Application of a Finite-State Model to Text
Compression

JUKKA TEUHOLA AND TiMO RAITA

Department of Computer Science, University of Turku, Lemminkdisenkatu 14 A, SF-20520 Turku,
Finland

The bit-oriented finite-state model applied in Dynamic Markov Compression (DMC [5]) is here
generalized to a larger alphabet. The finite-state machine is built adaptively during compression, by
applying two types of modifications to the machine structure: state cloning and shortcut creation. The
machine size is kept tolerable by an escape transition mechanism. Similar to DMC, the new method is
combined with arithmetic coding, based on the maintained transition frequencies. The experiments show
that the new approach produces notably better compression gains for different sorts of texts in natural
and formal languages. In some cases the results are better than for any compression technique found in
the literature.

Received January 12, 1993, revised June 21, 1993

1. INTRODUCTION

Homogeneous sequences of independent symbols can be
encoded optimally using either Huffman coding [7], if
distinct codes are required for the symbols, or arithmetic
coding [11, 12], if decodability is the only condition. The
latter gets arbitrarily close to the information-theoretic
lower bound (entropy) when the length of the sequence
increases. The same holds for Huffman coding, if suffi-
ciently large symbol groups are taken as coding units.

The independence assumption is hardly ever valid for
textual data. The dependencies are strongest between
neighbouring characters, but may extend even over
30 characters in a typical English text [6]. Non-contigu-
ous syntactic dependencies may reach even longer,
especially in formal languages, but such dependencies
will not be considered here. A typical way of describing
the dependencies between consecutive symbols is a
Markov model. We can imagine that the symbols are
generated one by one, and the distribution of the next
symbol is determined (‘predicted’) by a few previous
ones. ‘A few’ means the order of the model, which can
be variable, but usually limited. Arithmetic coding is
typically used as the final step in compression because,
in addition to being optimal, it is well suited for adaptive
application.

Various Markov-based compression methods have
been proposed in the literature (for surveys, see e.g.
[1, 2,8, 13, 14]). Almost all of them are adaptive, i.e. they
make only one pass over the text and gradually refine
the model. The same model can be built during decoding,
because at each step the model is based on the substring
that has already been processed. One of the best predict-
ive methods was presented by Cleary and Witten in [4].
They applied a variable-order model where each coding
step starts with a large context (maximum-sized predic-
tion block), which is then reduced, if the context does

not predict the symbol to be encoded. When a successful
context is found, its successor distribution is applied in
the actual (arithmetic) coding. The reduction is called
an ‘escape’ and estimating the escape probability is one
of the critical points in the method. After each step, the
prediction information related to the context is updated.

Cleary and Witten gather prediction blocks of variable
lengths (plus the related distributions), which can be
stored, e.g. in a trie. A quite different approach is to
apply a finite-state machine (FSM) to implement the
finite-context model. The machine consists of a set of
states and symbol-labeled transitions from state to state
with known (estimated) transition probabilities for each
state. For a given state, all outgoing transition labels
are distinct. A source sequence determines a unique path
through the machine, so that each symbol determines
the next transition. Arithmetic coding, based on the
transition probabilities, complements the process. The
machine can be made adaptive, so that at any step states
and transitions may be added, in addition to updating
the transition probabilities.

Finite-state models are potentially more powerful than
finite-context models. The other advantage is speed—
the machine is simple and processing a source sequence
means just following the proper transitions. A very
successful implementation, called Dynamic Markov
Compression (DMC), was presented by Cormack and
Horspool [5]. Their source alphabet was binary; charac-
ter data was handled bitwise by using a suitable initial
configuration for the machine. The problem with larger
alphabets is that there should exist a path for any source
sequence. Thus, all states should be equipped with
transitions for all symbols, making the machine very
space-consuming, and its building rather slow. We cite
here Bell et al. [2]:

In principle, there is no reason why a symbol-oriented

THE COMPUTER JOURNAL,

VoL.36, No.7, 1993

20z Uoie g1 uo ysenb Aq £982/¢/209/./9¢/2101E/|ulwod/Wwod dno-ojwapede//:sdpy woly papeojumod

608 J. TEUHOLA AND T. RAITA

version of the method should not be used. It is just that
in practice, symbol-oriented models of this type tend to
be rather greedy in their use of storage, unless a
sophisticated data structure is used.

This challenge has not been widely accepted in the literat-
ure. Revuz and Zipstein [10] present one application of
a FSM specialized in finding and compressing words of
a natural language text. We shall attack the problem in a
way that is more faithful to the original DMC technique,
without presumptions of the source type.

The rest of this article is organized as follows. The
DMC method is described and discussed in Section 2.
Section 3 then introduces the generalization to larger
alphabets. The details of the actual coding are explained
in Section 4. The experimental results, indicating notable
improvement compared to DMC, are reported in
Section 5, followed by a discussion. Due to the heuristic
nature of all these kinds of methods, an analysis of the
compression gain is extremely difficult and usually omit-
ted in the literature—this paper is no exception.

2. THE BIT-ORIENTED TECHNIQUE (DMC)

As mentioned, DMC is tailored to binary data. Each state
of the FSM may have any number of incoming trans-
itions, but precisely two outgoing transitions, labelled 0
and 1. The compression starts with an initial model,
which in its simplest form consists of only one state and
two transitions (one for each symbol) leading to the state
itself. Figure 1 shows another initial model, resulting in
a sounder machine configuration (see below). Other more
complex initial models may be used, e.g. for bitwise hand-
ling of symbols from a non-binary alphabet, see [5].

In the following we shall denote states by symbols
S05 815 -++s Siy ..., and a transition from s; to s; by the
expression (s;, s;). At most one transition can exist from
s; to s; for any i, j. The transition label (0 or 1) is marked
beside the transition, where necessary.

DMC uses two techniques to adapt the model to the
actual data. First, frequency counts are maintained for
transitions. This information is fed to the arithmetic
coder when leaving a state along some transition. The
second technique, called cloning, creates a copy (s;) of
an existing state (s;), on the basis of a transition (s;, si),
see Figure 2. Transition (s;, s;) is redirected to s, and
copies of the two outgoing transitions, (s, S,,) and (s, S,),
are created for s;. Part of the transition counts of (s, s,,)
and (s, s,) are given to (s;, s,,) and (s, s,), respectively,

e 1

0

FIGURE 1. A sample initial model of a binary FSM.

in proportion to the counts of (s;, s,) and other trans-
itions leading to s,.

The logical effect of cloning is an increase of context.
If several transitions lead to state s, then, after reaching
s, the process forgets where it came from, i.e. the specific
context is lost. Since different predecessors usually imply
different distributions of successors, it is reasonable to
give a high-traffic transition its own set of successors,
which in time is adapted to approach the more precise
successor distribution of just that particular transition.

Two properties of the machine should be observed.
First, for each state, all incoming transitions have ident-
ical labels (either 0 or 1). This condition holds for the
initial model of Figure 1. Thus the label could as well
be attached to the state itself. Second, the transition
counts obey the so called Kirchhoff’s Law, i.e. for each
node, the sum of incoming counts equals the sum of
outgoing counts. This property will be further discussed
in the context of the new method.

The key question in DMC is, when to clone. A
transition should have a sufficiently high count (C1), in
order to deserve its own set of successors. However, if
the transition is (almost) the only one actually used to
enter the state in question, cloning does not pay off. So,
another threshold value (C2) is required for the sum of
other incoming transition counts. Cormack and
Horspool [5] have experimentally found that the best
results are obtained with as small threshold values as
Cl = C2 = 2. The interpretation is that it is advantageous
to extend the contexts very rapidly, at the cost of
imprecision in successor distributions. Unfortunately,
this also means that the model grows quickly: for an
input of about 100 Kbytes, the graph size was about
150,000 nodes and the number of transitions twice as
much. The simplest way to restrict the model size is to
stop cloning at some point. Thereafter, the maintenance
of frequency counts is the only way to adapt the model.

Although finite-state machines are in principle more
powerful tools than variable-order Markov models,
DMC is not. Bell and Moffat [3] showed that DMC
can generate only Finite Context Automata (FCA), which
are in fact equivalent to variable-order Markov models.
This implies that DMC cannot be more powerful than
the Markov-based methods, which has been confirmed
also by the experiments. We are not going to step out
of FCAs, either, but just device an effective generalization
of DMC for larger source alphabets.

3. THE GENERALIZED MACHINE

From now on, the new compression method will be
called GDMC (Generalized DMC). Just like DMC, also
GDMC builds a FSM dynamically, starting from an
initial model. The transitions are labelled by symbols
from the general (e.g. ASCII) alphabet. A set of trans-
itions sharing the same source state is called a fanset. If
no confusion arises, also the set of related symbols
(labels) is called a fanset. In what follows, Freq(s;, s;)

THE COMPUTER JOURNAL,

VoL.36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

APPLICATION OF A FINITE-STATE MODEL TO TEXT COMPRESSION 609

O

] —

FIGURE 2. Anexample of cloning a state in DMC.

denotes the frequency of transition (s;, s;), and Fsum(s)
the sum of frequencies of the transitions in the fanset of s.

The problem incurred by a large alphabet is 2-fold.
First, since any input string must be accepted by the
machine, all symbols must be represented in each fanset,
consuming a lot of memory. Second, the distribution of
symbols in a fanset is difficult to estimate, because most
of the symbols will never actually occur after a certain
state. Yet, all transitions must be assigned a non-zero
frequency, to ensure the correct functioning of arith-
metic coding.

For solving the problem, we adopt the well-known
escape mechanism, cf. [4]. Each state is followed by a
few (possibly zero) actual symbol transitions, and an
escape transition, representing the rest of the alphabet.
This reduces the number of transitions considerably, but
estimating the escape frequency must still be solved. A
simple solution is to maintain it in the same way as the
actual transition frequencies (as if the escape were a
symbol in the alphabet).

The initial model consists of the initial state s,, plus
transitions and states for all symbols of the alphabet,
see Figure 3. Escapes lead back to sy, but s, needs no
escape transition. All transitions are assigned the fre-
quency 1. An even simpler model would consist of s,
and transitions for each symbol, leading from s, to itself.
However, this model contradicts the following two prop-
erties that we want to maintain:

FIGURE 3. The initial configuration of the FSM.

® Only one transition may exist from s; to s;, for any i, j.
® Each state is entered with identically labelled trans-
itions and/or escapes.

Actually, the second property implies the first one,
because all transitions leaving a state have different
labels.

Two structure-modifying operations are applied
during the dynamic building of the finite-state machine:

1. Cloning a state s, (see Figure 4a), based on an
incoming transition (s;, s;), is even simpler than in
DMC: a new state s; is created, and (s;, ;) is redirected
to it. An escape transition is set from s; to s,. Note
that the new machine is functionally equivalent to
the old one. The advantages of cloning will be sub-
stantiated only after applications of the second type
of operation.

2. A shortcut is a new transition ((s, s,,) in Figure 4b)
that bypasses a combination of an escape (s, s;) and
an actual transition (s, s,), representing the input
symbol (‘b’). When ‘b’ occurs the next time in state
sk, the shortcut is taken, instead of the escape. The
set of symbols represented by the escape is thus
reduced. The combination of cloning and shortcut
creation has the effect of increasing the context—the
encoding of ‘b’ now depends on the path traversed
(leading to either s, or s;). When creating a shortcut,
some frequencies should be updated, but the best
policy is not obvious. The discussion on this question
is deferred to the next section.

Now we should decide, when to clone and when to
make a shortcut. In cloning we adopt only one of the
two criteria used in DMC: the target state s; of a non-
escape transition (s;,s;) is cloned, if the difference
Fsum(s;) — Freq(s;, s;) exceeds the threshold value CC
(‘Cloning Constant’). In our experiments, the first cloning
condition in DMC, i.e. a threshold value for Freq(s;, s;),
was found to impair the compression result! The inter-
pretation is that the optimal threshold value is one,
setting no restriction to cloning. The tradeoff between
compression gain and main memory demand (during
processing) can be sufficiently tuned by the value of
CC only.

A shortcut is created always when an escape is fol-
lowed by a non-escape transition. This is useful, because
as soon as we get one evidence of a successor symbol
for a state, we should record it—otherwise the informa-

THE COMPUTER JOURNAL,

VoL.36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

610 J. TEUHOLA AND T. RAITA

PN

FIGURE 4. Extension operations on the machine: (a) cloning and (b) creating a shortcut.

tion gets lost. Often we have to take several escape
transitions in succession, before the current symbol is
found among the actual transitions. For the transition
chain (s,, Sp+1), -.» (S4-15 Sg)s (54, 5,) in Figure 5, only the
last escape is bypassed by the new shortcut (s,_;, s,).
This rule has been set for practical reasons. The other
two alternatives would have been the following:

® Create the direct shortcut (s, s,). This seems the most
obvious solution, but empirical observations do not
support it. Moreover, it would make the application
of the exclusion principle (cf. next section) more
difficult.

® Create all shortcuts (s,, s,), ..., (s,-1, 5,) on the escape

ESC N ESC

path. This would, in addition to waste memory, be
too hasty: Traversing a long escape chain is an
indication of an unfrequent symbol (in the current
context); otherwise shortcuts would have been created
before. Thus it is unwise to create transitions that
will probably never be used. Moreover, we have no
ground to estimate their frequencies.

Of course, when traversing the same path anew, the next
shortcut (s, _,, s,) is created, etc. Note also that travers-
ing a plain escape chain (with otherwise empty fansets)
costs nothing, in view of compression.

Cloning and shortcut creation are the only operations
on the structure of the machine. It is difficult to imagine,

ESC__ 1 O\ESC

O

FIGURES.

gx g\

An escape chain.

THE COMPUTER JOURNAL,

Vor. 36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

APPLICATION OF A FINITE-STATE MODEL TO TEXT COMPRESSION 611

what the graph will look like after a large number of
operations, but the following interpretation can be given.
Taking an escape transition means reducing the context
and enlarging the fanset. This results from the shortcut
policy: For two states, s; and s;, with fansets f; and f7},
respectively, and an escape from s; to s;, it holds that
fi< f;. We shall take advantage of this property in the
coding method. Several escapes can be followed in a
sequence, possibly up to the initial state s,, which
represents the null context, and has the whole alphabet
as its fanset. There exists an escape path to s, from each
state of the machine. The length of this path represents
the (minimal) order of the Markov model at the current
state. The order of the initial state s is zero, i.e. it carries
no context.

Compared with the original DMC, we can say that
GDMC is lazy in creating new transitions. DMC imme-
diately connects the clone to all the targets of the original
state, whereas GDMC does it one by one, according to
the need. This observation is also a sufficient proof for
the fact that, like DMC, also GDMC generates only
Finite-Context Automata [3].

4. THE CODING PROCESS

The compression of a source string is accomplished by
starting from s, and following the transitions one by
one, according to the source symbols. At each state, the
encoding is based on the frequencies of possible symbols
in the fanset. For the purposes of arithmetic coding, we
must define some (e.g. alphabetic) order within the
symbols, say, {a;, ..., G, ..., 4, }, of which a, is the current
source symbol and a,, is the escape. Three values are
transmitted to the arithmetic encoder: T¥Z! Freq(a;),
Tk_, Freq(a;) and Z™, Freq(a;). The details of arith-
metic coding are skipped here—a lucid implementation
is given in [15].

In some cases we can exclude some transitions from
a fanset. If, after visiting state s;, an escape is made to
s;, we know that the current symbol is not within the
fanset f; of s;. So we can exclude the related symbols
from the fanset f; of s;. (Here f; and f; represent symbols
in the fanset.) This so called exclusion principle (see [2])
is based on the above mentioned property: f; < f;. The
general case is illustrated in Figure 5, where the states
Sp»--»Sq have fansets f,,...,f,, respectively, and
foSfo41 S Sfy-1 S f,;. After traversing the whole
chain, the effective fanset of s, is obtained by excluding
Jps-oes fy—1 from f;, which simply means the difference
of sets f, and f,_;,.

It is important that extensions to the machine are
based on the data already encoded, to enable the decod-
ing process to do the same modifications. Therefore,
cloning a state is performed after having arrived at it.
Similarly, a shortcut of two transitions is created after
taking them both.

In addition to the machine structure, the maintenance
of frequencies is equally important for successful coding.

After taking a transition, its frequency count is increased
by one. When cloning a state s, (into s;), based on
transition (s;, ;) (Figure 4a), the escape from s; to s,
gets the frequency Freq(s;, s;), because both represent
the same flow.

When creating a shortcut, the update of frequencies
is not so trivial. The frequency of the shortcut transition
itself is easy to estimate. Referring to Figure 4(b), the
following formula is applied

Freq(s;n Sk)) Freq(sk, sm)
Effsum(s, | s)

Freq(si, sm) =

where Effsum(s,|s;) is the sum of transition counts in
the effective fanset of s, (i.e. in the difference of fansets
of s, and s;). In our implementation, the frequencies are
maintained as real numbers, not integers, i.e. the above
ratio is not truncated/rounded. This proved to produce
better results.

The ratio Freq(sy, s,,)/Effsum(s,|s;) represents the
proportion of the escape frequency to be assigned to the
shortcut (s, s,,), because the path (s, si, s,,) Will never
be traversed anymore. Accordingly, the escape frequency
is reduced by Freq(s, s,,). Kirchhoff’s law would imply
that also Freq(sy, s,,) should be reduced by the same
amount. However, it can be shown that a long sequence
of machine steps may then create negative frequencies.
This non-obvious phenomenon was detected in the
experiments, and results from an unfortunate combina-
tion of machine updates. The problem would not occur,
if Effsum(s,|s;) were replaced by Fsum(s,), but this is
unacceptable in terms of compression performance. The
illegal frequencies could of course be captured by addi-
tional tests and handled in some special manner.
However we obtained the best results by not reducing
Freq(sy, s,,) at all. It seems that the reduction somehow
tampers the successor distribution of other transitions
leading to s,. A somewhat annoying consequence from
the selected rule is that we abandon Kirchhoff’s law (for
state s, in this case). It must be emphasized that, though
being a natural property, Kirchhoff’s law is no necessity
for coding—all we need is a realistic distribution of
successors for each state.

Very little needs to be said about decoding. From the
machine building point of view, the procedure is ident-
ical. Into arithmetic decoding we have to transmit the
whole distribution (cumulative frequencies) of the effect-
ive fanset, from which the decoder picks up the correct
one. Thereafter, cloning and shortcut creation can take
place.

A skeleton of the encoding program in Pascal is given
in the Appendix.

5. EXPERIMENTS

In testing GDMC, we used files from the Calgary
Corpus, which is a widely used set of benchmark data
for compression, see [1]. First we tried to find the
optimal value for the threshold parameter CC, which

THE COMPUTER JOURNAL,

VoL.36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

612 J. TEUHOLA AND T. RAITA

determines the rate of cloning. A sample set of results is
given in Table 1 for ‘paper 1’ (53 161 bytes) of the Corpus.
The best compression results are achieved with very
small values of CC. The conclusion is the same as in
[5]: the increase of context is more important than the
precision of the successor distribution. A straightforward
solution would be to clone always. However, as can be
seen from Table 1, with less eager cloning, memory
consumption can be dropped to half, without essentially
degrading the compression results. Note that frequencies
can really be non-integers, due to the calculations made
in creating a shortcut. Moreover, even CC =0.0 does
not always cause cloning, because Kirchhoff’s Law does
not hold.

In the second test all the files of the Corpus were
compressed, using the value CC = (.25, which is close to
optimal in all cases. In Table 2, the compression results
of GDMC are compared with those of DMC [5] and
PPMC (‘Prediction of Partial Match’, presented by
Cleary and Witten [4] and tuned by Moffat [9]). The
latter is generally regarded as the best practical text
compression method. The results of DMC and PPMC
originate from [1]. We can see that, especially for longer
texts in natural language, GDMC is clearly the best of
the three.

It must be admitted that we did not set any constraints
on the main memory consumption of GDMC during
the coding process. For the largest test files about
10-20 Mbytes were used (with the optimal CC value).

TABLE 1. The effects of varying CC

cC Result (bits/character) No. of states No. of transitions

0.0 2.61 52223 98595
0.5 2.58 36447 73821
1.0 2.59 29483 62964
20 2.61 22420 51101
5.0 2.65 15403 38569
10.0 2.71 11774 31437
20.0 2.79 8943 25644

TABLE 2. A comparison of results from compressing files of the
Calgary Corpus

File Size bDMC PPMC GDMC
bib 111261 2.28 2.11 2.05
book1 768771 2.51 2.48 2.32
book?2 610856 2.25 2.26 2.02
geo 102400 4.7 4.78 5.16
news 377109 2.89 2.65 2.60
objl 21504 4.56 3.76 4.40
obj2 246814 3.06 2.69 2.82
paperl 53161 2.90 2.48 2.58
paper2 82199 2.68 245 2.45
pic 513216 0.94 1.09 0.80
progc 39611 298 249 2,67
progl 71646 2.17 1.90 1.83
progp 49379 222 1.84 1.90
trans 93695 2.11 L.77 1.73

The speed of compression/decompression varied a lot,
depending on the source type. For large text files, the
compression speed was about 9 Kbytes/s and the decom-
pression speed about 7 Kbytes/s, in a Sun Sparcserver
690M (25 MIPS), excluding the I/O time. The programs
were written in Pascal, without any special optimization.

6. DISCUSSION AND FURTHER WORK

The presented GDMC method produces remarkably
good compression results for most textual data types.
However, we do not claim it to be ‘optimal’ in any sense,
even within the framework of finite-state models. There
are many heuristic features in the method, which could
perhaps be done differently. The most delicate question
is related to the estimation of transition frequencies
when modifying the machine with the basic transforma-
tions (clone and shortcut). A thing that still bothers us
is the abandonment of Kirchhoff’s law. This makes the
machine theoretically unclean, but we did not find a
satisfactory solution without sacrificing the compression
performance.

It is probably possible to invent different ways of
extending the machine, to better conform with the
properties of the source. The transformations should
enhance the differentiation of contexts, without consum-
ing too much memory.

The execution speed might be improved in several
ways at the cost of compression gain. Most of the
processing time in the current version is consumed in

® scarching for the correct transition in the list of
SUCCESSOTS;

® determining the difference of fansets (applying the
exclusion principle);

® calculating the frequencies and their sums;

® arithmetic coding.

By attacking these points we aim to develop a faster
practical variant of the presented method.

REFERENCES

[1] T. C. Bell, J. G. Cleary and I. H. Witten, Text
Compression. Prentice Hall, Englewood Cliffs, NJ (1990).

[2] T. C. Bell, I. H. Witten and J. G. Cleary, Modeling for
text compression. ACM Computing Surveys, 21,
pp. 557-591 (1989).

[3] T. C. Bell and A. Moffat, A note on the DMC data
compression scheme, The Computer Journal, 32,
pp. 16-20 (1989).

[4] J. G. Cleary and 1. H. Witten, Data compression using
adaptive coding and partial string matching. IEEE
Transactions on Communications, COM-32, pp. 396-402
(1984).

[5] G.V.Cormack and R. N. S. Horspool, Data compression
using dynamic Markov modelling. The Computer Journal,
30, pp. 541-550 (1987).

[6] S. Guiasu, Information Theory with Applications.
McGraw-Hill, London (1977).

[7] D. A. Huffman, A method for the construction of min-
imum-redundancy codes. Proceedings of the IRE, 40,
pp- 1098-1101 (1952).

THE COMPUTER JOURNAL,

Vor.36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

APPLICATION OF A FINITE-STATE MODEL TO TEXT COMPRESSION 613

[8] D. A. Lelewer and D. S. Hirschberg, Data compression.
ACM Computing Surveys, 19, pp. 261-296 (1988).

[9] A. Moffat, A Note on the PPM Data Compression
Algorithm. Research Report 88/7, Department of
Computer Science, University of Melbourne, Victoria,
Australia (1988).

[10] D. Revuz and M. Zipstein, A Text Compression Algorithm
for Natural Languages. Preprint, Université de Marne la
Vallée, Noisy le Grand, France (1992). (To appear in
Proceedings of the 3rd Annual Symposium on
Combinatorial Pattern Matching.)

[11] J. J. Rissanen, Generalized Kraft inequality and arith-
metic coding. IBM Journal of Research & Development,
20, pp. 198-203 (1976).

[12] J. J. Rissanen and G. G. Langdon, Arithmetic coding.
IBM Journal of Research & Development, 23,
pp. 149-162 (1979).

[13] J. A. Storer, Data Compression: Methods and Theory.
Computer Science Press, Rockville, MD (1988).

[14] R. N. Williams, Adaptive Data Compression. Kluwer
Academic, Norwell, MA (1991).

[15] I. H. Witten, R. M. Neal and J. G. Cleary, Arithmetic
coding for data compression. Communications of the
ACM, 30, pp. 520-540 (1987).

APPENDIX

A skeleton of the GDMC encoding program in Pascal
is given below, together with type definitions. Since all

type
symbol_type = char;
symbol_file = packed file of symbol_type;
state_ptr = state_rec;
trans_ptr = trans_rec;
state_rec = record
symbol: symbol_type;
fanset: trans_ptr;
esc_target: state_ptr;
esc_freq: real
end;
trans_rec = record
freq: real;
target: state_ptr;
next: trans_ptr
end;

procedure search (symb: symbol_type;
prev_state: state_ptr;
state: state_ptr;
var trans: trans_ptr;
var cum_freq: real;
var eff_sum: real);

{ previous state }
{ current state }

{

transitions leading to a given state aré related to the
same symbol, we have attached the symbol to the state
record, thus saving space. The initial state is an exception:
it is entered only via an escape. Escape transitions are
also stored directly in state records, because there is
only one escape per state.

Some formulae in the encoding program are slightly
different from those in the text above, adding/subtracting
1.0 is due to the fact that at the current state the in-
count has been increased, whereas the out-count has not.

Details of arithmetic coding are skipped—three pro-
cedure calls are related to it, i.e. initialization, encoding
a transition and finishing the coding. The well-known
ending problem is handled by an additional eof-symbol
in the fanset of the initial state.

Decoding differs from encoding in that the next trans-
ition is not determined by the input symbol, but by
arithmetic decoding, which now needs the distribution
of the whole effective fanset. Otherwise, from the model
construction point of view, decoding is analogous, and
therefore skipped.

{ symbol to be encoded }

{ matching transition }
{ cumul. frequency of symb }
{ sum of included frequencies }

Scans the fanset of the current state and searches for symbol symb.

The transition, if found, is returned in parameter trans.

Two frequency sums are counted from the effective fanset of the current state (symbols in the fanset of prev_state excluded):

1) the cumulative frequency of symbols < symb
2) sum of all frequencies in the effective fanset

}
begin --- end;

procedure insert_trans(shortcut: trans_ptr; state: state_ptr);

{

Inserts the shortcut transition in the fanset of the given state.

The position is determined e.g. by the alphabetic order of symbols—any well defined order will do.

THE COMPUTER JOURNAL,

Vor. 36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

614 J. TEuHOLA AND T. RAITA

}
begin ‘- end;

procedure encode(source: symbol_file; CC: real);
var

symb: symbol_type;

state, prev_state, clone: state_ptr;

from, trans, shortcut: trans_ptr;

cum_freq, eff_sum: real;

begin
initialize_arithmetic_encoding();
create_initial_model(state); { The start state }
from := nil; { The transition last taken }
while not eof(source) do
begin
read(source, symb);
prev_state := nil; { Previous state in the esc-chain }
search(symb, prev_state, state, trans, cum_freq, eff_sum);
if from < > nil { Not at the start? }
then if (eff_sum + 1.0—from" .freq) > = CC
then begin { The current state must be cloned }
new(clone);
clone".symbol := state .symbol; { Represents the same symbol }
from .target := clone; { New target for the from-transition }
clone " fanset := nil; {No actual successor symbols yet }
clone ".esc_target := state; { Escape transition to the old state }
clone " .esc_freq := from” .freq { The old frequency is copied }
end;
while trans = nil do
begin { Loop for escapes }
arith_encode((eff_sum—state ".esc_freq), 1.0, eff_sum);
state .esc_freq := state .esc_freq + 1.0;
prev_state := state;
state := state .esc_target; { Proceed to the escape target }
search(symb, prev_state, state, trans, cum_freq, eff_sum)
end;

arith_encode(cum_freq, (cum_freq + trans " .freq), eff_sum);
if prev_state = nil

then begin { No escapes, thus no shortcuts }

trans freq = trans freq + 1.0;

state := trans A.targct; { Proceed to the next state }

from := trans { Remember where we came from; needed in cloning }
end
else begin { One or more escapes were taken }

new(shortcut); { Create a shortcut to trans .target }

shortcut “target := trans target;
shortcut .freq := (p .esc_freq — 1.0)xtrans .freq / eff_sum + 1.0;
prev_state .esc_freq := prev_state .esc_freq — shortcut .freq;

insert_trans(shortcut, state); { The shortcut starts from the current state }
state := shortcut A.target; { Proceed to the next state }
from := shortcut { Remember where we came from }
end
end;
finish_arithmetic_encoding(state) { Encode the fictitious eof-symbol }

end;

THE COMPUTER JOURNAL, VoL.36, No.7, 1993

20z YOSel\ € uo 1sonb Aq £982/€//09/2/9€/S101ME/|UfW00/W00"dNo" oIS PEDE//:SAY WO PAPEOjUMOQ

