s, the node representing C7 is the V
of the node representing C3 and the node representing
—Cs. We also need to compute =~C7 for later use, and
this node is the A of the node representing ~C3 and the
node representing Cs.

The circuit Cjs defines a monotone Boolean function
of the original atomic formulae and their negations. The
negations can be pushed into the atomic formulae by
replacing =(f; > 0) with (f; < 0) etc. This formula can
be converted to standard form by substituting for the
inequalities <, #, > with a union of a pair of inequalities
using > and =. Overall the number of atomic formulae
increases by a factor of at most four compared to the
original predicate.

DEFINITION 2.3. We measure the complezity of a
predicate with four quantities, the number of polynomi-
als n, the number of variables k, the mazimum degree of
the polynomials d, and the mazimum coefficient length
¢ of the coefficients of the polynomials.

There remains one sticky point with regard to the
Boolean formula B. There is a certain cost associated
with evaluating B, given the signs of the f;’s. This time
is clearly linear for the first evaluation. The algorithm
of [3] requires frequent re-evaluation of B when a single
fi changes sign. Our complexity bounds will be valid
if the time to re-evaluate B when a single f; changes
sign is O(logn). In section 9, we show that this will be
true if the function B is defined by a formula. There we
show there that an arbitrary Boolean formula can be
converted to an equivalent log-depth trinary formula in
polynomial time. The predicate B has been assumed to
be a formula in most previous work on semi-algebraic
sets. Our algorithm will still work if the function B is
represented by a general circuit, but if the time to re-
evaluate B when a single input changes is greater than
log, then we must substitute this larger time for logn
in the complexity bounds above.

2.1. Stratifications

DEFINITION 2.4. A stratification S of a set § C
RF is a partition of S into a finite number of disjoint
subsets S; called strata such that each S; is a manifold.

A regular stratification satisfies some additional con-
ditions which are well described in [13]. There are sev-
eral basic ways to construct regular stratifications. We
will only need two:

® Taking products. If C and D are regular stratifi-
cations of the spaces C' and D respectively, then the
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product C x D is a regular stratification of C x D.

® Preimage of a transversal map. If F: M -+ N
is transversal to D for a regular stratification D of a
subset D C N, then F~1(D) is a regular stratifica-
tion of F~!(D).

F M D means F' is transversal to all the strata of D,
and F~!(D) is the set {F~!(s) | ¢ € D}. If we now
define

DEFINITION 2.5. Let f; € Q[z], i = 1,...,n be a
collection of polynomials that define a map F : R¥ &
R". IfR = {R-,{0},R+}, a sign sequence o is an ele-
ment of R™. The sets F~1(o) are called sign-invariant
sets of F.

Then we can view a semi-algebraic set S as a finite
union of sign-invariant sets of some polynomial map F.
The sign partition (R)" of R" is a regular stratification
of R". So if a map F : RF = R" is transversal to (R)",
then the preimage F~!((R)"), which is the collection of

sign-invariant sets of F', is a regular stratification.

2.2. Infinitesimals

We will make extensive use of extensions of real fields
by infinitesimals. This process is simple to implement
computationally, and has been well formalized in [1]
using the real spectrum. An elementary description of
the use of infinitesimal elements is given in [5] in an
algorithm for the existential theory of the reals.

One disadvantage of working over an infinitesimal ex-
tension field is that basic field operations become very
expensive. Usually, an element of R(e, d) is represented
as a polynomial in € and §. The degree of such ele-
ments will typically be O(do("’)), and clearly with 3 or
4 infinitesimals, each field operation is enormously ex-
pensive.

But in section 7.1 a method is described for comput-
ing with infinitesimals which costs only slightly more
than integer arithmetic in typical cases. The idea is to
do arithemetic using straight line programs, and recover
only the lowest degree rational coefficient of the field el-
ement by differentiation. Thus the use of infinitesimals
in quantifier elimination can be a practical proposition.

DEFINITION 2.6. For a given real field R, we say
that an element € is infinitesimal with respect to R if
the extension R(e€) is ordered such that € is positive, but
smaller than any positive element of R.

We will have cause to make use of towers of such field
extensions. We will use the suggestive notation § > €
for two infinitesimals to mean that € is infinitesimal with
respect to the real closure of the field R(J).

Strictly speaking, in what follows we do not need true
infinitesimals. Any result that we prove for an infinites-
imal will hold for all sufficiently small real values. This
follows because the “bad sets” or critical sets for the

various calculations we perform are semi-algebraic, and
there is a smallest bad real value. Even when we use
towers of infinitesimals, as long as we choose a good
real value for each variable, there will be a good real
value for the next variable that is “small enough” with
respect to it, and which avoids the bad set. Some of our
proofs will be phrased as though the infinitesimals were
real numbers. This saves us having to use awkward def-
initions of compactness, connectivity and regularity for
arbitrary real closed fields. This idea may be seen as a
special case of the “Transfer Principle” [23].

3. REDUCTION FROM AN UNBOUNDED
TO A BOUNDED SET

This is a rather standard reduction which is used in a
number of places, see for example [5]. First we show
that the unbounded set S C R* is homotopy equivalent
to a bounded set. For this purpose, let p(z1,...,zx) =
z? + ... + 2% be a polynomial radius function. Consider
the set SN D, where D, = p~1([0,r]).

LEMMA 3.1. There exists a positive ro such that for
all r > 1y, SN D, is a deformation retract of S.

Proof. Let F = (fi,...,fn) be a set of polynomials
which define S. Let B__k be a Whitney regular stratifica-
tion of R*¥ which is compatible with the sign-invariant
sets of F. All sign-invariant sets are unions of strata.
Note that this is a different stratification than Bk which
is the stratification by sign of R*. By the semi-algebraic
Sard theorem [1], the map p has only finitely many crit-
ical values when restricted to any of these strata. Let
ro be the largest critical value, then for all r > ro,
S N D, has the same homotopy type (hence number of
connected components) as S. To see this, use p to lift
a vector field on [r,c0) to one on R¥ —Int(D,) which is
compatible with the stratification of R¥. The flow along
this vector field defines a retraction of S onto S N D,.

|

So to find connected components of S it suffices to
find components of S N D, for sufficiently large r. In
practice this is done by treating r as an indeterminate
element of the base field. When it comes time to deter-
mine the sign of a base field element, which will be a
polynomial in r, we use the sign of the highest degree
term in r. This correctly gives the sign for sufficiently
large r.

4. REDUCTION TO A REGULAR STRATI-
FICATION

As was shown in [3] one can obtain a regular strati-
fication by taking the sign-invariant sets of a system
of polynomials in sufficiently general position. In the
present case, the given f; will not be in general position.
In [3] a fixed perturbation was applied to their constant
coefficients to achieve this. Now consider the following
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symbolic perturbation of the F = (f1,...,fn) : RF =
R™. Define

Foao=F+ea (3)

where a € R is supposed constant for the time being,
and € is a single infinitesimal. As shown in [3] for al-
most all choices of the constant coefficients ea, the map
F., is transversal to the natural stratification by sign
(R)" of R", where R = {R_,{0},R4}. In particular, if
we fix a = (ai,..., a_,,), then for almost all such choices,
the map F, is transversal to (R)" for almost all e. This
implies that the sign-invariant—gets of F,, form a Whit-
ney regular stratification, a very important property for
us later. We assume for now that such a;’s have been
found. Later we will show how they can be determined
either deterministically or probabilistically.

Assume the a;’s were chosen to be positive, the sign-
invariant sets of (3) are the same as for

fifar + €
fg/az + €

: : (4)
frnlan + €

Define g; = fi/a;. Then another way to describe the
sign-invariant stratification of the last paragraph is as
the preimage under G = (g, ..., gn) of the stratification
(R)".

Now suppose instead of a single polynomial, we re-
place each f; by four polynomials as follows:
filai + 6, filai — ¢, fifai — 6

(5)

this gives us a system of 4n polynomials Hj, and we
claim that for almost all a and for almost all pairs (e, §),
the map H is transversal to (R)*".

We can say this another way as follows. Let Rse be

filai + ¢,

the stratification of the real line into the points —4, —e¢,
¢, and § and the open intervals in between and to Fooc.
Then we have the following general position lemma:

LEMMA 4.1. For almost all a € R", the map G =

(fi/aiy..., fn/an) is transversal to the stratification
(Rse)™ of R™, for almost all (6,¢).

Proof. We say that a value of a is regular if the set of
(0, €)-values such that G is not transversal to (Rs¢)" has
measure zero in R?2. The map G is transversal to (Rs¢)"
if it is transversal to all the strata of (Rs¢)". If we can
find a value of a which is regular with respect to every
stratum, we are done because the set of values of (4, €)
for which G is not transversal to (Rse)" is the union of
the sets of values for which it is not transversal to the
individual strata. This is a finite union of measure zero
sets, and so has measure zero.

We show below that the set of a values which are not

regular with respect to a given stratum has measure
zero in R”. From this it follows that the set of a values
which are not regular with respect to the stratification
(Rse)™ is measure zero in R". Again this is because
it is the union of measure zero sets corresponding to
non-regular values for the individual strata. This will
complete the proof.

So it remains to show that the set of non-regular val-
ues a of G with respect to a given stratum o in R
has measure zero in R".

Now oy, is a product of points and open intervals in
R. From the definition of transversality given earlier,
it should be clear that G will be transversal to o, if
dG is surjective in the subspace V of R" comprising
those coordinates where g5 is a point. Write G|y for
the map G restricted to those coordinates, and o|v
for the restriction of o4.. By definition, p = o4¢|v is a
single point in V. The condition that G be transversal
to os¢ is equivalent to the condition that p be a regular
value of G|v.

Now define ¢ € V by gi = a;pi;. The condition that
p is a regular value of G|y is the same as the condition
that g is a regular value of F|y. By Sard’s theorem, we
know that the set of non-regular g values has measure
zero in V. In fact the semi-algebraic version of Sard’s
theorem [1] tells us that the set of bad values is semi-
algebraic. Since it is a measure zero set, it must be
contained in a algebraic proper subset Z C V.

The i*! coordinate of q is either +a;e or +a;8. Choose
a q that avoids Z and temporarily suppose ¢ = § = 1.
This fixes the corresponding values a; to +q;. Let L
denote the map taking g to @ when ¢ = § = 1, and
suppose henceforth that a is fixed at some value L(q)
where ¢ € Z. If € and § are supposed variable again, the
plane in V parametrized by € and § intersects Z in an
algebraic set. Since this set does not contain the image
of the point (1, 1), it must be a codimension one subset.
Hence for almost all pairs (4, €), the point g is a regular
value of F|y.

Now notice that any value of a which is not in the
codimension one set L(Z) is a regular value in the sense
defined above, with respect to a given stratum. Taking
the union of the L(Z) for all strata, we obtain a codi-
mension one set of a values for which G is not transver-
sal to g4 for almost all § and e. ]

Once we have this regular stratification, we can use
a certain subset of the strata to approximate an ar-
bitrary semi-algebraic set. Define Rgep = (—oo,—&] U
[—€,€] U [6,00), then Rgep is a closed set. Intuitively,
this is a partition of the real line separating values that
are nearly zero from those that are definitely non-zero.
We will show later that the connected components of
the preimage G~!((Rsep)") are in one-to-one correspon-
dence with the connected components of sign-invariant
sets of F (if § 3> € > 0 are both sufficiently small).

For each sign-sequence o € (R)", there is also “sepa-
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rated” sign-sequence o, defined as

[6,00) if o;=R,
(Osep)i = [—€€] if o;={0} (6)
(—o0,=8] if o;=R_
and the ogep are exactly the connected components of
(Rsep)™
The set Rqep has a regular stratification, denoted
Rgep:
Rsep = {(_oov "6)7 {—6}7 {"'6}’ (_6’6)7 {e}’ {5}, (6’ oo)}

(7)
but because we chose a carefully, the preimage
G~ !((Rsep)™) is a Whitney regular stratification of

G~ '((Reep)™). Since the preimage is also a closed,
bounded set, and therefore compact, the algorithm of [3]
can be applied directly to compute its connected com-
ponents. This takes us a long way toward computing
the connected components of a given semi-algebraic set,
and leaves us only with the task of determining adja-
cencies between connected components of sign-invariant
sets. For now we must show

THEOREM 4.2. Let G = (fi/a1,...,fn/an) and
Rsep be defined as above. Then the connected com-
ponents of sign-invariant sets of F are in omne-to-
one correspondence with the connected components of
G ((Rsep)™) for almost all a € R™ and for all suffi-
ciently small 6 > € >0

The result follows from the next two lemmas. There
is a natural correspondence between each non-empty
sign-invariant set F, = F~!(0) and the set G~ (0gep).
The lemmas show that these two sets have the same
homotopy type, by showing that they can be retracted
onto a common subset.

Consider a particular sign-invariant set F, of F, and
number the f;’s such that fy,..., f,, are all zero on F,
and the remaining polynomials are non-zero. Assume
also for simplicity that all non-zero f;’s are positive on
F,. We replace each inequality f; > 0 for : > m with
a new inequality f; > 4. Together with the inequality
p < r (p is the radius function defined earlier), this
defines a closed set F,; (§) which is a subset of F, for
d > 0. Since it is also a subset of the compact ball of
radius r, it is compact.

We first show that the homotopy type of F; () is the
same as that of F,, for small enough 4. In fact we have

LEMMA 4.3. There exists a positive 8¢ such that for
all positive § < &y, the set F; () is a deformation re-
tract of F,.

Proof. Consider the set D in R¥*! defined as D =
{(z1,...,2k,8) | « € F;(6)}. Think of D as the
“graph” of F; (8). D is certainly semi-algebraic, and
so has a Whitney regular stratification compatible with
the signs of the polynomials f; and (f; — §). The pro-
jection w5 : (z,0) — 4 has a finite number of critical

values when restricted to these strata. Choose dg > 0
to be the smallest positive critical value, and let § be
any positive number less than §p. Then 74 is regular
on all strata for values in the range (0,d]. We can use
75 to lift a vector field on (0, 4] to a vector field on D
which is compatible with its strata. Since D is compact
when restricted to [0, 4], this gives us a deformation re-
traction of the set D|( 5 = m; '(0,6] onto the compact
set Ds = m; ' (4).

But if we define 7, : (z,8) — =z, then the projec-
tion m,(G|(0,5)) is just F,, and m,(Dl|s) is just F; (8).
Furthermore, composing m, with the deformation re-
traction of the last paragraph gives us a deformation
retraction of F, onto F} (). |

To guarantee that J is small enough, we leave § as
an indeterminate element of the base field (like r), and
when it comes time to evaluate the sign of a base field el-
ement, which is a polynomial in r and 4, we first find the
term of lowest degree in 4, then among all terms with
this degree in § we take the sign of the highest degree
term in r. This is equivalent to preceding all evaluations
with the quantification 3rg Vr > rg 369 V6 < dg ... ..

Operationally, this is also equivalent to working in a
real field extension R(r,é) where r is larger than any
element of R and € is smaller than any element of the
real closure of R(r). However, in the algorithms that
follow, all the numerical calculations we make will in-
volve polynomials from R[r,d]. We do not need r and &
to be values that do not lie in R, but only “sufficiently
large” or “sufficiently small” real values that the signs
of all polynomials are correctly computed. If we work
only over the reals, life is much easier, since the usual
notions of compactness and connectivity apply.

In the last lemma we defined compact sets F (§)
with the useful properties that they are compact and are
deformation retracts of sign-invariant sets. This means
that each connected component of a sign-invariant set F,
contains a single component of F, (§). Next we define
a set Ff(8,€) which is a “neighborhood” of F (§) and
can be retracted onto it. To define F(d,¢€), we take
each inequality in an f; and replace it with one or two
inequalities:

(fi +€a; 2 0) A (fi —ea; <0)
(fi — 6a; > 0)

if g; = {0}
(8)

ifa';:R.,.

and notice that F}(4,€) is now compact. By the previ-
ous general position lemma, it is also regularly stratified
by the signs of the polynomials that define it. Notice
also that F; (8) is a subset of F}(4,¢).

LEMMA 4.4. Assume § is chosen to satisfy lemma
4.3. There exists a positive €y such that for all 0 < € <
€0, the set F; () is a deformation retract of F}(4,¢).

Proof. We only sketch this proof since it is almost
identical to the proof of lemma 4.3. Let D in R¥*! be
defined as D = {(zy,...,zk,€) | ¢ € F}(4,€)}, treating
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é as a constant. For all sufficiently small ¢ > 0, the
set D has a Whitney regular stratification D into sign-
invariant sets of the polynomials that define it. There
is some €9 which is the smallest positive critical value of
the projection 7 : (z,€) — € restricted to D. For € < ¢,
We can use 7 to lift a vector field on (0, €] and thereby
define the desired retraction. ]

Notice that F}(d,€) is exactly the set G~ (05ep), the
non-singular approximation of F~!(s). Since F, and
F}(8,€) have a common retract F, (§), they have the
same homotopy type and hence the same number of con-
nected components. This completes the proof of theo-
rem 4.2.

Finally, we observe that the sets F} (6,€) and F,(4, €)
are disjoint for o and o’ distinct. This follows because
if the union of a component of F;}(4,¢) and a compo-
nent of F.};(d,€) were connected, then its image under G
would have to be connected also. But that image must
lie in the union of the disjoint sets gsep and oy, and it
must intersect both, which is impossible.

So the connected components of G~!((Rsep)™), which
are the union of connected components of F}(4,¢€)’s,
correspond exactly to the connected components of
sign-invariant sets of F. Since G™!((Rsep)”) is a com-
pact set which is regularly stratified as G~ ((Rsep)™),
we can apply the algorithm of [3], modified to work over
arbitrary real coefficient fields as described in [5].

All that remains to determine connectivity of a
given semi-algebraic set is to determine the adjacencies
between connected components of sign-invariant sets.
This we deal with in the next section.

5. DETERMINING ADJACENCIES BET-
WEEN SIGN COMPONENTS

In the last section, we modeled connected components
of sign-invariant sets F, with regularly stratified com-
pact “neighborhood” sets F}(d,€). In this section, we
show that these neighborhood sets can also be used to
determine adjacencies between components. We will
need to make use of a “big” neighborhood of one set
and a “small” neighborhood of the other.

First we remark that if disjoint sets A and B have a
connected union, then either ANB # ¢, or BNA # ¢.
For if this were not true, both A and B would be open in
the union AU B, and therefore both closed in AUB. So
to check whether connected A and B have a connected
union, it suffices to check whether either AN B # ¢, or
BNA#o¢.

Let A be a connected component of F,, and let
A*(81,€1) be the corresponding connected component
of F}(d1,¢1). Let B be a connected component of a
second sign-invariant set F,/, and B* (8o, €o) be the cor-
responding connected component of F;}(dp,€9). Note
the use of two different sets of infinitesimals. The next
lemma shows that for suitable choices of the infinitesi-
mals, adjacency of A and B can be checked by testing

overlap of A*(d;,€;) and B*(do,€0):

LEMMA 5.1.  With A*(61,€1) and B*(8o,€0) as de-
fined above, and for all sufficiently small §; > € >
do > €9 >0,

(ANB # ¢)

Proof. First we clarify what we mean by “suffi-

A ——14 A+(51,61)nB+((50,€0) -',643

ciently small”. Let “;’a mean that there is some positive
o' such that the formula that follows the quantifier is
true for all positive a less than o’. The lemma states
that AN B # ¢ is equivalent to

V31 Ver Voo Weo (A*(81,€1) N B* (do,60) # ¢)  (9)

We can simplify this formula by doing quantifier elimi-
nation from the inside out. Let B~(dp) be the compo-
nent of F,(do) that is a retract of B*(do,€). We claim
that

Veo (A*(81,€1) N B* (S0, €0) #¢) = (10)
(A*(81,e1) N B~ (%) # ¢)

To see this, notice that the set (A*(81,€e1) N B*(do,€0))
in (z,€)-space is compact when restricted to ¢ €
[0,€5], and so achieves a minimum non-negative value
of €p. If this value is greater than zero, both formulae
are false, if it is zero, both formulae are true. Next we
need to show that

Voo(A*(61,61)NB~ (o) # ¢) <= (A*(61,1)NB ;(e ¢;

11
Let p be a point in (A% (81,€,) N B), and let &) be the
minimum of the values of the f;’s at p, excluding those
fi’s which are zero at p (we assume wlog that non-zero
fi’s are positive). The first formula will be true for all 6,
less than &y. Conversely, if the first formula is true for
any g, then there is a point p in (A*(d1,€,1) N B~ (d)).
This point is also in (A% (d;,€;) N B) since B~ (&) is
a subset of B, so the second formula is true also. It
remains to show that

V51V€1(A+(61,61)QB¢¢)) — (Aﬂ§¢¢)
(12)

Suppose first that AN B # ¢, and let p be a point in
AN B. Choose §, small enough so that p is in the
(relative) interior of A*(dy,€;), i.e. none of the in-
equalities f;(p) > a;0; has equal arguments. We know
that all neighborhoods of p intersect B, and the rest of
the formula checks this. Specifically, for every ¢, > 0,
A*(81,€;) contains an absolute neighborhood U of p.
This follows because all the polynomials that define
A*(8,€) are non-zero at p (some f;’s may be zero of
course, but A*(8;,€;) is defined by these polynomials
%a;e;). Since U intersects B, so does A1 (81, €;).

Conversely, suppose AN B = ¢. We show that
‘;’61 A*(6,,6,) N B # ¢ is false for any 6, > 0. Pick
a d; > 0. Now choose any monotonically decreasing
sequence v; — 0 of positive €; values. Then for at least
one of these values A*(8;,6;)N B = ¢.

THE COMPUTER JOURNAL,

Vor. 36, No. 5, 1993

¥20Z Iudy 01 uo 1senb Aq £/GZ6€/405/S/9¢/8101e/|ulwoo/wod dno-ojwepese//:sdiy wolj papeojumoq



510 JoHN CANNY

Why? Suppose the intersection were non-empty for
all v;. Let p; be a point in A*(6;,v;)NB. The sequence
(p;) lies in the compact set A*(8;,v1) N B, and so has
a convergent subsequence. But let p be a limit point,
we must have p € A~(6;) C A by continuity of the
polynomials defining A*. So we have a subsequence of
(p:i) € B which converges to p € A. This shows ANB #
¢, contrary to our assumption of the last paragraph. So
the above assumption was false, and A* (4, €; )N B must
be empty for some (in fact almost all) v; > 0. ]

To compute with this quantification, we once again
treat 8y, €1, 6p and €p as real elements of the ground
field. This is equivalent to a real field extension by in-
finitesimals R(d,,€;,d0,€0) where 41, €;, §p and € are
adjoined in that order, and each is taken to be smaller
than any positive element of the previous extension
field. However, the correct semantics is that they are
real numbers that are small enough (relative to previ-
ously quantified values) that they give the same sign for
the ground field elements computed by our algorithm.

An important corollary of the above theorem is that
we can compute the connected components of an ar-
bitrary semi-algebraic set by computing the connected
components of a certain compact, regularly stratified
set. First let us define a fine stratification of the real
line Ry which consists of the eight points +4;, +e,
+480, +€o and the open intervals in between and to +oo.

Let S be the original semi-algebraic set defined by
polynomials f;,..., f,. Assume without loss of gen-
erality or efficiency, that the formula defining S is a
monotone Boolean function of inequalities of the form
fi =0or f; > 0. Suppose a suitable a € R"” has been
chosen so that G = (f1/ay,..., fn/an) is transversal to
(Rgn)". Replace each (f; = 0) in the formula for S with

the conjunction
(fi < €0ai) A(fi 2 —€oa;)

and each (f; > 0) with (fi > dpa;). Call this new
set Ssepo. We need the defining Boolean formula to
be monotone so that the new set Sgepo is a union of
separated sign-invariant sets G~!(0,¢, )-

Similarly, we can define a set Ssep1 as above using
€; and 6;. We can now state the result relating the
connected components of S and the regularly stratified
sets Ssepo and Sgep1:

(13)

COROLLARY 5.2. There is a one-to-one correspon-
dence between connected components of S and connected
components of Ssepo U Ssepi-

Proof. Let A,,...,Aq be the connected components
of sign-invariant sets of the map F' that are contained
in S. Note that this means there may be more than
one A; within the same sign-invariant set (in fact if
one component of a given sign-invariant is in S, all the
others must be).

We saw in the last section that each A; corresponds
in a simple way with a certain connected compo-

nent A;—*(&o,eo) of Ssepo, and to a certain component
A;"(&l,el) of Ssep1. Now consider the union A}H' =
A} (d0,€0) U A} (61,€1). This is a connected set, and it
intersects A;. We complete the proof by showing that
A; U Aj is connected for distinct A; and A; if and only
if AFT U A;H is connected.

If A; U A; is connected, then one set intersects the
closure of the other. Assume for instance that A,-ﬂA_j #
¢. We know from the theorem of this section that this
implies A7 (81,€1) N A (do,€0) # ¢, so that AFT U AT
must be connected.

Conversely, suppose A7+ U A;L+ is connected. We

know from the last section that A} (dp,€) and
A;’ (60,€0) are disjoint, and similarly for A7 (d),€)
and A}'(Jl,el). So the two remaining possibilities are
A} (01,6)N A;’(&o,eo) # ¢ which implies A; N A_J # o,
or AT(Jo,eo)ﬂA;'(Jl,el) # ¢ which implies X,ﬂA]‘ # &.
In either case A; U A; is connected. u

5.1. Transformation Algorithm

To summarize, the following algorithm reduces cal-
culation of connected components of a general semi-
algebraic set to calculation of connected components of
a compact, regularly stratified set.

® Convert the input formula to monotone standard
form, and if necessary, collapse the defining formula
to a trinary formula of logarithmic depth as de-
scribed in section 9.

® Add to the formula a conjunction with the polyno-
mial inequality E;?:l 2% < r? (converted to stan-
dard form), where r is an infinite positive value
(larger than any real). Let the resulting formula be
B(A,,...,A,), it defines a bounded set in the ex-

tension field R(r).

® Choose an a € (R4)" at random, or let a; > a; >
-+« > a, > 0 be a series of infinitesimals.

® Construct a formula By from the input formula
B(A,,...,A,) as follows. For each atomic predicate
A;, replace A; with

if A;is fi =0 then (fi + €a; >0)A

(fi — €0a; < 0)
if A;is f; >0 then (f, — doa; > 0)

(14)

where Jo > € are infinitesimals. Then the set Ssepo
defined by this formula is closed and bounded, there-
fore compact (or semi-algebraic compact, if we think
in terms of true infinitesimals rather than sufficiently
small reals). By the results of section 4 the con-
nected components of the sign-invariant sets of By
are in one-to-one correspondence with those of B.

@ Now define a new formula B; from B(A,,...,A,)
as in the previous step but with €; and §; replacing
€0 and &g. Set §; > €; > 8. The formula B,
defines a set Sgep1, and by the results of section 5, the
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connected components of Ssepo U Ssep1 are in one-to-
one correspondence with the connected components
of S.

® Return By V B;, which defines a regularly stratified,
compact semi-algebraic set whose connected compo-
nents correspond one-to-one with those of S.

6. COMPLEXITY

A full analysis of the algorithm is given in [3], but the
main ideas are simple enough to describe here. The
main facts we need are the following;:

1. The algorithm of [3], modified to use the BKR lemma
as described in [5] makes all its branching decisions
based on the signs of query polynomials whose degree
in the coefficients of the input polynomials is dOGk™)
This bound is obtained by inspecting the resultant
matrices used in calculating projections, and the 2-d
point ordering algorithm.

2. The number of such polynomials that might ever oc-
cur in the calculation is (nd)o(kz), obtained by con-
sidering all the possible slices that might be taken
recursively.

3. Each query polynomial contains at most O(k?) in-
finitesimals, even if all of a,,...,a, are infinitesimal.
This seems surprising at first, but one must remem-
ber that by using infinitesimal a;’s, we have guar-
anteed that all the algebraic surfaces defined by the
input polynomials meet transversally. In particular,
any collection of more than k surfaces will not have
a common intersection point. If the query polynomi-
als were only generated by intersection points, there
could be at most O(k) infinitesimals in each one. But
the roadmap algorithm also generates hyperplanes
which are defined by k input surfaces. These also
meet the input surfaces transversally (except at one
point each), and so an intersection point can actually
depend on O(k?) input surfaces.

6.1. Deterministic Version

Making these observations allows us to determine the
running time for the deterministic version of the al-
gorithm, which uses infinitesimal a;’s. The algorithm
of [3] must also use generic linear projection maps
7 : R¥ 5 R2 Because the algorithm recurses on di-
mension, there need to be k choices of such maps. So
all the 7’s can be specified with 2k? real values. For the
deterministic version, we define them as infinitesimals.
Overall, we have the sequence

pPa; > an > D>
So>e>m > T2 >>u>0

The bounds in [3] and [5] show that the roadmap algo-
rithm for a particular input requires O(n* log n)do(“z)
evaluations of query polynomials. The basic query is
determining the signs of the polynomials f; at certain

points along an algebraic curve. As explained in step 3
of the complexity summary above, each query may de-
pend on k? of the a;’s and possibly all of the maps ,
involving a total of O(k?) infinitesimals. From [3], we
know the degree of the queries is do( ") So each such
query, as a polynomial in those infinitesimals, may have
dO(") coefficients. Therefore they require d°**) time
to evaluate. The running time is the product of the
number of query polynomial evaluations and the time
for each which is (n*logn)d®*"). Adding the cost of
integer arithmetic, we get an overall bound for the de-
terministic algorithm of

(n'c log n)do(k‘)c(l'“) (15)

for any € > 0. Here c is the bound on the bit length of
the input coefficients and we assume the cost of arith-
metic on b-bit integers is O(b(1+9).

6.2. Randomized Version

For the randomized algorithm, we need to figure out
the number of random bits required in the choice of
a;’s and the maps 7. Let II denote all k of the projec-
tion maps 7 : R¥ = R2 We could try to figure out
explicitly the conditions for a particular (a,II) to be a
good choice, but there is a simpler argument we can
use, which takes advantage of the fact that our calcula-
tion can be expressed as an algebraic decision tree. A
particular (a,II) must be a good choice if all the query
polynomaals in the decision tree are mon-zero at that
(a,II) (excepting query polynomials which are identi-
cally zero, which can be ignored). This follows because
for such an (a,II), there is an open, connected neighbor-
hood N(a,II) such that all the query polynomials have
the same sign over all of N(a,II) as they do at (a,II).
Thus the algorithms output is that same for all these
choices. But almost all of the points in N(a,II) must
be good choices, since good points are dense. The algo-
rithm must produce the correct output at these points,
hence it produces the correct output at (a,IT).

So it suffices to choose (a,II) to avoid the zero sets
of all the query Polynomials. The query polynomials
have degree d°*) and there are potentially (nd)o(kz).
The union of the zero sets gives us a bad set which is
an algebraic set in the space of possible @ and II values
which has degree (nd)°*"). By Schwartz’s lemma, we
will have probability p of hitting the bad set if we choose
the a;’s and 7;’s randomly with log(p’l(nd)o("z)) bits.
Fixing p, we see that O(k?log(nd)) bits suffice. This
contributes the extra factor of roughly log n to the run-
ning time of the original roadmap algorithm, and gives
a randomized running time of

(n* log n)do(kz) (clogn)(1*9 (16)

for any € > 0.
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7. COMPUTING WITH INFINITESIMALS

This section addresses the practical problems of com-
puting over an infinitesimal extension of the real num-
bers. In the algorithms of [14, 21, 12, 6] and this paper,
various singularities are dealt with by perturbing the
input polynomials with infinitesimals. This moves the
problem away from the singularity, and when done care-
fully preserves the important properties (like connectiv-
ity or non-emptiness) of the input. Computations with
an infinitesimal € are done in the rational field Q(e).
That is, each number a or b in this extension field is a
rational function (a quotient of polynomials) in e. To
perform arithmetic, we use the usual rules for arith-
metic on rational functions. To determine the sign of
such an element, we exclusive-or the signs of its numer-
ator and denominator, which are polynomials in €. To
determine the sign of a polynomial in €, we use the sign
of the lowest degree non-zero coefficient.

But it is very expensive to compute with explicit
rational functions. For example, in the extension
R(p,€,6,p) that we have been using, an element of de-
gree 10 would have several hundred coefficients. But the
sign of the element, which is all we need for the sign-
determination algorithm, is determined by just one of
these coefficients. This element is the lowest degree el-
ement under the lexicographic ordering p <€ <d < p

If we knew that this element was say u*ed?p, we could
find it by computing modulo the ideal (u®,€2,83,p?),
which effectively discards higher-degree terms. Since
we dont know the degree, we would have to do some
search, gradually increasing degree until we obtain a
non-zero term. Rather than doing this repeatedly, we
can obtain the lowest degree term by differentiating a
straight-line program.

7.1. Straight-Line Programs

Suppose we have computed an element a € R from some
other real values b, ... ,b,, via a series of arithmetic op-
erations. For example, such a could be a coefficient of
one of the Sturm query polynomials. We can represent
a as a straight-line program (DAG whose vertices rep-
resent the arithmetic operations) rooted at the values
bi,...,b;m. Now suppose that b; is specialized to the
infinitesimal value ¢, and that the other b; take on in-
teger values. We would like to know the sign of a. For
simplicity we assume that a = a(e€) is a polynomial in
€. This is all we need in our applications.

We could substitute ¢ = 0 and evaluate the straight-
line program over the rationals. If we are lucky, a(0) will
have a non-zero value, and this gives the sign of a(e).
If not, we can construct a straight-line program for the
derivative %. This has roughly double the size of
the original straight-line program. Now evaluating this
program at € = 0 gives us a;, the coefficient of € in a(e).
If this is non-zero, it gives us the sign of a(e), otherwise
we compute the second derivative, and continue. The

extra program for the k! derivative is about k+1 times
the size of the original program, and it uses nodes from
the first k — 1 derivatives. The total program size to
compute the k! derivative is (k;—2) times the original.

This process generalizes easily to multivariate ele-
ments, using randomization. For example, to find the
sign of a(u, €,d) with 4 < € <« J, we first substitute ran-
dom integer values for € and §. With high probability,
this doesnt change the degree of the lowest degree term
in . Then we apply the procedure above to obtain a
straight-line program for the first non-zero derivative
at 4 = 0. Let aa(u,€,8) denote this derivative. Then
aa(0, €, 8) is the lowest-degree coefficient of a in p, times
the constant k,!, where k; is the order of the derivative.

We iterate the process, and set 4 to a random inte-
ger, p to zero, and run the univariate procedure on the
straight-line program for aa as a polynomial in €. This
gives us a straight-line program for the first non-zero
derivative at € = 0, which we denote aaa(y, €, d).

Finally, we run the univariate routine on the straight-
line program aaa with u and € both set to zero. Evalu-
ating the resulting program at u = € = § = 0 gives the
sign of the lexicographically first term, which is what
we need.

Some simple analysis shows that the straight-line pro-
gram for computing the sign when the lowest degree
term is p*1ek28%s is k?k2k? times the original. More
generally we have

PROPOSITION 7.1. Let P(ey,...,€m) be a polyno-
maal, represented as a straight-line program of size L. If
€1 L -+ K €y, are infinitesimals, and if the lezicograph-
ically first term in P is ce*' ... €km  then a straight-line
program for this term can be constructed having size

< Lk?..- k2 | in the same number of steps.

We claim this method is useful in practice because
the k;’s are typically small constants, independent of
the degree of a in pu,e,6. Each infinitesimal is used to
perturb away from a possibly singular input, and the de-
gree in that infinitesimal is a measure of the multiplicity
of the singularity. Where the input is not singular at
all, the degree in that infinitesimal will be zero. Most
of the time, we expect small multiplicities, and the cost
of working over the infinitesimal extension should be
only a small constant factor more than integer arith-
metic, this factor being the increase in the straight-line
program size.

8. CONCLUSIONS

We presented a perturbation method that, given a for-
mula describing a general semi-algebraic set S, produces
a formula defining a set Sy which is compact and regu-
larly stratified by the signs of its defining polynomials.
The connected components of Sy are in one-to-one cor-
respondence with those of S, and “contain” them us-
ing the natural embedding of R in the real closure of
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the extension field defined by some infinitesimals. The
perturbation method uses only a constant number of
infinitesimals in its randomized version (5), and can be
performed with a number of arithmetic sets which is
linear in the size of the original formula.

The perturbation method reduces the calculation
of roadmaps, hence connected components, of gen-
eral semi-algebraic sets to the case of compact, regu-
larly stratified sets. This case was treated earlier in
[3]. The resulting algorithm for general sets has a
running time of (n*logn)d°*")(clogn)(+9) random-
ized, or (n*logn)d®*"c(1+9) deterministic. Similar
algorithms for deciding non-emptiness only of semi-
algebraic sets are presented in [6].

9. APPENDIX: DEPTH COMPRESSION OF
BOOLEAN FORMULAE

Let B(by,...,b,) be a Boolean function that is defined
by an input formula BF. We think of BF as a rooted
binary tree whose leaves are the b;’s. By pushing all
negations through to the inputs, we may assume that
BF contains only V and A. In the worst case, such a
tree with 2n — 1 vertices may have depth very close to
n, which means it may take a long time to determine
the value of the output when one of the input variables
changes.

We show that for any BF, thereis a formula C¥ using
a three-valued (trinary) logic which computes the same
function as B, such that the size of C¥ is O(n) and
its depth is only O(logn). It should be clear that the
time required to compute correct values at all nodes of
an O(logn)-depth formula when a single input changes
is O(logn). We use the trinary formula to determine
whether the curve segments along a silhouette curve
are inside or outside of S in O(logn) time.

The trinary formulae uses three-state logic. Every
vertex may have a value of 0, 1, or X. Certain vertices,
like the leaves and the root, will only ever take on a
value of 0 or 1. The trinary circuit will have V and A
vertices, which work as follows:

1 if eitheraorbisl
aVb = 0 if both inputs are 0 (17)
X otherwise.

0 if eitheraorbisO
aAb = 1 if both inputs are 1 (18)
X otherwise.

There is also an asymmetric function > defined as fol-
lows

a fa=0ora=1
a-b = {b otherwise (19)

For a vertex u in BF, we let D(u) denote the subtree
rooted at u. For two vertices u, v in BF, we use the

notation B (u,v) to denote the subtree D(u) — D(v) +
{v}. Thus v should be a descendent of u.

Our construction is based on recursively constructing
trinary formulae C(u,v). The formula C(u,v) takes as
input all the leaves (b;’s) in the subtree B (u,v), and
outputs the following;:

0 if u = 0 irrespective of the value of v
C(u,v) =< 1 if u=1 irrespective of the value of v
X otherwise
(20)

Assuming we can construct such a formula, we can
then build a trinary formula equivalent to B¥ as follows:
Let r be the root of Bf, and b, be some leaf of BF.
Then the formula we return is Cy(r) = C(r,b;) > b
which is 0-1 valued, and correctly computes B.

Now we construct recursively a low depth C(u,v).
For the base case, if u = v we return X. Otherwise
the tree Bf (u,v) has some number m > 1 of vertices.
In any tree of m vertices there is an edge whose re-
moval splits the tree into two subtrees with between
m/3 and 2m/3 vertices. Let p be the vertex below such
a partitioning edge in B¥ (u,v), and let z be the lowest
common ancestor of p and v. Now there are two cases:

If p = 2z, we recursively compute formulae for C(p, v)
and C(u,p) and we return the formula C(u,p) >
C(p,v).

If p # 2, then let z; be the child of z above p, and
let 2, be the child of z above v. We recursively com-
pute the formulae C(u, z), C(21,p), and C(22,v), and
C1(p). The formula Ci(p) is defined like C;(r) above.
Assuming z to be an V-vertex, we return the formula:

C(u,z) = ((C(21,p) = C1(p)) V C(22,v))  (21)

and a similar formula is computed with A if z is a A-
vertex. Notice that all subformulae are computed from
subtrees of size at most 2/3 of the size of B (u,v).
So the depth of the recursive calculation is at most
O(logn). The depth of the formula increases by a con-
stant amount with each recursion level, so the depth of
Cy(r) is at most O(logn). If we remove the constant
X’s from the formula, all its leaves will be b;’s, and since
it is a tree it will have only O(n) vertices.
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