A New Locally Adaptive Data Compression
Scheme using Multilist Structure

HENRY KER-CHANG CHANG AND SHING-HONG CHEN

Graduate School of Resources Management, National Defense Management College,
PO Box 90046-17, Chung-Ho, Taipei, Taiwan, ROC

A new locally adaptive data compression scheme has been proposed in this paper. The proposed scheme
may be viewed as an extension of the previous work by Bentley et al. in 1986. It is developed by the
application of multilist structure and separate treatments for different types of data. Improving the
overall performance of the method provided by Bentley et al. is its objective. The multilist structure aids
in shortening the length of a transmitted code word and the treatment of numeric data aids in compression
effect improvement. The feasibility of the proposed scheme has been validated by several experimental
results and some theoretic analyses. The availability of various prefix coding methods developed by
Jirnvall have finally been tested here. The incorporation of G1 prefix code in the proposed compression
scheme works well in performance promotion.

Received January 25, 1992, revised January 15, 1993

1. INTRODUCTION

Concerning the communication problem in a computer
network, data compression is important because the cost
of both transmission time and storage space can be
reduced if a compression technique is adopted. These
advantages are particularly obvious to digital commun-
ication while the application of information interchange
on miscellaneous networks has recently become popular.
A locally adaptive data compression scheme based on
the principle of reference of locality has been previously
proposed by Bentley et al. [1]. A word-based compres-
sion scheme is implemented using a self-organizing list
as an auxiliary data structure. Both the sender and
receiver are to maintain lists of identical content. When
the compression process begins to work, the locality of
reference implies that a sequential search over the list of
words is processed so that the frequently appearing
words can always be promptly accessed in the front of
the list and are coded by short integer codes. A procedure
named ‘move-to-front’ (MTF) reorganizes the sequence
for the words in the list as each word is processed. The
reorganization routine is to delete the position for the
currently processing word and move it to the front of
the list. When the current encoding word cannot be
found in the list, the encoding word is to be assigned a
number of one more than the total number of words in
the list and is inserted at the front of the list. The sender
is then to transmit the number followed by that word
to the receiver. The receiver is to know that a new word
is coming as both the number and word are detected.
However, only the number representing the position of
a word in the list is transmitted if the list has already
contained that word. To maintain the word list effici-
ently, two interlinked data structures are used. Bentley
et al. suggest to prefix the binary representation of an
integer i, i>1 with leading |log i|zeros, || representing

the floor function. The prefix of |log i|zeros indicates the
length of a bit string for an integer i and separates the
boundary between coded words. Thus, this treatment
encodes an integer i with 1+2 |log i| bits. A binary trie
is applied to convert words into positional integers and
a binary tree records the order of words in the word list.
The following example cited from Bentley et al. [1] may
illustrate the detailed operations for the sake of com-
pressing a message of small letters separated by single
spaces. The following message is assumed here to be
transmitted

the car on the left hit the car number I left.
The corresponding encoded words will be
1 the 2 car 3 on 34 left 5 hit 356 number 71 5.

Bentley et al. emphasize that the locally adaptive data
compression scheme has many implementation advant-
ages: it is simple, allows fast encoding and decoding, and
requires only one pass over the data to be compressed.
The theoretical analysis of performance has been proved
to never have performed significantly worse than
Huffman coding. In addition, if the message to be
transmitted includes locality of reference, the scheme can
substantially outperform Huffman coding because a
word will have a short encoded word if it is frequently
used and a long encoded word if it is used rarely. Some
experimental results are demonstrated by comparing
three compression algorithms of byte-level Huffman
coding, word-level Huffman coding and the MTF
scheme. The size of the word list for the MTF scheme
is also tested using 8, 16, 32, 64, 128 and 256 words. The
experimental results validate the feasibility of Bentley
et al’s algorithm. It also reveals a fact that the larger
the size of the word list, the better performance the
algorithm can have. However, the authors believe that

THE COMPUTER JOURNAL,

VoL. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

A LocALLY ADAPTIVE COMPRESSION SCHEME 571

this phenomena occurs since the word list structure used
in their scheme will create a problem. Just as the
description in their paper, maintenance of an efficient
word list is somewhat complicated and is hard to
implement. The reorganization of the word list using a
trie structure and the searching over word list are known
to be very complex when being put into comparison
with other routines. In addition, the length of the code
for the integer, representing the position of a word in
the list, is too long since the height of a trie is closely
relevant to the length of the list. Another problem
appears that their method does not have an appropriate
treatment for numeric data. They have the numeric data
encoded in a way similar to text words, each numeric
data has a transmission cost consisting of an extra
positional indicator of 2 |log i| +1 bits and the numeric
data in ASCII format if the numeric data is a new one.
While a general text file probably contains less redundant
numeric data, most of the numeric data would be
encoded as new words and would cause a large increase
in transmission cost using Bentley et al.’s method. Those
factors may dramatically influence the performance. An
appropriate selection of the data structure and considera-
tion of easy implementation may improve the overall
performance. A new locally adaptive data compression
scheme is therefore proposed here.

Jarnvall [3] emphasized how to improve the perform-
ance of the coding scheme previously developed by
Bentley et al. Both the prefix coding method and the
indication of a new symbol have been discussed. Two
new prefix coding techniques have been provided by
him for encoding the list position. Positional integers
are encoded by two approaches which are extended from
the y code and 6, named ‘Delta’ in this paper for
convenience, code developed by Elias [2]. The y code is
exactly the prefix code used by Bentley et al. in which
there are |log i| leading zeros followed by |log i|+1
bits consisting of the binary representation of integer i.
The & code exploits the y code in determining the length
of its codeword. The first part of the codeword 4(i) is
7(|log i|+1) and the rest is the binary representation of
integer i without the leading 1-bit. Let B(i,/) denote using
I-bit for the binary representation of integer i,
0<i<2'—1 (e.g. B(6,5=00110). He designs a general
format of prefix code G,, n > 1, for integer i as

107, ifi=1
1B(i, n+1), ifl<i<(n+1)?),
0""3"""B(i,|log i|+1), ifi?(n+l)2

Gy(i)=

where the standard binary representation of integer i is
B(i,]) and the 0" denotes n consecutive zeros. Another
prefix code D, derived from G, is

D,(i)=G,(|log i|+1)Bg(i,|log i]),

where Bg(i,m) denotes the m rightmost bits of the binary
representation of a positive integer i. He further com-
pares his prefix coding methods with the Fibonacci code
for the sake of finding the advantage of his coding

methods. Each prefix coding has been concluded by him
to be able to be the best in a certain limited range of
integers; a specific prefix coding method does not exist
which outperforms all other methods for any case. He
also selects the usage of 1 byte to indicate the first
appearance of a symbol, instead of using only 1 bit as a
flag previously suggested by Moffat [5]. Since the multi-
list data structure of the proposed scheme has already
induced a shorter length than that for a single list,
finding out what is the best prefix coding method for
positional integers in the proposed scheme therefore
becomes the motivation here. Besides, the 1-bit indicator
for any new symbol in a text is applied in the proposed
data compression scheme.

A new locally adaptive data compression scheme is
proposed in this paper which is developed on the basis
of a multilist data structure and different compression
approaches for both numeric data and punctuation
marks. The motivation for the proposed scheme origin-
ates from the previous work of Bentley et al. [1] The
proposed compression scheme has advantages including
not only the original characteristics of the result of
Bentley et al.’s work, but a higher ratio of data compres-
sion can also be gained. Several experimental tests of
text files, Pascal programs and numeric data validate
the characteristics of the proposed scheme.

The remainder of this paper is organized as follows.
The implementation of the proposed compression
scheme is explained in Section 2. Both the encoding and
decoding algorithms are described. Empirical tests and
theoretic analysis of the proposed scheme are analyzed
in Section 3. The performance is further compared with
those of Bentley et al’s compression techniques. The
observed idea is finally summarized in Section 4 and
proposals for future researches are discussed.

2. THE PROPOSED DATA COMPRESSION
SCHEME

According to the consideration of reducing the cost of
transmission and storage, the proposed compression
scheme emphasizes how to shorten the word list and
how to access the word list efficiently. In addition, we
introduce a treatment for both numeric data and punctu-
ation marks which works well for the promotion of
compression. The proposed scheme shortens the word
list by using a multilist (n-list) structure so that the
position of a specific word in the list can be represented
by an integer which has a shorter bit length in representa-
tion than the one generated by a single word list. The
multilist is searched over through usage of a random
access approach for the sake of considering efficient
access of the word list. Both numeric data and punctu-
ation marks are encoded in a specific list where we apply
the prefix coding method with special indicators for
numeric data to reduce the codes in the original format.

Since the proposed data compression scheme is
designed in a one-pass operation mode, both the sender
and receiver have to synchronously maintain 27 words

THE COMPUTER JOURNAL,

VoL. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

572 H. KER-CHANG AND S.-H. CHEN

lists of an identical content. The sender and the receiver
initially create these empty lists. Twenty-six lists among
them represent word lists of alphanumeric data leading
with characters from ‘a’ to ‘z”. The other list, indexed by
a special code ‘@’, contains punctuation marks, integers,
real numbers and an indicator, integer one, which marks
a new word. The data structure of the 27th list has been
elaborately designed here for the sake of shortening the
bit length of encoded words for non-alphanumeric data
as much as possible and to provide a special treatment
for the new word. The first array of each list is kept
empty for compression process requirements. We apply
the idea suggested by Jarnvall that integer one is used
as an indicator for new words, all positional integers
must be larger than one. In this paper, all data to be
transmitted are assumed to be generated within a prede-
fined domain. In addition, the alphanumeric data and
all non-alphanumeric data, both numeric data and punc-
tuation marks, are treated with different approaches in
the proposed compression scheme. The structure of the
lists may notably vary depending on the scope of prac-
tical applications. The domain of text files is limited here
to use only 26 alphabets, integers, real numbers and
some punctuation marks for the sake of clear explana-
tion. The proposed compression scheme can be easily
tailored to any application. In the following, we describe
the compression approaches for texts, numeric data and
punctuation marks separately.

A one-pass coding scheme is developed in this paper
on the basis of predefined Huffman codes for these
leading 27 characters. The Huffman codes for these 27
characters (Table 1) are generated by the conventional
static Huffman coding technique. A random access
approach is then defined to access each list efficiently
according to the leading character of any word. The
integer representing the position of a word in a specific
list is encoded using the prefix code previously developed
by Jarnvall [3]. When a token of a text file is to be sent,
the sender will access a specific list indexed by the
leading character for determination of the position of
the word in the list. So the lists are organized in a
sequence according the ASCII codes of alphabets from
‘@’ to ‘z’. These lists are chosen randomly using the
leading character in the ASCII format. The sender will
sequentially search the selected word list for the purpose
of finding whether or not the currently processing word
is in that list. The sender will transmit only a Huffman
code for the leading character of the word and an integer
which marks the position of the word in the list.
Otherwise, a Huffman code for a special code ‘@’
followed by the prefix code of integer one and the
original word is sent. The combination of code ‘@’ and
integer one indicates that the following is a new word
and the word has to be inserted into the list. Once the
word is sent or received, it is moved to the front of the
list based upon the principle of referential locality.

The numerical data is processed by different
approaches. A special code 4 will indicate integers.

TABLE 1. Huffman codes for leading characters of word lists
Character Weight Code
a 4 0010
b 4 0011
c 4 0100
d 2 10000
e 2 10001
f 2 10010
g 1 110010
h 2 10011
i 4 0101
j 1 110011
k 1 110100
1 2 10100
m 1 110101
n 2 10101
o 4 0110
p 2 10110
q 1 110110
r 2 10111
s 4 1111
t 4 0111
u 1 110111
v 1 111000
w 2 11000
X 1 111001
y 1 111010
z 1 111011
@ 6 000

When the first integer in the text file appears, the message
consisting of Huffman code ‘@’, the prefix code of integer
one, the Huffman code ‘4 and the prefix code of that
integer is sent to the receiver. The combination of
Huffman code ‘#” and the prefix code of integer one is
the indication of the appearance for the first integer.
Afterward, any integer is encoded by the combination
of Huffman code ‘@’, the prefix code of the position for
code ‘#’ in the 27th list and the prefix code of the integer.
The real number will use another code ‘&’. It will be
encoded in the same way as for integers except for the
integer part and the fraction part of a real number are
separately transformed into corresponding prefix codes.
The decimal point of a real number is omitted in the
proposed coding technique. The Huffman code for ‘&’
followed by these two prefix codes are sent.

Punctuation marks are treated by the same way as it
is for text words except that all punctuation marks are
stored in the 27th list. The combination of Huffman
code ‘@’, the prefix code of integer one and the original
punctuation mark is sent for the new punctuation mark.
It will be encoded by the Huffman code ‘@’ plus the
prefix code of the position in the 27th list.

In summary, the proposed data compression scheme
supports different encoding processes for different types
of data; the whole treatment can be clearly illustrated
by the diagram shown in Figure 1. All procedures and
the coding algorithm for the proposed compression
scheme are shown in the Appendix.

THE COMPUTER JOURNAL,

Vor. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

A LocALLY ADAPTIVE C

OMPRESSION SCHEME 573

No

Alphanumeric e
Yes

L —

word
——

D Y
:
Nonalphanumeric symbol

No

L

Find position L(i)+Pix(p)
from list
Check data ﬁ’m L(@)+Pix(1)+token
type
[Punctuation -
» (L(@)+Pix(1)+token
[Real
ea ““mberl L(@)+Pix(1)+'&' :
Pix(I(R))+Pix(D(R))
Integer, @@)+Pix(1)+'#'+1>ix(1))

Punctuati
Check data y ___ une al.on L(@)+Pix(p)
type

Realln_um»ber L(@)+pix(p)+Pix(I(R))+)

Pix(D(R))

I (L(@)+Pix(p)+Pix(D)

FIGURE 1. Encoding flow chart of the proposed data compression scheme. L(i): list code; Pix(x): Prefix code for an integer x; I(R): integer part

of a real number R; D(R): decimal part of a real number

3. PERFORMANCE EVALUATION AND
COMPARISON

Two data compression techniques have been imple-
mented here for performance comparison in order to
evaluate the performance of the proposed new locally
adaptive data compression scheme and to gain further
insight into its performance. We complete two kinds of
tests. The first one reveals the general function of the
proposed compression scheme for text files consisting of
both alphabetic and numeric data. The second one
concentrates on the superiority of the proposed scheme
for handling numeric data only. Finally, different prefix
coding techniques based upon Jarnvall’s research for
positional integers are also tested in order to find the
availability of one prefix format which is the most
appropriate prefix code for all positional integers. Seven
prefix coding techniques have been tested here in order
to find the best prefix coding technique for the proposed
data compression scheme.

3.1. Empirical Tests

Two different types of test data have been considered
here for the sake of demonstrating the generality of the
proposed compression scheme. The first test data con-
sists of six text files of various sizes ranging from 17 to
33 Kbytes. Another five Pascal programs of sizes over
11 Kbytes were tested in a second experiment. The
arrangement of test data has two reasons. The first
reason is that a difference essentially exists between these
two types of test data. The variation for the content of

R; p: positional integer greater than one; I: integer.

a program is generally less than that for a text file
because the vocabulary of the program is always subject
to a limited domain. The second reason is that an
enlarged size of test data can keep the performance
analysis and comparison more objective. The results of
two compression techniques have been compared here,
including both Bentley et al’s locally adaptive coding
which uses a list of 256 words and the proposed scheme.
The performance comparison is analyzed and measured
in bits according to the memory space needed to encode
the test data. The results of the experiments are listed in
Table 2. The numbers listed in Table 2 reflect all the
encoded bit lengths for all given test data. The compar-

TABLE 2. Comparison of compression results of two different

techniques
Size

Data _— Bentley et al.’s The proposed
type bytes bits method scheme
Text 17027 136216 38494 25275
files 18620 148960 46155 31780
19426 155408 49028 34902
21321 170568 48946 32705
30426 243408 72243 50535
32345 258760 77386 54604
Pascal 11896 95168 38400 37283
programs 12860 102880 42166 41085
14348 114784 46172 45036
15701 125608 50747 48715
16285 130280 52647 51497

THE COMPUTER JOURNAL,

VoL. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

574 H. KER-CHANG AND S.-H. CHEN

136216 148960

FIGURE 2.

isons are also illustrated in Figures 2 and 3. The proposed
compression scheme can be affirmatively confirmed here
from the results of the experiment to have an improve-
ment over the previous work of Bentley et al. for text
file compression. The original objective for improving
the efficiency of Bentley et al.’s compression method has
definitely been achieved. The reasons for performance
improvement can be found from the collected statistical
data shown in Table 3. The relationship between the
required length of the word list for Bentley et al’s
method and the proposed scheme in the running time is
compared in Table 3. As mentioned before, a shorter
word list needs to be used here which can then derive a
shorter bit string to represent a positional integer for
encoding a text word. The length of the word list is
actually dependent on the size of a test file. While the
number of distinct text words increases, the bit string of
a positional integer for encoding a text word proportion-
ally increases. The numbers of distinct words for each
test file are shown in the fourth column of Table 3. There
are 880 different text words for the first test file as an
example. The fifth column of Table 3 lists the number of
text words transmitted for a given test file. All statistic
data in fifth column verify that Bentley et al’s method
needs longer bit strings in encoding text words. Another

155408

60000

95168 102880 114784 125608 130280

FIGURE 3. Performance comparison for Pascal programs. W,
Bentley’s method. @, Proposed method.

170568 243408 258760

Performance comparison for text files. B, Bentley’s method. O, Proposed method.

problem appears that since a fixed-length list of 256 text
words is always less than the total number of different
words, an abnormal case has therefore been found here
that a commonly appearing text word may be repetitively
transmitted as a new word. A general problem to be
found here is that the currently processing word is
exactly the previously deleted word, but it has to be
inserted into the list again. The sixth column of Table 3
lists all the numbers of words retransmitted for each test
file. The influence of those retransmitted words signific-
antly expands the lengths of encoded words. Taking the
number for the first test file as an example, 290 words
have to be retransmitted here although these 290 words
had already been encoded before. A fact may thus be
encountered here that a primitive word is probably
transmitted many times once the list is full. The extra
load of re-encoding these 290 words will induce two
overloads in that both the transmission time and storage
space are increased.

The last two columns of Table 3 list both the maximum
length and the average length among the 27 word lists
for all test files using the compression scheme proposed
here. The maximum length is the length for the longest
word list among the 27 lists to encode a test file and the
average is also computed by dividing the sum of the
length by 27. All the maximum lengths of the 27 lists for
each test file are approximately only half of Bentley et al.’s
technique. The average length is even shorter of approxi-
mately only one-fourth the list size of Bentley et al.’s
technique. The advantages of the proposed compression
scheme are thus two-fold. One is a smaller positional
integer to encode a word; the other is that it will never
retransmit any word. These are the reasons which explain
why the proposed scheme can obtain a better perform-
ance than Bentley et al.’s technique. Once the sizes of test
files are expanded, the proposed compression scheme is
thought to give even better compression results.

To test the superiority of the proposed scheme for
handling numeric data, we take the indices of wholesale
prices from 1983 to 1990 in Taiwan as data to be
compressed. There are five numeric data files of various

THE COMPUTER JOURNAL,

Vor. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

A LocALLY ADAPTIVE COMPRESSION SCHEME 575

TABLE 3. Comparison of length of word list in running time

Bentley et al.’s method

Size The proposed scheme
Data Number of new words repetitive
type bytes bits words transmitted send average length ~ maximum length
Text 17027 136216 880 1170 290 32 98
files 18620 148960 868 1181 313 32 103
19426 155408 809 1168 359 29 80
21321 170568 1044 1487 443 38 117
30426 243408 1264 2032 768 46 136
32345 258760 1292 2144 852 47 139
Pascal 11896 95168 266 268 2 9 21
programs 12860 102880 282 284 2 10 25
14348 114784 294 296 2 10 25
15701 125608 310 312 2 11 26
16285 130280 321 324 3 11 28

sizes. The compressed results are shown in Table 4. It is
obvious that the proposed scheme has about 30% cost
reduction, i.e. it is much better than that for Bentley
et al’s method. It is especially worthy to note that
Bentley et al.’s method has a negative compression effect,
as it can be seen in Table 4. The compression results are
even more expensive than the original file sizes. The
reason is that Bentley et al’s method treats the numeric
data in a way similar to alphabetic data. A numeric data
therefore needs a transmission cost including the original
ASCII code format plus the indicator of the new word.

TABLE 4. Comparison of compressed results for numeric data
using two different techniques

The amount of extra cost increases rapidly if the data
files are of less redundancy.

Finally, seven coding methods have also been tested
here in the proposed data compression scheme for the
sake of finding the availability of various prefix coding
techniques based on the Jirnvall research. These seven
coding techniques include the original Delta prefix code,
G1, G2, G3, D1, D2 and the Fibonacci code. All results
are compared with that of Bentley et al.’s method. Again,
the test data consists of text files and Pascal programs.
All statistical data are listed in Table 5. Figure 4 illus-
trates the compression results for the text files and
Figure 5 depicts the comparison for the Pascal programs.
Not all coding methods proposed by Jarnvall work well
for the test data but the coding method G1 has the best

. Size ’ compression efficiency among them.
F "ience m B"’""iee}; hi)t dal' $ Thes c”;e"'zzse‘i This can be easily found here from the experimental
se . o,
1 Y results. The reason is that there are 94.6% of positional
1 942 7536 7901 5019 integers which are less than nine. This is accordance
2 1135 9080 9891 6133 with the assertion made by Jarnvall that the G1 coding
3 1325 10600 11829 7277 method is especially suitable for integers less than nine.
4 tor4 12912 14829 8983 The prefix coding method designed by Jarnvall is there-
S 1822 14576 17041 10074 R .
fore helpful to the improvement even the multilist struc-
TABLE 5. Comparison of compression results based on various prefix coding formats
Size The proposed scheme with various prefix coding formats
Data Bentley et al.’s
type bytes bits method Delta Gl G2 G3 DI D2 F
Text 17027 136216 38494 25553 24342 25049 28399 24939 28289 26404
files 18620 108960 46155 30853 30143 31231 35368 31427 35564 32952
19426 155408 49028 33785 32822 33948 38420 34468 38940 35985
21321 170568 48946 31937 31429 31915 36159 32118 36362 34061
30426 243408 72243 49341 48028 48904 54183 49338 55614 52016
32345 258760 77386 53336 51787 51364 58076 53207 59913 56145
Pascal 11896 95168 38400 34722 33022 35883 50731 36693 41541 37283
programs 12860 102880 42166 38292 36470 39652 45002 40494 45844 41082
14348 114784 46172 41970 39901 43400 49252 44385 50237 45033
15701 125608 50747 46336 44011 47842 54289 48982 55429 49696
16285 130280 52647 47994 45560 49567 56248 40742 57423 51476
THE COMPUTER JOURNAL, VoL.36, No.6, 1993

20z Mdy 60 uo 1senb Aq £099/€£/0/5/9/9¢/21011E/|Ul0d/W oo dno-olWapede//:sdly Wolj papeojumo(

576 H. KER-CHANG AND S.-H. CHEN

80000

3 — —— Bentley method
700003 /1/ 4
E —A— Delta
600004 :
500005 /J—-""": : / 3__ —— Gl
w0000y == .
300005] —+— G3
20000 3 —y— D1
100003 D2
03 S— F
136216 148960 155408 170568 243408 258760
FIGURE 4. Performance comparison using various prefix coding formats for text files.
60000 -
] %;_—:.:':’—F —— Bentley method
. /
50000: —— %_ —m— Delta
40000 3—i=—- —H A— Gl
30000 —-— G2
] “+— G3
20000+
] —y— D1
10000] : D2
0- S F
95168 102880 114784 125608 130280
FIGURE 5. Performance comparison using various prefix coding formats for Pascal programs.

ture is used. The incorporation of Jarnvall’s prefix coding
method into the proposed multilist data structure can
therefore be naturally confirmed here to induce a signi-
ficant improvement over the data compression scheme
previously developed by Bentley et al.

3.2 Theoretic Analysis and Comparison

We can have two assertions here to demonstrate the
superiority of the proposed scheme. The first one refers
to the advantage of the multilist data structure; the
second refers to the advantage of the proposed treatment
for numeric data. Both our method and Bentley et al.’s
method apply the prefix coding for positional integers,
the positional integers are strongly dependent on the
length of the word list. Since we have 27 lists for the
compression process instead of only one list used in
Bentley et al’s method, let L be the length for the single
list used in Bentley et al.’s method, any positional integer
in a single list would be encoded in 2|log L|+1 bits,
but our method may have an average length of approxi-
mately less than L/27 for all lists, so any positional
integer would use 2|log L/27|+1 bits to encode. The
inequality

2|log L27|+1<2|log L|+1

should always be true when the prefix codes of both two

methods are compared. We should point out that the
proposed scheme takes a constant time in finding a
specific list from these 27 lists and it is irrelevant to the
overall performance. So the inequality definitely reveals
the advantage of the proposed multilist data structure.
Bentley et al. proved that their method has a transmis-
sion cost less than that of static Huffman coding as

Pue(X) <2pu(X) +1,

where pyr(X) is the average number of bits per word
used to compress a text file with MTF scheme and
pu(X) is the same quantity for the static Huffman code.
They assume that the cost of sending the raw words is
ignored and the size of the MTF list equals the number
of different words to be sent. However, the transmission
of a raw word is an important factor for the compression
performance, particularly for the numeric data. Using
the proposed treatment for numeric data, the cost of
sending a new numeric data is 12+2|log X|+1 bits
where we need 3 bits for Huffman code of ‘@’, 1 bit for
integer one, 8 bits for ASCII format of ‘&’ or ‘# and
2|log X |+1 bits for prefix code of the numeric data X;
but 2|log N|+1+8S(X) bits are required for the treat-
ment of Bentley et al.’s method where N is the positional
integer in a list and S(X) is the ASCII format for numeric
data X; 40 bits for a numeric data of five digits as an

THE COMPUTER JOURNAL,

VoLr. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

A LocAaLLY ADAPTIVE COMPRESSION SCHEME 577

example. It would be clear that
12+2|log X|+1<2|log N|+1+8S(X)

where 8S(X) bits for raw words is the dominate factor
if numeric data X is approximately equal to the posi-
tional integer N. This inequality clearly shows that the
proposed treatment of numeric data outperforms the
results of Bentley et al.’s approach.

4. CONCLUSIONS

A new locally adaptive data compression scheme has
been proposed. The usage of a multilist structure has
been applied here with a random access approach to
improve the compression performance from that of
Bentley et al’s work. We also suggest a treatment for
numeric data to further improve the overall performance.
Several experimental results have verified our original
motivation and have validated the feasibility of our
proposed scheme. The reasons for the improvement have
also been explained through means of analyzing the
statistical data collected in the running time. The overall
performance could be improved if the process on the
MTF list can be appropriately handled. The multilist
structure is applied here instead of using only a single
list. The advantage of a shorter encoded word could
therefore be obtained here by reducing the length of a
word list. An advantage of a fast encoding process could
also be obtained since the hashing function of access
time O(1) is used and only a search over a short list is
necessary. Besides, using the prefix coding for numeric
data instead of transmitting it by its primitive ASCII
format is helpful in compression effect promotion. The
proposed data compression scheme has been shown to
be more reliable than other adaptive coding schemes
since the asynchronous problem in one word list will
influence the code words from that list only, the overall
performance will be affected only slightly. The feasibility
of the prefix coding method proposed by Jarnvall has
also been demonstrated here in the proposed data
compression scheme. The G1 prefix coding method was
found from the experimental results to provide a better
compression performance when most of the positional
integers fell in the domain less than nine. The combina-
tion of the multilist structure, separate treatments for
various types of data and the prefix coding technique
has definitely promoted the compression ratio more than
that of Bentley et al’s method. Future research may
focus on the following:

1. How to develop an efficient compression technique
which is error free from the channel noise?

2. Is it helpful to utilize information from the appear-
ances of the words beginning with the same
characters?

3. Can a parallel algorithm be profitable to data com-
pression problem?

REFERENCES

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan and V. K. Wei,
A locally adaptive data compression scheme. Commun.
ACM 29, pp. 320-330 (1986).

[2] P. Elias, Universal codeword sets and representations of
the integers. IEEE Trans. Information Theory, 1T-21
pp. 194-203 (1975).

[3] E. Jarnvall, Fine Turing a Locally Adaptive Data
Compression Scheme. Technical report A-1990-4, Depart
of Computer Science, University of Tampere, Tampere,
Finland (1991).

[4] E. Makinen, On implementing two adaptive data-
compression schemes. The Computer Journal, 32,
pp- 238-240 (1989).

[5] A. Moffat, Word-based text compression. Software Pract.
Experience, 19, pp. 185-198 (1989).

APPENDIX

In this section, we illustrate the encoding and decoding
algorithms of the proposed data compression scheme
using multilist structure. The following procedures define
the major functions to be used in the compression and
decompression processes:

hashf (c): compute the index of the leading character ‘¢’
of a word using hashing function.

position(i, w): compute and return the position for the
word w in the ith word list; the return is zero if the
word w is not in the list.

word(i, p): compute and return the word for the posi-
tional integer p in the ith list.

mtf (i, p): move the word at position p to the front of
the ith list.

mts(i, p): move the word at position p to the second
array of the ith list.

insertf (i, w): insert word w at the front of the ith list.

inserts(i, w): insert word w at the second array of the
ith list.

look up(c): look up the character ¢ from the Huffman
code table and return the corresponding Huffman
code.

en prefix(p): encode an integer p to a prefix binary form.

de prefix(p): decode a prefix binary form of an integer
p to the original format.

decode: read bit strings from the input buffer, look up
from table ¢, and return the corresponding character.

float(fy, f>): merge integer f; and fraction f, to form a
real number.

defloat(w, f1,f>): separate a real number into integer f;
and fraction f,.

The proposed data compression scheme can be imple-
mented as the following programs using C language:

Compress:
{
input w;
if (w is not numeric)
{
if (w is punctuation)
i=hashf(‘@’);
else

THE COMPUTER JOURNAL,

Vor. 36, No.6, 1993

¥20z Iudy 60 uo 1senb Aq $099/£/0.5/9/9¢/8101e/|ulWoo/wod dno-ojwepese//:sdiy wolj papeojumoq

578

H. KER-CHANG AND S.-H. CHEN

}

else

{

i=hashf(w[0]);

p =position(i, w);
if (p>0)

{

}

cl=look up(w[0]);
c2=en prefix(p);
if i=hashf('@"))
mts(i, p);
else
mtf(i, p);
output cl and c2;

else

{

}

cl=look up(hashf(‘@"));
c2=en prefix(l);
if (i=hashf('@"))
inserts(i, w);
else
insertf(i, w);
output cl and c2;
output w in primitive form;

i=hashf('@");
cl=look up(i);
if (w is an integer)

{

}

c="#,
p=position(i, c);
c3=en prefix(w);
if (p>0)
{
c2=en prefix(p);
mits(i, p);
output cl, c2, c3;
}
else
{
c2=en prefix(l);
output cl, c2;

output ‘#' in primitive form,;

output c3;
}

else

{

c="&",

p =position(i, c);
defloat(w, f;, f,);
c3=en prefix(fl);

}
}
;

}

else

{

}

c2=en prefix(l);
output ¢l and c2;
output '&' in primitive form;
output ¢3 and c4;

Decompress:

{

c=decode; i=hashf(c);
fc="@")

{

cl=w[0];
switch cl
{
case '#" read a code word p;
dl=de prefix(p);
inserts(hashf('@'), H#Y,
case ‘&": output dl;
read a code word p;
dl=de prefix(p);
read a code word p;
d2=de prefix(p);
f=float(dl, d2);
inserts(hashf('@’), '&');
output f;
case '‘a’'~'z": insertf(hashf(cl), w);
default: output w;
inserts(thashf('@'), w);
output w;
}
}
else
{
mts(i, d);
w=word(i, 2);
output w;
}
}
else

{

read a code word p;
d=de prefix(p);
if (d=1)

{

read a word from the input buffer in
primitive form,;

read a code word p;

dl=de prefix(p);

c4d=en prefix(f2); mtf(i, d1);
if (p>0) w=word(i, 1);
{ output w;
c2=en prefix(p); }
mts(i, p); }
output cl, c2, c3, and c4;
THE COMPUTER JOURNAL, VoL.36, No.6, 1993

20z Mdy 60 uo 1senb Aq £099/€£/0/5/9/9¢/21011E/|Ul0d/W oo dno-olWapede//:sdly Wolj papeojumo(

