Book REVIEWS 599

ment of requirements and so on. The list of elements
could of course be adapted to the special requirements
of a given project.

Although I was disappointed that the book was
limited to these two costing techniques, Wellman makes
up for this by presenting a considerable amount of
practical advice about project management, especially
in areas related to cost control. The style is quite down-
to-earth. The chapter on tendering should be required
reading for clients who do not really know what they
want until the contractor tells them what they are going
to get.

MIKE FIELD

THE RAISE LANGUAGE GROUP
RAISE Specification Language. Prentice Hall. 0-13-
752833-7. £24.95

I like this book. It is about a formal method which
draws on the strengths of the established methods (like
VDM) and avoids some of their weaknesses. The book
presents its subject matter in a straightforward, practical
way. It does not try to be obscure nor to impress the
reader with the cleverness of the ideas it describes.
However, I have my doubts about its place in the BCS
Practitioner Series: these doubts are as much because of
my assumptions about the background of BCS ‘practi-
tioners’, and how much time they might have to read a
book like this, as because of the approach of this book.

Let me clarify the assumptions before discussing the
book. When I see the series title BCS Practitioner Series,
I think of busy software professionals and their man-
agers. They are under pressure, dealing with new hard-
ware and software technologies and with innovative
developments. They are constantly under pressure but
are acutely aware of their need to keep up with their
subject—and the subject formal methods is one which
frequently bothers them; new graduates keep mentioning
them in their job applications and documents from
government agencies frequently assume the need for
them. So, when browsing the formal methods books, the
RAISE Specification Language looks interesting: it does
not have ‘formal’ in the title, when rifling through the
pages, it appears to have fewer mathematical symbols
than neighbouring VDM or Z books, and looking at
the first chapter, the specifications look like programs
and are presented in a pacey style.

For me, these apparent pluses turn out to be
minuses—not big minuses, but minuses nonetheless. The
book promises a tutorial part, a reference part, and
extensive appendices. Here is the rub. The ‘tutorial’ is a
fast run-through of most parts of the RAISE language—
basic concepts, built-in types, products, bindings, func-
tions, sets, etc. Unfortunately, for the ‘practitioner’ it
does not take time to carefully relate these concepts to
practical (traditional) software development. It is left to
the busy practitioner to work out how these specification

techniques can be used. In fairness to the authors, that
is all that is promised on the back cover of the book.
But more is needed, and more is expected when the term
‘tutorial’ is used in the first chapter where the structure
of the book is described.

As a reference book for the RAISE specification
language (RSL) the book is excellent—this is expected
as the authors are the RAISE language group. The
‘tutorial’ gives syntax and examples of all structures.
Initially these are given top-down; later more complex
constructs for concurrency and information hiding are
described. The ‘reference’ part deals with expressions,
naming and binding in depth. Finally, quick reference
syntax and lexical definitions are given.

To sum up: if you are a practising software engineer,
or a manager of software engineers, who has not yet
encountered decent explanations of how a mathematical
approach to specification and design relates to tradi-
tional software development, you would be well-advised
to read an easy-going introduction to formal methods
(which probably uses VDM or Z) before reading this
book. If you do that, you will certainly benefit from a
clear practical reference book for the Raise Specification
Language. On the other hand, if you already ‘into’
formal methods, this is an excellent source for RAISE.

M. WOODMAN

RUSSEL WINDER
Developing C + + Software, 2nd edn. John Wiley. 0-471-
83610-3. £19.95.

C+ + is becoming the language of choice for a large
group of problem solvers. It is not surprising that C+ +
texts abound in the market. Winder provides us with a
good one, and reasonably priced, as well. It reflects the
richness of C+ +, and teaches that language, not a
jumped up C. One small example: the struct construc-
tion, while it exists in C+ +, is not mentioned, as class
handles the same notion.

This is a text written in the first person, not a reference.
To be precise, it reads as if it were a set of lecture notes
(as indeed Winder states). This has its disadvantages. It
is a very linear book. Even with the use of the index, it
is hard to find expositions of a particular language
aspect without a lot of reading. Winder is forced to use
concepts without prior explanation. As an example,
enum is used on page 123, in classes, but not properly
introduced until page 140. Sometimes such an ordering
is unavoidable, but enum is a useful scalar concept in
its own right. Another is the quick introduction of ADT’s
on page 9, which are used for the first time in classes on
page 123. On the other hand, the notion of friend is
introduced in section 8.4 with classes, where it confuses.
It is not needed until inheritance, where Winder deals
with it well.

The book displays the context in which it was written,
this being a course for conversion MSc students and for

THE COMPUTER JOURNAL,

VoL. 36, No.6, 1993

¥202 Iudy 60 uo 1senb Ag 1899/ £/665/9/9¢/8101E/|UlWoo/Wo2 dno-ojwepese//:sdiy wolj papeojumoq



600 Book REVIEWS

first year students whose first language was Miranda.
Some of the reasoning necessary for good programming
might have come from the Miranda course, which is all
to the good. However, perhaps that is the reason for the
sudden and unexplained appearance of V on page 96.
Given the right context, I would have liked more such
specification. Unfortunately, one cannot assume that
context.

Each chapter is introduced well. It would help to have
a summary of the notions he deals with at the end of
each chapter, particularly in so very linear a book.

Two major developmental notions are introduced and
then dropped. I agree that Design Structure Diagrams
can be a useful tool. Winder’s treatment in the chapter
on Sequence, Decision Making and Iteration is very
lucid. The technique should have been used in later
chapters as well. He introduces complexity at the end of
that chapter, and again, does not use it in the rest of
the book.

There are some minor points. On page 104, Winder
uses the fact that the && operator, unlike most operators,
defines its order of evaluation; a note that this is
dangerous is buried on the bottom of page 105. The
functions on page 129 should return void. Chapter 11,
Dynamic Data Types, is too long (as Winder states).
Perhaps he could insert a separate chapter with the
extended example.

The book has a very good set of exercises. It could
do with a few more. They are scattered through the text,
elucidating the idea at that point in the text. They are
all answered in the back of the book. I also particularly
appreciated the very good annotated bibliography. The
annotations have clearly been coded. It is easy to see
which of the entries Winder dislikes.

This is a good text that will appeal to serious begin-
ners. It will help them travel well down both the roads
of software development and C+ + technique.

DAvID LYONS
Essex

P. K. McBRIDE

C CLEARLY: An Introduction to C Programming.
Blackwell Scientific, Oxford. 0-632-03395-9. £14.99
(Paper).

The rubric on the cover indicates that this book is
suitable both for the ‘absolute beginner’ and for people
‘experienced in other languages’. I felt that a novice
programmer would quickly be lost and that a significant
background in programming is essential to understand
the book fully.

All aspects of C are covered in no more than 200
pages and the style is very concentrated. The text is
liberally sprinkled with interesting examples, most of
which are of technical interest to computer scientists,
and topics such as sorting arrays and implementing
stack and trees are covered. The examples are clear and

easy to follow, though an unusually small font was
chosen for the segments of code and for that reason I
found it tiring to read.

The book commences with a discussion of simple
programs with rudimentary input and output, building
on this to introduce conditional expressions and loops.
Functions are then discussed, followed by complex data
structures. The author then returns to the topics intro-
duced previously and discusses them in greater detail.
Pointers and strings are covered last, and this part of
the text I found quite hard. However, several sizable
programs are included which, although themselves mod-
erately complex, are well set out and straightforward
to follow.

In the first appendix, a list of the standard library of
C predefined procedures and functions is provided.
Where appropriate, a back reference is made to where
they were introduced earlier in the book. In two further
appendices general rules and hints are given for translat-
ing programs written in Pascal or BASIC to C.

I felt that too much material was compressed into too
small a book. If you have programmed in Pascal or
Basic, then this book will help you to convert to C
quickly; if you have never programmed before, it is
probably not a suitable first text. Nonetheless, it is
reasonably priced and good value.

M. S. Joy
Warwick

DoN LIBES
Obfuscated C and Other Mysteries. Wiley, New York.
0-471-57805-3. US $39.95 (Paper).

Over several years a competition has been held annually
called the ‘Obfuscated C Code Contest’. The purpose is
for competitors to write programs in C whose function
is as obscure as possible to someone reading the source
code for the program. This has produced many programs
which are extremely difficult to decipher, even for the
most experienced C programmer.

This book documents the ‘winning’ entries for the
competitions from 1984 up to 1991, and discusses each
in detail. Without exception, each is fascinating and will
keep the reader spellbound for hours as they first attempt
to work out what it does, and then read the explanation
provided. However, this book is not just for fun! The
examples from the competitions are used to illustrate
and to introduce many serious C programming tech-
niques, such as using pointers to functions or trapping
signals.

At 400 pages the book is big and not cheap, but is
worth every penny, and comes equipped with a disc (for
a PC) containing the programs listed in the book. If you
program in C at all, you will thoroughly enjoy this
book. If you are an expert C programmer, you will be
fascinated by the variety of abuses of the language. If
you value the good programming techniques espoused

THE COMPUTER JOURNAL,

VoLr. 36, No.6, 1993

20z I1dy 60 uo 3senb Aq 899/ £/665/9/9€/0I011E/|UlWOD/Woo"dNO"0lWepEDdE//:SdRY WOl PSPEOJUMOC





