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A new algorithm for finding minimal perfect hash functions (MPHF) is proposed. The algorithm given

three pseudorandom functions hy, h, and h,, searches for a function g such that F(w)=

(ho(w) + g(hy(W)) + g(h,(w))) mod m is a MPHF, where m is a number of input words. The algorithm

involves generation of random bipartite graphs and runs in linear time. The hash function generated is

represented by using 2m + O(1) memory words of log m bits each. The empirical observations show that
the algorithm runs very fast in practice.
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1. INTRODUCTION

Consider a set W of m words each of which is a finite
string of symbols over an ordered alphabet . A hash
function is a function h: W — I that maps the set of words
W into some given interval of integers I, say [0, k — 1],
where k > m. The hash function, given a word, computes
an address (an integer from I) for the storage or retrieval
of that item. The storage area used to store items is
known as a hash table. Words for which the same address
is computed are called synonyms. Due to the existence
of synonyms a situation called collision may arise in
which two words are mapped into the same address.
Several schemes for resolving collisions are known. A
perfect hash function is an injection h: W—1I, where W
and I are sets as defined above, k = m. If k = m, then we
say that h is a minimal perfect hash function MPHF). As
the definition implies, a perfect hash function transforms
each word of W into a unique address in the hash table.
Since no collisions occur each item can be retrieved from
the table in a single probe.

Minimal perfect hash functions are used for memory
efficient storage and fast retrieval of items from a static
set, such as reserved words in programming languages,
command names in operating systems, commonly used
words in natural languages, etc. An overview of perfect
hashing is given in [20, section 3.3.16] and the area is
surveyed in [27].

Various algorithms with different time complexities
have been presented for constructing perfect or minimal
perfect hash functions, including [4-8, 19, 21-23, 34]. In
1985 Sager proposed the mincycle algorithm [32] which
uses graph considerations. The author claimed that the
mincycle algorithm has complexity O(m*). Based on this
algorithm other solutions have been developed
[12,13,16-18, 28].

Adopting the general approach taken by Sager [32],
we present a new algorithm based on random graphs.

We show that the expected time complexity of the
algorithm is practically linear. It requires also a linear
number of memory words to represent the hash function.

2. THE MINCYCLE ALGORITHM

The mincycle algorithm proposed by Sager [32] searches
for the MPHF of the form:

h(w) = (ho(w) + g(h1(W)) + g(h2(w))) mod m

where hy, h; and h, are auxiliary pseudorandom func-
tions, and g is a function, implemented as a lookup
table, whose values are established during the exhaustive
search. The algorithm uses a mapping — ordering —
searching (MOS) approach! in which the construction
of the MPHF is accomplished in three steps. First, the
mapping step transforms a set of words to a set of triples
of integers. The mapping step has to preserve the
‘uniqueness’, i.e. if two words are distinguishable in the
original universe so they have to be in the new one. In
general, this property is hard to achieve, and may require
a significant effort. Second step, ordering, places the
words in a sequential collocation that determines the
precedence in which hash values are assigned to words.
Words are divided into subsets, W, W,, ..., W, such
that Wy =0, W,c W.,, and W, =W, for some k. The
sequence of these subsets is called a tower and each
subset X; = W, — W,_, in the tower is called a level. The
hash values must be assigned to the members of a level
at the same time, since assignment of a hash value to
any of them determines the hash values for all others.
The third step, searching, tries to extend the desired
function h from the domain W;_, to W,. This is the only
step of potentially exponential time complexity, since if
the searching step encounters W, for which h cannot be
extended, it backtracks to earlier subsets, assigns differ-

! This classification was introduced by Fox et al. [16].
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ent hash values to the words of these subsets and tries
again to recompute hash values for successive subsets.
We shall discuss the first two steps of the mincycle
algorithm in more detail. In the mapping step, three
auxiliary pseudorandom functions are defined:

lw]

how)=Iwl+ 30rd(W[j]),

J=1 by

hi(w)= < § ord(w[j])> mod r,

j=1by 2

hy(w) = << . Y X ord(w[j])) mod r> +r.

Integer r is a parameter of the mincycle algorithm. It
determines the size of table g, |g| =2r, containing the
description of the MPHF. Therefore, it is desirable for
g to be as small as possible. Sager chooses r to be the
smallest power of 2 greater than m/3. The functions
defined above convert each word w into a hopefully
unique triple of integers (ho(w), hy(w), h,(w)). When this
condition is not satisfied, the functions hy, h, and h,
must be modified. However, Sager does not provide a
generic method suitable to accomplish such a
modification.

In the ordering step the tower of subsets is constructed.
First, the dependency graph G = (R, E),

R={hi(w)lwe Wiuthy(w)lwe W,
E = {(h;(w), hy(W)|w e W}

for a set of words is built. Each word is associated with
edge e=(h;(w), h,(w)). The dependency graph that is
bipartite and consists of |R| = n = 2r vertices and |E| =m
edges represents constraints among words. Observe that
allocating a place in the hash table for word w requires
selecting the value U(w) = g(h, (w)) + g(h,(w)). There may
exist a sequence of words {wg,, w,,..., w,_,} such that
hywi)=hy(wiry) and  hy(Wis 1) = hy(Wi+ 2ymoar), for
i=10,2,4,...,k—2}. Once words wgy, wq,..., w,_, are
allocated some places in the hash table, both g(h, (w,_,))
and g(h,(w,-)) are set (note that hy(w,_,)=h,(w,_,)
and h,(w,_;)=h,(wy)). Hence, word w,_, cannot be
allocated an arbitrary place, but must be placed in the
hash table at location

h(wi - 1) = (ho(Wi— 1) + U(w, _)) mod m.

In our sequence, the words wqy, wy, ..., w,_, are inde-
pendent, i.e. they have a choice of a place in the hash
table, whereas the word w,_, is dependent, i.e. it has
not such a choice. We shall call these words as canonical
and noncanonical, respectively. It is easy to see that

Ui 1) =g(hy(we— 1)) + glha(wi - 1))
= Y, (=1)PU(w,)

pepath(wy - 1)
where  path(w,_,) is a sequence of words
{wg, Wi, ..., w,_,}, and thus
h(wi— 1) = (ho(Wi—1) + Z (=1)’U(w,)) mod m.

pepath(wy - 1)

If the place h(w,_,) is occupied, a collision arises and
no minimal perfect hash function for selected values of
g can be found. In such a case, the search step executes
backtrack and tries to find different values of g that do
not lead to a collision.

This dependency of words is reflected in the depend-
ency graph by cycles. There may be, and usually are,
many cycles. Each of them corresponds to a sequence
of words similar to the described. The core of Sager’s
heuristic of the ordering step is to find such an order of
words, that words without a choice are processed by the
searching step as soon as possible. The ith level of the
tower, W, i > 1, is equal to W;_, U X;, where W, = ) and
X is a group of words selected by the following method.
Choose an edge (possibly a multiple edge?) lying on a
maximal number of minimal length cycles in the depend-
ency graph. Let X; be all words associated with the
chosen edge. Remove the edge from the graph and merge
its endpoints. Repeat this procedure until all edges are
removed from the dependency graph. The maximal
number of such repetitions is O(m) and an edge lying on
maximal number of cycles of minimum length can be
selected in O(r®) = O(m3) time [32]. Consequently, the
time complexity of the ordering step is O(m*).

The heuristic which gave the name to the whole
algorithm tries to ensure that each time an edge is
selected, it is done in such a way that the maximum
number of dependent words is placed in a tower.
Moreover, because the selected edge not only lies on a
cycle of minimum length but on the maximal number of
such cycles, it ensures that in subsequent steps the
selection will be optimal or at least close to optimal.
For a multiple edge, we select an arbitrary word to be
canonical, and the remaining become noncanonical. A
single edge always corresponds to a canonical word.

Based on experimental results Sager claimed that the
time required to complete the ordering step dominates
over the potentially exponential time of the searching
step. Hence, the algorithm runs in O(m*) time. He gave
no proof of this claim but mentioned a formal proof
which shows that for certain parameters, for which the
running time of the algorithm is O(m®), the ordering step
can always be expected to dominate the searching step.
The experimental evidence shows that although the
mincycle algorithm performs well for sets of size up to
about 500 words, it is impractical for sets larger than
this limit. The reasons are:

1. The running time of the algorithm (O(m*)) is closer
to hours than minutes for sets of more than 500
words, even for fast machines.

2. The memory requirement of the algorithm is very
high. The mincycle algorithm, even when imple-
mented very carefully, needs O(m?) space, with quite
a large constant factor. For example, for relatively

2A multiple edge constitute the words w with identical pairs
(hy(w), hy(w)).
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A LINEAR TIME ALGORITHM FOR FINDING MPHF 581

small sets (up to 700 words) it uses more than 2 MB
of memory.

3. Poor pseudorandom functions, that do not yield
distinct triples when used with sets of several hun-
dred words.

3. THE NEW ALGORITHM

The class of functions we search for is the same as in
Sager’s method. However, by setting the parameter
r=m, ie. n=2m, we keep the size of dependency graphs
to be exactly a linear function of the size of word sets.
Furthermore, the dependency graphs we deal with are
sparse. We shall see that this gives us a very fast searching
step. The new algorithm adopts the MOS approach.

3.1. The Mapping Step

The mapping step computes three tables of random
integer numbers, T,, T; and T,, one for each of the
functions ho, h, and h,. Each table contains a random
number for each position i in the word, and each possible
character at this position. Given a word as the character
string w=a, a, ... a;,, the triple is computed using the
following formulas:

ho(W):<.
h1(W)=(.

h,(w)= (( l_il T, [i, a,-]> mod r> +r,

where i,, = (i + |w| — 1) mod|W|ny) + 1 and W], is the
maximum word length. The values h;(w) and h,(w)
define the dependency graph Go(R, E,), where Yw e W,
R = {h;(w)}Uthy(w)} and Eq = {(h,;(w), h;(w))}. The idea
of using random number tables to find a triple is due to
Fox et al. [17]. We slightly modify their method by
starting to fetch the numbers from the tables at a
position that depends on the word length. This ensures
more even utilization of the table elements and increase
the randomness of dependency graphs that are con-
structed from triples.

While generating the triples it is essential that all of
them are distinct for a given set of words. Let t =mr?
be the size of the universe of triples and assume that the
triples (ho(w), hy(w), h,(w)), we U (U is a universe the
words are chosen from), are random.? Then, the probab-
ility of distinctness for m triples chosen uniformly at
random from ¢t triples is [17]:

pm. 1) = tHt— 1)...t(:_m+ 1) ~exp<_ n21_:>

3The method used to compute the triples implies that there is some
dependency among them. However, owing to the large degree of
randomness introduced by tables Ty, T; and T,, the assumption that
the triples, and thus the m-edged dependency graphs, are generated
uniformly at random should give quite accurate results, especially
since our graphs are sparse.

=

|
To Lipws ai]> mod m,

I
— -

B

T: lim, a,]) mod r,

I
—

Since t = mr? and r = m, we have

1
p(m, t) ~ exp < - »271>

Thus, the probability to get distinct triples goes quickly
to 1 for increasing m.

Consider the time complexity of the mapping step.
The generation of the tables of random numbers takes
time proportional to the maximum length of a word in
the set W times the size of alphabet X. This can be
considered constant for a particular set and a predefined
alphabet. Since the generation of triples needs O(m) time,
the time complexity of the mapping step is O(m).

As we have already mentioned, the table g containing
the description of the MPHF is of size |g|=2r. In
addition to g, in the new algorithm we have to store
also the tables Ty, T, and T,. Hence, since 2r = 2m, we
need 2m + O(1) memory words of logm bits each, to
represent the MPHF. This memory requirement is higher
than Mehlhorn’s lower bound of 1.4427m/log m memory
words [29, 16].

3.2. The Ordering Step

In the ordering step the tower is built. It contains only
the words of W whose hash values depend on each
other. These words correspond to cycles and multiple
edges in the dependency graph. All other words of W
are free, i.e. an arbitrary hash value can be assigned to
each of them. We shall denote the set of free words as
W,. Consequently, after generating the dependency graph
Go, the subgraph G =(R, E) that contains only the
multiple edges and the edges lying on cycles is con-
structed. For this purpose the biconnected components
of G, are found. The edges of the biconnected compon-
ents of size greater than 1 are placed into E. The
algorithm to find biconnected components of G, in
O(|R| + | Eo|) = O(m) steps is well known [1].

Our heuristic for building the tower is much simpler
than the Sager’s. Namely, once the dependency graph G
is constructed, we first put the multiple edges & into the
tower beginning with the edges of highest multiplicity.
These edges are then deleted from G and a set of the
fundamental cycles for the resultant graph G, is found
by using the breadth-first search. The fundamental cycles
are considered in order of increasing length. The edges
of the shortest cycle are put to the tower one at a time.
Each edge is then deleted from all the cycles it lies on,
and the next shortest cycle is considered. While building
the tower we maintain the spanning forest % that
consists of the edges corresponding to the canonical
words in the tower. The forest is used to determine the
paths for non-canonical words (Figure 1).

We now present three lemmas that estimate the
expected total length of cycles, the expected number of
cycles, and the expected number of multiple edges, in a
random bipartite graph. We shall consider the uniform
model of graph evolution [15]. In this model the life of
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F =0
i := 0; —— current level of the tower
for each multiple edge € in G do
add to the tower an arbitrary edge e € £ as canonical word and
the remaining edges of £ as noncanonical words;
delete £ from G by merging the endpoints of £;

1:= i+ 1; —— begin the next level of the tower
F := FUe; —— add e to the forest
end for;

find fundamental cycles in Gy = G — {£} and structure them into heap;
form the sets of cycles members|(e] each edge e in G; belongs to;
while heap not empty do
¢ := del.min(heap); —- take the shortest cycle from the heap
for e in c do
if e is not in the tower then
if there is a path between the end vertices of e in F then
add e to the tower as noncanonical word,;
make path(e) = list of (sign: (+1, =1); t: 1 .. u);
else
=141
add e to the tower as a canonical word;
F:=FUe
end if;
for j in members(e] do
decrease length of cycle[j];

restore the heap; —- move cycle[j] up
end for;
end if;
end for;
end while;
FIGURE 1. Building the tower.

the graph begins as a set of n=2r separate vertices.
Then it evolves by gaining m edges in the following
procedure. At each step we generate an ordered pair
(x, y), where x and y are uniformly distributed between
1 and r, and all r* pairs are equally likely. The nondir-
ected edge x—y is then added to the graph. In this way
we obtain a multigraph, which may have multiple edges.
In addition, we shall take into account the order in
which graphs gain their edges. The total number of
bipartite graphs of n=2r=2m vertices and m edges,
that evolve in the way described above is m?™.

LemMa 3.1. Let C,, denote the number of cycles of
length 2k. Then the expected total length of cycles in the
graph is

m/2
k; 2k E(Cy) = O(/m).

Proof. To build a cycle of length 2k, we select 2k
vertices and connect them with 2k edges in any order.
There are (})* ways to choose 2k vertices out of 2m
vertices of a graph, k!k!/2k ways of connecting them into
a cycle, and (2k)! possible orderings of the edges. The
cycle can be embedded into the structure of the
graph in (,™,)m*™~ 2 ways. Hence, the number of
graphs containing a cycle of length 2k is
(D)7 (K")?/2k)(2k)!( ™1 )m?™ =29 Therefore, the expected

_ L (mm—1)-(m—k+ 1)
2k m*

mm—1)--(m—2k+1)

m2k

Using an asymptotic estimate from Palmer [30, p. 129]
(m); —mm—1)-(m—i+]1)

i i

m m

e—i2/2m —i3/6m2

we approximate the sum with an integral

’iz <m(m— l)~-'-n£m—k-+- 1)>2

k=1

m/2
2 2K E(Cy) =

(m— 2k + 1)

y mm—1)--

2k
m/2
~j _3k2/mdk<fj -z2
1

32~2ﬂ O/m) -

LEmMA 3.2. The expected number of cycles in the
graph is
m/2

Z E(Cy)=0

Proof. We have
m/2 mi2 ] -1 —k+1)\?
¥ - § L (mn= bk )

O(In m).

k=1 k=1 m
mm—1)-m—2k+1)
m2k
~ (5 L - 3k2/m
=1 2k
l[v/m e‘3k2/m m/2 e—3k2/m:l
2=k k=vm+1 k
1 1
S 3pm H g+ Y] (Hump2 — Hym)
lln +L1n = O0(In m) ]
glnm+ oslnm= m).

LEMMA 3.3. Let e; denote the number of multiple
edges of multiplicity j in the graph. Then
lim ) E(e;)=0.
m— o j=3
Proof. The expected number of multiple edges of
multiplicity j is E(e;)=N-p;, where N=m? is the
number of possible places an edge can be inserted in the
graph and p; is the probability that j edges are inserted
in a given place. Since p; is determined by the binomial

number of cycles of length 2k in the graph is distribution
(1) (K!)*/2K) (2K)! (y ™51) m2m=20) m\ (1Y 1\~
E = = —(1==
(Cax) mm Dj i)\N N
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we get

E(e;)= N <T) G)(‘ B @

m\ 1 m 1
S j Njflgﬁmzu—n—j!mj—z

what gives the lemma. O

Consider the time complexity of the whole ordering
step that comprises finding the fundamental cycles and
building the tower. By Lemma 3.3 we can omit the
multiple edges in our analysis. The cost of finding the
fundamental cycles of G, is proportional to the total
length of these cycles. By Lemma 3.1 this length cannot

exceed O(ﬂ). While placing the edges of the funda-
mental cycles in the tower, the following operations are
executed: (i) selecting the shortest cycle in the heap;
(i) finding a path in & between the end vertices of a
non-canonical edge, and making the path list for it;
(iii) restoring the heap. Operation (i) takes time O(v log v),
that by Lemma 3.2 is O(In mlog(ln m)). Finding the
paths for all non-canonical edges in operation (ii)
requires at most O(mlv)=0(ﬁ In m) steps, whereas
making the path lists is done in O(m,)= 0(,/m) steps.
The cost of operation (i) is at most

O(m, logv) = 0(\/;1 log(In m)). All these costs imply that
the time complexity of the ordering step is less than O(m).

3.3. The Searching Step

In the searching step, the following combinatorial prob-
lem is solved: find Uw;)e[0..m—1], i=1,2,...,k,
where k is the height of the tower, such that values
h(w;) = (ho(w;) + U(w;)) mod m for canonical words
W € Y;c’ and h(wj) = (hO(Wj) + Zpcspath(w,»)(_ l)p U(yp))
mod m for non-canonical words w; € W— W, — Y, are all
distinct, i.e. for any w, and w, € W—W,, h(w,) # h(w,).
To find U(w;)s we perform the exhaustive search at every
level X, of the tower. We start with U(w;) =0 for each
canonical word w;, ie. we attempt to locate it at the
position hy(w;) in the hash table. Note that since values
h, are random, we begin to locate all the canonical
words of the tower in a random probe of places. Once
the hash value for the canonical word w; on a given
level of the tower is found, the value of U(w;) is known.
It enables us to compute the hash values for the non-
canonical words at the level. Following [17], we shall
call the set of the hash values of words at a given level
X, of the tower as a pattern of size s =|X;|. Clearly, if
all places defined by the pattern are not occupied, the
task on a given level is done and the next level is
processed. Otherwise, the pattern is moved up the table
modulo m until the place where it fits is found. Except
for the first level of the tower, this search is conducted
for the hash table that is partially filled. Thus, it may
happen that no place for the pattern is found. In such a
case the searching step backtracks to earlier levels,

assigns different hash values for words on these levels,
and then again recomputes the hash values for successive
levels (Figure 2).

The exhaustive search applied here has a potential
worst-case time complexity exponential in the number
of words to be placed in the hash table. However, if this
number is small as compared with the table size, the
search is carried out in the table that is mostly empty
and can be done in linear time.

In our case, the words to be placed in the hash table
during the search correspond to multiple edges and the
edges of fundamental cycles in graph G;. By Lemmas
3.3 and 3.1, as m — oo the number of multiple edges goes
to 0, and the number of edges on fundamental cycles
m, = O(ﬁ). Among the latter, m; — v edges are canon-
ical. They constitute patterns of size 1 and are placed
independently of each other at the positions ho(w). The
other v edges are non-canonical (dependent) and form
patterns of size s > 1. Assuming that i random elements
of the hash table are occupied, the probability of success-
fully placing in one probe a pattern of size s > 1 is:
(")t (m=i)m—i—1) - (m—i—s—1)

S

Ps

S

m m

Since i<my, s<v, m;~./m and v~Inm, we have
lim,,_ . p;=1. Thus, one can neglect the existence of
non-canonical edges. Treating these edges as canonical,
the search can be approximated to a task of placing m,
words (edges) in the hash table of size m using ho(w) as
the primary hash function and the linear probing to
resolve collisions. The expected number of probes to
place a single word in the table containing i words is
[26]:

—— cardW(0 .. k] table contains the cardinalities
—— of subsets Wy, Wy, ..., Wi of the tower
for i in 1 .. k do —— mark “starting point” at each level
h[card W[i — 1]} := virgin;
end for;
for i in 0 .. m — 1 do -~ free all places in the hash table
taken[t] := false;
end for;
1= 1
while i in 1 .. k do
j := cardW[i — 1]; - - the first (canonical) word on level i
if h[j] = virgin then
h[j] := hO[j]; -- find place for canonical word
while taken[h[j]] # false do
h[j] := (h[j] + 1) mod m;
end while;
else
taken[h[j]] := false; - - free the previous place, find the next one
repeat
k[j] := (R[j] + 1) mod m;
until taken[h[j]] = false cor k[j] = hO[j];
if A[j] = AO[j] then
h{j] := virgin; -- no place found
end if;
end if;

FIGURE 2. Searching for the hash values (cor and cand denote the
conditional or and and operations, respectively).
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584 Z.J. CZECH AND B. S. MAJEWSKI

C’~l 1+ LY
) 1—a;

where a; = i/m is the load factor of the hash table which

varies between 0 and (m; — 1)/m = O(I/ﬂ). The total
number of probes to place all m; words is then

my—1 ) m 1 2 N _
i:zo Ci<3 [H(——l—l/ﬁ):l my = 0(/m).

Thus, as m— o0 each word is placed in the hash table
in a constant time, and the search is done in time

0(/m).

Our practical experiments showed that m, is bounded

by %ﬁ (Figure 4), what is two times less than our
theoretical result (Lemma 3.1). Furthermore, v <% 1n m,
and in fact for m= 1000 ... 100 000, v can be treated as
a small constant (Figure 5). For the tables of size
m =100 000 the average number of words to be placed
in the table was 53.66, so the tables were almost empty

if h[j] = virgin then - - no place for canonical word, backtrack
ti=1-1;
free places hcardW[i — 1) + 1] .. h[cardW[i] — 1];
else
Uli] := (k[j] — h0[;]) mod m;
taken(h[j]] := true;
conflict := false;
Ji=7+1
while not conflict cand j < card W[i] do
hli] == (RO[j] + X cparn(s) Ulp-t] X p.sign) mod m;
if taken[h[j]] = false then
taken[h[j]] := true;
Ji=j+1
else
conflict := true;
free places h[cardW[i — 1] + 1] .. h[j — 1];
end if;
end while;
if not conflict then
1 :=1+ 1; —— proceed to the next level
end if;
end if;
end while;
compute h values for free words;

FIGURE 3. Searching for the hash values (continued).

number of edges

indeed when the search for these words was executed.
The column e_src of Table 4 contains the execution time
of the exhaustive search. One can see that the search
time is negligible as compared to the total execution
time of the algorithm.

Once the hash values for m; words are determined,
the hash values for free words are computed (see
Figure 3). It is accomplished by a single pass through
the hash table and locating successive words in empty
places. Clearly, it takes O(m) time. Summing up, the time
complexity of the whole searching step is O(m).

Lastly, using the values U(w;) found during the search,
the table g is calculated. For this purpose the O(n)
algorithm FINDg given in [32] is applied (the algorithm
in [32] has O(n?) time complexity, but a simple change
of the graph representation yields a linear time
algorithm).

We complete this section with an example illustrating
the work of the new algorithm.

Example. Consider the set of the month names,
abbreviated to the first three characters W=
{jan, feb, ..., dec}, |W| = m = 12. Thus, the size of array g
18 |g| = 2r = 2m = 24. Suppose that in the mapping step
the randomly generated contents of tables T, T; and T,
are as shown in Table 1, with the values for unused
letters omitted.

The triples computed for each word are as follows:
ho(jan) = (To[1,5°] + To[2,°a’] + T,[3,'n’])mod m =
(4434 1)mod 12 =8 (the row indices are calculated
from the formula i, =((i+|w|—1)mod |w|,.,)+ I,
cf. Section 3.1), hy(jan)=(T\[1,5]+ T1[2,‘a’] +
Ti[3,'7’]) modr=(6+7+5) mod 12=6, h,(jan)=
(L[L) ]+ TL[2,a 1+ TL[3, 1)) mod r+r=
(B+11+9) mod 12)+12=16, hy(feb)=(11+4+5)
mod 12=8, hy(feb)=(114+7+1)mod 12=7, ..., etc.
The values of the mapping functions for all words are
shown in Table 2.

Since there are no identical triples, the mapping step
is completed. The dependency graph G, = (R, E,) gener-
ated in the mapping step is shown in Figure 6.
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FIGURE 4. The average number of edges in the tower and the average total length of fundamental cycles, m,.
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TABLE 1. The mapping tables

To: (3] b JcJd]e[f[egli[l[mJn olp[r JstJulv]y]
3 1 11 4 5 5 8 8
3 2 4 11| 6 11
5 |10 7 10 1 5 7 2 10| 6
Ti: ] b [cld e f g3 [l ]m[n[ofp[r [sJtJulv]y]
4 7 11 6 9 8 | 10 3
7 3 7 1119 1
1 2 10 11 5 5 8 3 10 1
Ty: (3] b [c]d e [f[g]i L] m][nJolp [r [s[tfulv]y]
6 11 1 8 8 3 8 2
11 2 11 3 8 5
3 {10 9 9 9 11 1 6 111
TABLE 2. The values of the mapping functions jan oct
6 16 4 7
jan feb mar apr may jun jul aug sep oct nov dec
Jul dec feb
hy 8 8 3 4 2 4 1 9 5 0 2 3
hy 6 7 0 9 5 0 6 3 3 4 5 4 jun mar apr
h, 16 15 20 15 18 22 22 20 12 16 19 20 22 0 20 15—9
aug 5 may 18
It contains only one cycle (6, 16, 4, 20,0, 22), i.e. the sep
subgraph G = (R, E) is unicyclic. This cycle is also the 12 3 nov
sole fundamental cycle of G. The words associated with 19

the edges in E,— E constitute the set of free words,
which in our case is W, = { feb, apr, may, aug, sep, nov}.
In the ordering step the single cycle of G is put onto
the heap. Then repeatedly an edge is removed from it
and the length of the cycle is decreased. Obviously, this
does not rearrange anything in the heap. Any edge of
the cycle may become the single noncanonical edge. We

FIGURE 6. The dependency graph G,.

choose edge (6, 16) as the non-canonical. Thus, the tower
of subsets has the following form: X, =90, X, = {jun},
X, ={mar}, X={jul}, X,=/{dec}, Xs=1{oct, jan}. The
path for janis (+5—-4+3+2—1).
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In the searching step, each word w will be placed first
at the position hqy(w). If this position is occupied, a word
is moved to some other, yet unused place of the hash
table. So, jun is placed at address 4, mar at address 3
and jul at address 1. The word dec cannot be placed at
the position hy(dec) =3, as it is occupied by the word
mar. Hence it is moved to position 5. The next word,
oct, is put at location 0. Now, using the path, we compute
the place determined by the former keys for jan: h(jan) =
8+(0—-2+0—0+0)=6. This address is free and the
whole cycle has been placed successfully in the hash
table in a single attempt. The remaining words from the
subset W, are placed in the unused entries of the hash
table. The final positions of the words are
{6,7,3,2,9,4,1,10,11,0, 8, 5}. Once the places for the
words are established, the content of array g is computed
(Table 3).

Now, to calculate the hash table address for, say, may,
we compute hy(may) = (5 + 3 + 6) mod 12 =2, h, (may) =
O+7+1)mod12=5, and hy(may)=(8+11+11)
mod 12)+ 12 =18. Then the hash table address of
may is  (ho(may)+ g(5)+ g(18)) mod 12=(2+ 0+ 7)
mod 12=9. O

4. EXPERIMENTAL RESULTS

The new algorithm was implemented in the C language.
All experiments were carried out on Sun SPARC sta-
tion 2, running under the SunOS™ operating system.
The results are summarized in Table 4. An entry in the
table produced for the algorithm was generated as
follows: for each specified m (number of words) 200
random sets of words were selected. The table entries
represent the averages over these 200 trials. Words were
chosen from 24 692 words in a dictionary. The dictionary
was obtained by removing from the standard Unix
dictionary all words shorter than three characters, longer
than 18 characters or containing characters other than
letters. For each experiment the words were selected
using shuffling [25]. For m > 24 692, artificial sets of
random words were generated. The values of m, map,
ord, e_src, src and total are the number of words, time
for the mapping step, time for the ordering step, time
for the exhaustive search, time for the whole searching
step and total time for the algorithm, respectively. All
times are in seconds.

The experimental results fully back the theoretical
considerations. Also, the time requirements of the new
algorithm are very low. The total execution time grows
approximately linearly with m. A comparison with the
timing results given in [17] reveals that our algorithm

TABLE 3.

TABLE 4. Results of experiments

m map ord e_src sre total
1000 0.058 0.238 0.000 0.023 0.318
2000 0.098 0.282 0.000 0.047 0.427
3000 0.142 0.322 0.000 0.070 0.534
4000 0.183 0.366 0.000 0.091 0.641
5000 0.224 0.409 0.000 0.115 0.747
6000 0.264 0452 0.000 0.140 0.855
7000 0.305 0.495 0.000 0.160 0.960
8000 0.347 0.534 0.000 0.186 1.067
9000 0.392 0.577 0.000 0.209 1.178
10000 0.439 0.619 0.000 0.232 1.290
12000 0.539 0.722 0.000 0.288 1.549
16000 0.697 0.867 0.000 0.374 1.938
20000 0.870 1.027 0.000 0.470 2.367
24000 1.043 1.187 0.000 0.567 2.797
28000 1.365 1.374 0.001 0.666 3.405
32000 1.556 1.544 0.001 0.766 3.866
36000 1.748 1.696 0.001 0.866 4311
40000 1.951 1.866 0.001 0.966 4.783
45000 2.207 2.091 0.000 1.089 5.387
50000 2437 2.260 0.001 1.200 5.897
100000 4.486 4018 0.000 2.405 10.909

is much faster than that given there. For example, their
algorithm took 190.93s to generate a minimal perfect
hash function for 131 072 keys on a Sequent machine.

In the implementation of the algorithm we used an
edge-oriented representation of graphs [14]. This
allowed us to handle edges as concrete objects, repres-
ented by integers, and not as pairs of vertices. Because
of this, the space complexity of the algorithm is linear
in the number of words too, with a very small constant
factor.

5. CONCLUSIONS

The new algorithm for finding minimal perfect hash
functions has been presented. It is based on generation
of random bipartite graphs of n vertices and m edges.
By setting n =2m we obtain sparse graphs, what allows
to find the hash function in linear time. The hash
function generated is represented by using 2m + O(1)
memory words of log m bits each. The empirical observa-
tions show that the algorithm is very fast.

It was shown in [13] that by setting n = (2 + ¢)m, ¢ > 0,
the algorithm we have presented can be converted into
a probabilistic one that does not execute the exhaustive
search. However, since n determines the size of the
description of the MPHF we need more storage to
represent the function generated by this algorithm.

Array g

1314 15 16 17 18 19 20 21 22 23

gi) 0 0 0 1 2 0 O 0 O 11 0 0
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