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A uniform toroidal addressing scheme for k-trees, or spacial data structures, is given. These include

bintrees, for decomposing the line, or partitioning linear arrays; quadtrees, for two-dimensional structures;

octrees, for three dimensions; etc. Reinterpretation of these addresses as hypercube node identifiers affords

simple conceptualization of processor grids of arbitrary Euclidean dimension. Use of gray code produces

a hierarchy of topological neighborhoods reflected in the addresses themselves and, with this, fast multicast
algorithms for various multiple-processor subgroups.
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1. INTRODUCTION

Quadtrees began as hierarchical spacial data structures
which store two-dimensional array, or lattice data [10],
although recently the term has become generic applying
now to any number of dimensions. These structures are
used primarily in image processing and sparse matrix
algorithms [11]. They were first introduced by Hunter
and Steiglitz [6], with Gargantini [3] subsequently
giving a locational code, or tree address, assignment
strategy which associates each node with its position in
the space/array.

In this paper we present a new addressing strategy
and interpret the addresses so defined so as to embed
grids of various dimension in hypercubes [1, 2,4, 9, 12].
Our addressing strategy requires a minimal number of
bits to store [5] and makes use of gray code not only
to characterize the geometry of the plane by preserving
topological neighborhood relationships at each level of
decomposition, but also to directly relate this geometry
to the hypercube neighborhoods.

Reinterpretation of the addresses as hypercube node
id’s gives embeddings of arbitrary dimension and facilit-
ates the development of log p (p processors) multicasts,
i.e. single source broadcasts to ‘subspaces’ of processors.
While all topologically nearest neighbors can be reached
in at most log p steps, half can be reached in one. The
distance and path is determined from the node address
and characterizes the relative positions of the neighbors
in the tree. Our approach generalizes naturally from one
(the bintree) to k dimensions (the k-tree).

In the next sections, methods for assigning tree
addresses and for establishing a correspondence between
these and hypercube node addresses are described,
example multicasts for the one and two dimensional
embeddings are presented, and application sketches are
given.

2. ADDRESSING

The k-tree is a hierarchical spacial data structure used
to represent the discrete k-dimensional grid, or lattice,
with all dimensions of size n, where n=2" and m is the
height of the tree. The root node represents the grid
taken as a whole. It has 2* children corresponding to a
decomposition of the space into 2* subspaces of equal
extent with all sides of length n/2. When k=1, the grid
covers a line segment and the tree is a bintree. The left
and right halves of the line segment correspond to the
left and right children of the root and are labeled 0 and
1. When k=2, the tree is a quadtree, and the nodes
(from left to right) representing the subsquares are
labeled 00, 01, 11, 10 (0 through 3 in gray code, defined
in more detail below), starting at the lower left, and
proceeding in a counterclockwise direction (see Figure 1),
as Karnaugh [7] labeled the circuit simplifying charts
described by Veitch [13]. Gray code labeling here ensures
that neighboring subsquares (and the subspaces in higher
dimensions) differ in at most a single bit at the current
level. When k=3, a octree, subcubes at front and back
are labeled as in the quadtree, with the front cube
addresses prefixed by 0 and back addresses by /. When
k>3, successive dimensions contribute additional digits
to the address on the left in the same way.

This procedure gives a k digit label to each of the
subspaces resulting from a single decomposition. The
decompositions continue until each node (now leaf)
represents a subspace at the resolution limit which is
determined by the number of processors (for compres-
sion, decomposition ends when the subspace is of one
colour or value). These subsequent decompositions con-
catenate substrings of length k on the right to the current
label, giving a label, or address, of length mk.

The labels map to lattice points as follows. We fix the
origin, (xy, ..., x;) =(0, ..., 0), at one of the lattice points
whose neighborhood is of minimum cardinality, i.e. an
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FIGURE 1. Hierarchical decomposition and addressing.

endpoint for the line segment, corner for a square or
cube, etc. As the origin is to the whole space and
corresponds to the root node, so the lattice point is to
that cell corresponding to a particular node of the k-
tree. Some lattice points are associated with more than
one node. In fact, for any interior node of the tree, the
set of leftmost children to the leaf all map to the same
lattice point. For purposes of illustration, we take the
origin to be the leftmost point of the line segment, the
lower left corner of the square, the front lower left corner
of the cube, etc.

The Cartesian coordinates of a lattice point defined
by a k-tree address are now calculated as follows. The
address may be interpreted as the definition of a path,
with step of decreasing length equal to the increasing
resolution of the grid defined at each decomposition.
The path starts at the origin (root), and proceeds to the
node representing the lattice point in [ <m/2 steps.
Summing these steps in each of the k directions gives
the desired coordinates.

In two dimensions (again, refer to Figure 1) an address
defines a path from the origin to the lower left hand
corner of the cell represented by the node. The path step
starts at n/2, and decreases at most to 1 (if the cell is a
unit square of the grid). The coordinates of the point
represented by the cell labeled y;x,y,x,, ..., y;x; (Which

we take to be the lower left cell corner) are then

n

n n
(xs y)= _(xla )’1) + _(x29 y2)+ -t _l(xla yl),
2 4 2

i(xi, yi)’ (1)

I

M-~
N>

i=1

where [ <m/2. Calculation is fast because it can be
performed using only bitwise shift and or operations in
the integers. Formulae for k other than 2 are analogous.

This labeling scheme encodes hierarchical neighbor-
hoods (i.e. neighbors differ in a single bit) among the
cells at various levels of the decomposition. In one
dimension, lattice points whose labels differ in the last
bit only are nearest neighbors at the resolution limit.
Two lattice points differing in a single bit i, for i=1,
..., I—1, occupy the same position in the two neighboring
segments created at the ith decomposition. Likewise, in
two dimensions, each of four squares resulting from a
single decomposition differ from two of their nearest
‘edge’ neighbors (of the four: see Figure 1) in a single
bit. This holds for dimensions greater than two with
appropriate neighborhood expansion. By concatenating
the contributions from subsequent decompositions on
the right, these properties are retained at each resolution
level and establish a series of hierarchical neighborhoods
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FIGURE 2. Gray code tree neighborhoods.

among the grid elements. Same size neighboring spaces
remain neighbors, with finer subdivisions producing
‘hierarchical nearest neighbors’ each at the same position
in the divided spaces. This is illustrated in Figure 2 for
n=064. All levels of nearest neighbors are represented in
the six bit tree address. For example, those at level k
(taking the root as level 0) are addressed by y,x1, ..., yiXx
and y;xy, ..., )X, (with the most local represented by
differences in the last two digits).

The hypercube grid embeddings are induced by simply
interpreting the binary node identifiers as tree addresses
of the desired dimension. Half of the Euclidean neighbors
are of dilation 1. The dilation of the embedding is I,
since the number of links between Euclidean nearest
neighbors varies from 1 to / according to their place in
the hierarchical structure, and records the distance to
their nearest common ancestor in the tree structure.
Reinterpretation of the binary identifiers (for dimensions
k>1) as gray code numerals gives interesting additional
properties.

Gray code is a non-positional number system made

0 000000 4 000110
1000001 5 000111
2 000011 6 000101
3 000010 7 000100

FIGURE 3. Gray code.

up of strings over the alphabet {0, 1} in which any
number differs from its successor/predecessor in only a
single bit. Figure 3 gives the first few gray code values
and their decimal equivalents.

Using Karnaugh maps and an inductive argument on
the length of the code, one can show that conversion
between binary and gray code representations is charac-
terized by

go = bo,
gi=bi- @b, )
bo = go,
bi=2g,Dg:®...Dgi A3)
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for i=1,...,r, where, go,...,& and, by, ..., b, are gray
code and binary strings, respectively, and @ is exclusive
or. It is well known that the gray code numbers from 2"
through 2"*!—1 may be determined by inclusive or 'ing
2" in binary with the gray code for 0 through 2"—1 and
reversing their order [8]. From this it is clear that the
code is a context sensitive language over the alphabet
{0, 1}. In the sense that the succeeding ‘octave’ of gray
codes may be found en-masse from current one, the code
is a parallel number system.

Returning to the tree addresses for k>1, interpreted
as gray code numbers, hierarchical neighborhoods are
intact. However, further, a processor ordering from 0 to
2m"—1=p has been established and each node’s suc-
cessor/predecessor in the ordering is a hypercube nearest
(gray code) neighbor. In hypercube connected computers
this of course means that the processors are directly
connected by a physical link. These neighborhood rela-
tions can be exploited in a variety of ways. The next
section gives a few examples.

3. HYPERCUBE MULTICAST EXAMPLES

The embedded grid for the examples of this section is
two dimensional; the tree a quadtree. We use a Boolean
six-cube to complement the discussion (refer back to
Figure 2). The hypercube has 64 processors with six bit
node addresses. Aside from the root, the quadtree has
three levels giving three hierarchical neighborhoods.
Each processor has six links to neighbors, with two
neighbors at each level of the hierarchy. A processor’s
most local neighbors may or may not be its gray code
successor and predecessor. In the two dimensional grid
each of a cell’'s most local neighbors share with it a
common edge. Node ids, taken as gray code bit strings,
order the processors from 0 to 63.

By an i to p—1 multicast we mean that node i is to
pass a message to all nodes of the hypercube with
id/address greater (in gray code sequence) than i. In
describing the procedures that accomplish the multicast
the following terms will be useful. Forward link designates
a directed link betwen two nodes such that the gray
code of the sender is less than that of the receiver. A
quadrant is one of the p/4 node subsquares created
by the first quadtree decomposition. With p=2%, the
node addresses (processor ids) are of the form
Y1X1V2X2, ..., yiX;. We call y,x; the ith hierarchical group.

Pseudo-code for the first multicast follows.

i to p— 1 multicast
case: Node is source
send message on all forward links.
case: A non-duplicate message is received
relay to neighbor which is successor
to the current node at the same level
on which the sender is predecessor,
relay on all links at levels below
that on which the signal is received,;

if node successor is not among the receivers
and is not the sender, relay to successor.
endif
endcases
end [ to p — 1| multicast

Broadcast of a message from node 0 to all other nodes
is shown in Figure 4. Nodes are labeled with their gray
code and decimal equivalents. Links carry the step
number in which they are active. Source node 0 uses all
six links, sending the message to all of its neighbors,
since all are forward. Other nodes use fewer links,
depending on the link through which they receive the
message. The multicast is completed in six steps (assum-
ing 1 step per local message), or in log p time.

Figure S shows the multicast from an ‘interior’ node.
A broadcast from source node 9 (gray code
Y1X,Y2X2Y3X3=001101) uses the four forward links (of
the possible six). Node 22(011101) receives the message
from 9, so the gray codes differ in the first hierarchical
group (y,x,). The node relays the message to each of its
gray code neighbors in the second and third hierarchical
groups, ie. (23(011100), 17(011001), 21(011111),
25(010101)). It also relays the message to its successor
in the first group, which is 41(111101).

Node 15 is representative of an important class of
relay nodes. It receives a message from its immediate
predecessor and relays it to its successor (16(011000)) in
a non-local neighborhood. These operations fill in the
portion of the grid that would have received messages
originating from nodes below the source, were they
active in the multicast. Other nodes with a similar task
include 11, 35, and 59.

We now show this multicast to be O(log p). First
consider broadcast from 0. Let the number of processors,
p=2%. Node addresses are of the form y;x;y,x5, ..., yiXs.
The proof is by induction on I. For =1, the hypercube
has four processors. Node zero sends to nodes 1 and 3.
Node 1 relays the message to node 2. The broadcast
takes two steps, as required. Assume the hypothesis true
for I =n or p=2%" processors. Node 0, in addition to its
local (in quadrant) messaging, sends its message to the
lower left nodes of quadrants /0 and 0/. In the second
step, the lower left node of quadrant 0/ relays its message
to its counterpart in quadrant //. Once the broadcast
has reached all quadrants, the inductive hypothesis
applies, and the message is relayed within those
quadrants in log p=2n steps. Hence the total number of
steps is 2n+2 and the theorem holds for p=2"*V
Processors.

|

Broadcast from nodes other than zero remains
O(log p), with additional steps required to reach short
sequences of nodes at the beginning of quadrants, corres-
ponding to the nodes in the source quadrant not involved
in the broadcast.

While this multicast is fast, the number of duplicate
messages is high due to the need to fill in the initial
portions of the quadrants above that of the source. This
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FIGURE 4.

is accomplished by including the successor in the receiver
set in each type of relay. The next algorithm remedies
this situation, and introduces row/column broadcasts
which are of general interest.

The basic idea of the second i to p—1 multicast is to
distribute the message to a set of ‘propagating columns’
and to let the column nodes broadcast it to their rows.
Special instructions operate in the quadrant in which
the source resides. We describe general column and row
multicasts first, and then the full i to p—1 multicast.

Clearly, a cube column consists of all those nodes
with fixed x,x, ... x,. Similarly, a cube row consists of
all nodes with fixed y,y,... y. To broadcast to all
nodes of a column, the source node toggles each of the
yj's of its address in turn giving the addresses of |
relay/receiver nodes, sending the message to each. Nodes

i to p—1 multicast with i=0 and p=64.

receiving the message from group o, say, toggle the bits
Yo+1 --- yyin turn, forwarding the message to I — o column
neighbors. All nodes of the column receive the message
in less than log p=2I steps, and there will be no nodes
receiving more than one copy. The row broadcast is
accomplished in the same way, interchanging x;’s and
yj’s.

The i to p—1 multicast uses the row and column
broadcasts and takes exactly log p steps to complete
with at most log p processors receiving exactly one
duplicate message. First, the multicast source, processor
i, sends the message to each of its forward neighbors.
Concatenated to the message is a single bit, call it ‘cs’
for column source. This bit when on (= 1) indicates that
the receiver is to act as a column (sub)source. The cs bit
is set off in all messages to receivers in the source
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FIGURE 5. itop—1 multicast withi=9 and p=64.

column. It is set on in the message to a forward row message (with cs off) to all row neighbors in hierarchical

neighbor in two cases: groups greater than i.
One final complication remains involving row broad-

casters that receive messages with c¢s on, and column
broadcasters. Let s(y;x;) be the two-bit gray code suc-

1. the receiver’s id differs from that of the source in bit
x;, and the source has a column neighbor that is not

forward.wn’h fd d%fferlng in Bit yit 1. I cessor of y;x; (yix;# 10). If the broadcaster received the
2. the receiver’s id differs from the source in bit x,. ) .
message from a node whose ith group is not s(y;x;), and
Nodes receiving the message from a node in the same the node whose ith group is s(yxx;) is the broadcaster’s
column, or from a node in the same row with cs on, are row neighbor, it relays the message to that node with ¢s
column and row broadcasters. If the sender’s address on. This completes the multicast.
differs in hierarchical group i, the message is relayed Notice that the cs bit is set on in the above algorithm
(with cs off) to all column and row neighbors in hierarch- in two situations. Both involve transmission to a pro-
ical groups greater than i. Nodes receiving the message cessor in the same row as the source. The first arises
from a node in the same row with cs off relay the from the presence of processors which would have
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received their messages (in a full row/column multicast)
from nodes with ids preceding that of the source. The
second is needed, even when i=0, to get the message to
the quadrant with id differing from that of the source in
two bits (if there is one). The few duplicate messages
originate here. Figure 6 gives an example of this
multicast.

4. APPLICATIONS

The multicasts described in the last section are represent-
ative of the power of the embeddings defined by the
spatial data structures. The obvious use, that of nearest
neighbor message passing, its straightforward. Below we
give several examples of applications requiring more

complex messaging. Several have been implemented on
a 64-processor nCube.

In a distributed implementation of LU-decomposi-
tion—the motivating force is the development of the
embeddings—the matrix was allocated to processors in
column blocks. The column allocation varied according
to the work required; columns closer to the left side of
the matrix called for fewer computations. Calculated
results were then sent to the right to be used in calculat-
ing entries there. The two-dimensional embedding was
used together with the gray code processor ordering and
the second i to p—1 multicast was responsible for the
message passing. Other methods were tried before the
quadtree messaging was discovered and implemented.
These methods suffered from extreme duplication of

3
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FIGURE 6. ito p—I multicast with i=10 and p=64.
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messages in a forward link strategy, to a crippling single
neighbour ‘bucket brigade’ passing up the line of pro-
cessors (ordered in binary). The problem required a
multicast at each column block to deliver the current
columns’ results to all columns to their right. No other
embedding that we are aware of gives this multicasting
capability.

The tree structure of the embedding in two-dimensions
was exploited in an nCube implementation based on
Wise’s [14] use of quadtrees for matrix inversion by
Gaussian elimination with full pivoting. The matrix was
decomposed in two dimensions into square submatrices
and allocated one to a processor. The tree structure in
two dimensions was used to determine the pivot elements
at each step. Row and column broadcasts brought the
appropriate elements to the processors needing them.
The multicasting advantages discussed above were
exploited here; however, additionally, the presence of the
decomposition tree was used to quickly determine max-
imum elements and thus the pivots.

Image processing and graphics techniques and
applications such as the Hough transform a ray tracing
in two and three dimensions, respectively, are good
candidates for future applications. By covering the space
in straight lines formed from link and processor pairs,
messages may be made to play the role of projection
transformation and light.

Also of interest is the application of the addressing
scheme to hardware memories. Memories in linear arrays
might be decoded via the tree address to produce a
space of any required dimension, with hierarchical
neighborhoods.

5. CONCLUSIONS

We have given a new quadtree addressing scheme, have
demonstrated some of its properties and have indicated
how it can be used to achieve fast broadcast in hypercube
architectures.
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