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Thompson [13] introduced an innovative method for obtaining non-deterministic finite state automata
(nfa) from regular expressions. His formulation of nfas makes use of ¢-transitions (null symbol input)
and requires in the worst case 26 + 2 OPS states, where ¢ is the number of occurrences of alphabet
symbols and OPS is the number of operands in the original regular expression. We modify this algorithm
to obtain a nfa M without ¢-transitions that has in the worst case ¢ + 1 states. Using multi-branch
expression trees to store the regular expressions efficiently, the algorithm presented here is directly
parallelizable. The algorithm necessitates that we maintain a finite state automata which has no e-transi-
tions and has a starting node of zero in-degree. The role of c-transitions in finite state automata is
examined and, based on the technique of bypassing [11], two alternative approaches are suggested. Three
advantages manifest themselves during the improved construction: many fewer nodes are needed in the
equivalent finite state automata; ¢-transitions are not needed; the construction is highly parallelizable.
With the advent of parallel processing, nfas can be simulated by multiple processors or in VLSI design
[14]. The algorithm presented here results in the creation of a nfa which requires less hardware resources
to simulate.

Received January 1993, revised June 1993.

1. INTRODUCTION

Kleene [9] introduced the notion of a regular set for
describing regular languages (type 3 of the Chomsky
hierarchy) and showed that a finite state automata can
be constructed to accept exactly the words of a particular
regular language. This string-based approach allowed
for the concise expression of structures from many
different application domains. The diverse areas which
can benefit from these results include compiler theory
[1], computational linguistics [7], constructive solid
geometry [15], pattern recognition [6], program transla-
tion [3], switching theory [10] and VLSI design [14].
However, while the proof of Kleene’s Theorem was
constructive, the related construction methods were
not efficient.

The classical Thompson construction [S] provides
an easy method for obtaining non-deterministic finite
state automata (nfa) from regular expressions by using
e-transitions, transitions between states of the machine
which do not absorb input. His algorithm introduced
the basic framework for such transformations based on
an innovative use of recursion. However, the e-transi-
tions are not easily implementable and their use causes
an ‘unnecessary’ number of extra states. In addition,
because the regular expression input was assumed to
be stored in a linear array, the algorithm was not
directly parallelizable.

The regular expression input in this paper is assumed
to be stored in expression trees [12]. These expression
trees have the alphabet symbols as the leaves of the tree
and the regular operators stored in the interior nodes.

This data structure was originally suggested for effici-
ently storing regular expressions and is based on the
common method of storing arithmetic expressions, which
resemble regular expressions. We extend this structure
so that it is a multi-way tree, and not strictly binary.
Hence, aubucud would be represented by the tree in
Figure 1(a) and not, for example, as in Figure 1(b). This
introduces the possibility of further parallelization of the
algorithm because the operators now act on multiple
operands at the same time and the operators treat the
sub-operands individually. A bottom-up approach
would first deal with the symbols of the regular expres-
sion (the leaves). The results obtained at one level then
act as operands for the next level operators, and we
recurse towards the root.

In the search for a reduction in the number of states
required, the role of e-transitions in finite state auto-
mata is examined. The familiar techniques of bypassing
(discussed in Section 3.2) [11] suggests two alternative
approaches. A substantially improved method is
presented for obtaining a nfa that utilizes in the worst
case no more than o + 1 states to recognize a regular
expression with ¢ operands. The method requires that
we recursively maintain a finite state automata, with no
e-transitions, and in which the starting node has in-
degree zero. With the advent of parallel processing,
nfas can be simulated by multiple processors or by a
suitable VLSI design [14]. The algorithm presented
here can reduce the resources necessary to simulate nfa
machines.

In the next section of the paper, we introduce the
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FIGURE 1. (a) Multiway expression tree for aubucud and
(b) standard regular expression tree for the same.

classical Thompson construction based on the regular
expression tree input. This provides the background for
the presentation of the new algorithm. Both algorithms
are presented recursively, dealing first with the base
cases and then with the union, concatenation and Kleene
star operators. The bypassing technique for removing
e-transitions [11] will be needed in the operator cases.
Utilizing the notion of predecessor and successor states,
two alternative bypassing transformations are presented
and used to deal with concatenation. Bypassing to
successor states will allow for the extra states incurred
by the Thompson construction to be removed, whereas
bypassing from predecessor states is not always applic-
able, but is time consuming and does not affect such
changes. A similar point applies to the Kleene star
operator which combines concatenation and union.
Finally, two additional modifications are presented
which further improve the algorithm by lowering the
number of states required by the nfa. These involve
merging the final states which have out-degree zero and,
a special case in which bypassing from the predecessor

states actually does yield a reduction in the number
of states.

2. THE THOMPSON CONSTRUCTION WITH
e-TRANSITIONS

Thompson observed that any finite state automata can
be transformed to a nfa with one start node and one
final node provided that e-transitions (Figure 2) are
allowed. In addition, the initial node of the new nfa-¢
has in-degree of zero and the final node of the new nfa-¢
has out-degree of zero. The base cases of this approach
appear in Figure 3(a—c) and require two nodes for
each symbol in ¢, ¢, X. Using the same approach two
arbitrary automata could be combined under the regular
operators -, U, * and the resultant machine will be a
nfa-¢ (Figure 4a—c). Thus, recursively a nfa-¢ can be
obtained from a regular expression. This would require

FIGURE 2.

ON©

Nfa-¢ conforming to its restrictions.

FIGURE 3. Base cases for the recursive algorithm for creating a
nfa-¢ from a regular expression stored in a binary expression tree.

(@) LM) = &. F Q. (b) L(M) = {e}. (¢c) LIM) = {a;}.
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FIGURE 4. Thompson construction for combining arbitrary finite
state automata under the regular operators. The resulting machines
have one initial node with in-degree zero and one final node with out-
degree zero. (a) Nfa-¢ for L = L(M,)u L(M,). (b) Nfa-¢ for L =
L(M,)* L(M,). (c) Nfa-e for L = L(M, )*.

two additional nodes for each operator. The closure of
this algorithm is obtained by the finite recursion neces-
sary for the traversal of the expression tree.

The above algorithm is a simple way of constructing
finite state automata from regular expressions. However,
it requires 20 + 20PS states (where the regular expres-
sion contains ¢ occurrences of symbols and OPS opera-
tions). Another problem is that this approach requires
e-transitions; it is thus harder to determine which states
are entered, upon transition. An example of Thompson’s
construction for the regular expression (aub)* - (cud) is
given in Figure 5(a).

Consider a regular expression tree from user input (as
in Figure 1a). Using the expression tree constructed, the
Thompson algorithm, based on the above discussion,
may easily be implemented to obtain the non-determin-
istic finite state automata nfa-¢ equivalent to the inputted
regular expression. This is accomplished by doing a
simple traversal of the tree. (As presented here this
algorithm will be recursive. A non-recursive approach
would implement a post-order traversal of the expression

tree since the values of the children subtrees are required
to process the parent.)

3. ANIMPROVED CONSTRUCTION
WITHOUT ¢-TRANSITIONS

The following observations allow the modification of
the algorithm which will produce an nfa without
e-transitions:

1. Any algorithm that uses non-deterministic automata
requires first the calculation of the equivalent trans-
itions without the e-transitions.

2. The previous construction adds unnecessary extra
nodes in order to facilitate the ¢-transitions.

3.1. Base cases

We now modify this algorithm so that no e-transitions
are needed, which will avoid adding a number of nodes.
The base case (Figure 3a—c) is similar to the Thompson
construction but ¢-transitions are not needed. The empty
language could be represented by a single non-final
node. L={¢e} could be accepted by a single node as
initial/final. Thus, a slight modification will be required
in Figure 3(a) and (b). Then, the base cases for ¢ and
{e} now have one symbol and only need one node (which
will also be the final node if L = {¢}). For the case of a
single symbol g; of X, the alphabet, we have one symbol
and two states (Figure 3c). Therefore, for all three base
cases we have that the number of nodes (states) required
by the nfa construction is at most o + 1, where ¢ is the
total number of occurrences of alphabet symbols occur-
ring in the input.

The rest of the algorithm and proofs will be presented
in the following sections, continuing inductively for the
regular operators. This recursive approach was the
innovation of the above Thompson method. In order to
achieve an nfa with at most o + 1 states efficiently, we
will need the fact that the input is stored in a multi-way
expression tree. As a practical implementation, using
standard tree construction algorithms from infix expres-
sions, it can be shown that the construction of the
regular expression tree can be obtained in one pass of
the input.

3.2. Union

Consider the union of the m sub-machines
L(M)=up-, L(M,), as in Figure 6 (all nodes except
q%.., and its incident arcs). The direction that the e-transi-
tions follow from (q%4) is only one-way to the initial
nodes of the individual sub-machines. Consider machine
M, with its original initial node g3, . Let g{ be a node
that the initial node reaches by some symbol g;, of the
alphabet. Then, the regular expression represented by
the path from the new initial node ¢°, in Figure 6
followed by the transition from g3, to gf is precisely
¢+ 0y = o,. Therefore, instead of having m e-transitions
from node g9 to the individual starting nodes of each
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FIGURE 5. Automata for the regular expression (au b)* - (cud). (a) Original Thompson construction with e-transitions; (b) without
e-transitions; (c) while also merging final nodes in union operation; (d) improved Kleene star procedure.

of M,, we can have the new initial node (¢°,,) have m
arcs pointing to the nodes following these initial nodes
in their respective machines with the corresponding
symbols g;,. This bypassing operation was used success-
fully in obtaining regular expressions from finite state
automata [11]. (See Figure 7 for an illustrative example
of equivalent bypasses.) Since, by induction, the zero in-
degree of these respective (former) initial nodes was
maintained, then those nodes can safely be removed; the
new initial node (¢°..) and its associated arcs now
encompasses all of the required transitions. Thus, the
resultant machine will have the same language.

Suppose that ¢; was the number of alphabet symbols
in the regular expression that M; was constructed
from. Then, inductively, the number of states in M; so
far is o;+ 1. In total for m machines we have

7Li(o;+1)=(2Z",0;)+m We bypass the m initial
nodes (removing them) and add one new initial node,
thus a savings of m — 1 nodes. Hence we subtract m — 1
from the previous total and we obtain the total number
of nodes in this conglomerate machine M, i.e.

Thus, this operation preserves the required number of

nodes for the nfa. If ¢ € L(M,), then the new initial node
will be final. If L(M,)={e}, the associated sub-machine
M, has a single node which is also final.

3.3. Concatenation

Let us now consider the concatenation operator which
will be stored as a roof of a subtree with possibly many
children as in L(M, )+ L(M,)- - - L(M,,). The associated
regular expression tree contains the top levels as depicted
in Figure 1(a) but with concatenation as root.
Thompson’s construction would add two new nodes
with e-transitions for every consecutive pair of submach-
ines (Figure 4b). However, by performing bypass opera-
tions with extra arcs as explained in the union case,
e-transitions are not needed and the total number of
nodes will be reduced.

Consider Figure 7(a). The e-transition creates a path
from those nodes entering into the final nodes of machine
M;_, followed by the e-transition from the final nodes
of machine M;_; to the initial nodes of machine M;.
There are two ways of avoiding the e-transitions
(Figure 7b and c). The first approach (Figure 7b) simply
adds an arc from the predecessors of the final nodes of
M;_, to the initial nodes of machine M; with the
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FIGURE 6. Thompson construction with e-transitions for union
of n machines in parallel, L = L{M)u ‘- U L(M,,). This original
automata includes all nodes and arcs except g2, and its incident arcs.
The automata in the enclosed box represents an equivalent machine
bypassing the old initial nodes by direct arcs from a new initial node
(q%.) to successors.

corresponding symbols. However, this approach has two
problems associated with it:

1. Obtaining the predecessors of the final nodes could
be costly.

2. The initial node of M; cannot be removed; this would
worsen the tight upper bound.

Consider (Figure 7c) the path from the final nodes of
M;_, through the e-transition to the successors of the
initial node of machine M;. This suggests that the arcs
from M,;_, leave the final nodes of M;_, and not its
predecessors. Then these transitions, with the corres-
ponding alphabet symbols, go to the nodes originally
pointed to by the initial node of machine M;. Applying
these bypassing operations overcomes the first problem.
The second problem is also solved. We can now remove
the initial node of machine M;, because by induction
the in-degree of that node is zero. Fortunately, in the
constructions till now we have preserved that property.
Based on the above process, the only final states will be
those of the last machine in the concatenated list, M,,,
and possibly the first initial node if e € L(M,).

However, the algorithm must carefully handle the
possibility that an individual submachine M; has
ee L(M;). Consider L=L(M;_,)L(M;):L(M;,,) and
& € L(M,). The initial node of machine M; will be removed

a

FIGURE 7. Two alternate views (b and c) of bypassing the
e-transitions from the Thompson construction of concatenation (a).
Notice that whereas both (b) and (c) do not need the e-transition,
approach (c) removes the initial node of the second machine if zero in-
degree. Both approaches can be done in parallel for every pair of
concatenated machines A, B.

and ¢ then will not be accepted by M; because of the
concatenation process above. This causes a problem
since a non-final initial node will force the transitions
to always pass through machine M; even though
L(M;_,):L(M;,,)< L, without M;. This problem
could be generalized to a list of machines
M, .., M,..,M,.., M, whose languages will be con-
catenated. Assume that M;, M;,,, ..., M; all accept the
null string & but that machines M,,..., M;_; and
machines M;, y, ..., M,, do not. The situation can easily
be remedied by the following two step process:

1. Since M;,; does not accept the null string, the input
symbols must pass through machine M;,, to reach
the final states; thus, none of the former final states
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from the individual machines M, ..., M; should
remain final in the conglomerate construction;

2. Perform the above construction (Figure 7c) for every
consecutive pair of machines M, M, ,,,i<k<j—1
in the sublist M, ..., My, ..., M;; this adds arcs from
the former final nodes of machine M,_,; to the
successor nodes of the initial node of machine M, ,
with the corresponding symbols.

If the last k machines of the concatenated list
M, _y+1,..., M, accept ¢, then the final nodes of those
individual machines that must remain final are those
that were not also initial nodes of those same machines.
Thus, in all cases, the construction does not require the
former initial nodes of the individual machines
M,, ..., M,, to remain final. Therefore, these initial nodes
can now be removed.

Applying the above procedure, if g; is the number of
symbols in the regular expression that machine M; was
based on, then prior to applying the concatenation
we have (X, 0;) + m nodes. Now, after applying these
concatenation operations to the successive machines,
we can remove the m—1 former initial nodes
(45,5 ---» 9%,,), yielding again the required number of
nodes as in the union case:

1+ (i\; a,.)

This construction preserves then the stated number of
nodes for the nfa.

3.4. Kleene star

Let us now consider the Thompson construction of the
Kleene star operation case. Although this operator is
unary, it causes problems in our approach because of
the looping back of the final nodes to the former initial
nodes (see Figure 4c). A simple reflection on the defini-
tion of the Kleene star operator will help us solve this
problem. (See Figure 8 for an illustrative example for
the following discussion.)

* (il
L i;} L
where [°={¢}, L'=L, and L’=L+L- - +L, i times.
Instead of bypassing the final node (Figure 8b), we can
use the bypassing technique similarly, as we performed
in the concatenation case (Figure 7c), i.e. add arcs from
the final nodes of this machine to the successors of the
initial node of this machine (Figure 8c). This preserves
the property that the in-degree of the initial node is zero.
Since L° = {g}, the former initial node will also be a final
node. However, this approach does not add any new
nodes. Therefore if the machine has the correct number
of nodes, presently at most ¢ + 1, then after this opera-
tion it will still have the same required number of nodes.

Oy

FIGURE 8. Kleene star operation M*. (a) Original machine M.
(b) M* bypassing the final node. (c) M* bypassing the start node.

4. FURTHERIMPROVEMENTS

Consider again the regular expression (aub)* :(cud).
The original Thompson construction resulted in the
machine with 16 states, depicted in Figure 5(a). Applying
the improved algorithm of the previous section results
in a nfa with five states (Figure 5b). A number of nodes
can be removed in the union case if the out-degree of
the final states of the individual machines is zero. In this
case, after creating the initial node and applying the
union process we may merge together all final nodes
that have out-degree zero. This suggestion will improve
the results of the algorithm by obtaining a further
reduction of two nodes. The automaton obtained is that
of Figure 5(c).

A final source of reduction is in the Kleene star
operator case. Consider L=L¥-L," ‘- - L, and its asso-
ciated nfa M obtained by the above algorithm. In
constructing the submachine M¥ corresponding to the
application of Kleene star from M,, the bypassing
algorithm added arcs from the final nodes of M, to the
successors of its initial node, leaving the in-degree of the
start node of M zero. This was the preferred method
above instead of bypassing from the final node’s prede-
cessors. In this case, however, we should consider the
first bypass operation as depicted in Figure 7(b). Here,
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the predecessors of the final nodes go to the initial node,
which is then final. Now all zero out-dgree final nodes
of M; may be removed resulting in less nodes. An
example of this occurs in Figure 5(d), resulting in a
machine with two states, a further improvement over
the above (Figure 5¢). In total, the complete algorithm
reduced the number of states necessary for the language
expressed by (aub)* : (cud) from Thompson’s 16 states
to our two states.

As described in the Introduction, the implementation
presented here assumed that the regular expression was
stored in a multi-branch expression tree. This stores the
operators of the regular expression in the interior nodes
and the operands in the leaves. In general, algorithms
performed on expression tree structures can be done
somewhat in parallel because the operator can usually
be individually applied to each of the operands. This is
certainly the case for the regular operators in a regular
expression. The union operation involves adding arcs
from the new initial node which may be performed in
parallel to all of the individual submachines. Similarly,
the concatenation operation adds arcs from the former
final nodes in each consecutive pair of the concatenated
list of machines; this can also be done efficiently in
parallel. In both of these cases, the removal of the former

ORIGINAL FINAL STATES

initial nodes can be done in parallel after adding in the
above arcs. Finally, if enough processors are available,
each operator at a given level of the expression tree
(same parenthesis level of regular expression input) can
be applied to its operands in parallel because each
operator behaves independently of the others.

We could modify the above algorithm to lower the
number of final states required by any nfa. The union
operator singularly causes the resultant machine to have
the same number of final states as of the individual sub-
machines. However note that in the union case
(Section 3.2) if some final nodes have nonzero out-degree
(from the Kleene star operation) and at least one final
node has zero out-degree then we could obtain a single
final node from this operation by having the predecessors
of the final states with non-zero out-degree point to the
final node with out-degree zero. Thus, all prior final
states can be merged into one state. If all final nodes
have nonzero out-degree (resulting from terms ending
with a Kleene star operation), then a new node could
be added as the only final node in a similar manner.
For example in Figure 9, afua}--uvak_,uvak
(Figure 9A1) would require one additional node
(Figure 9A2) but afuaf - vak_,ua, (Figure 9Bl1)
would not (Figure 9B2). Although this actually adds

REDUCED FINAL STATES

FIGURE 9. Machines for the languages a* U - Ua¥* (machine A) and af U *** Ua,, (machine B), before (A1, Bl)/after (A2, B2) reducing the
number of final states. Thus, machine A requires an additional state, while machine B does not.

THE COMPUTER JOURNAL,

VoL. 36, No.7, 1993

20z Iudy €0 uo 1sanb Aq 6282/€/€29/2/9€/9191e/|ulwoo/Wwod dnodlWwepese//:Sdjy Woly papeojumod



630

R. R. GOLDBERG

states, sometimes it is more important to reduce the size
of F, the set of states with final status rather than the
size of Q.

5. CONCLUSIONS

We presented an improved version of Thompson’s con-
struction for obtaining a nfa from regular expressions,
stored in a multi-branch tree structure. It is demon-
strated that this approach does not require ¢-transitions.
Instead, bypassing to successor states by adding extra
arcs allows for the removal of the initial nodes of the
individual sub-machines. At most ¢+ 1 states are
required, where ¢ is the number of times alphabet
symbols appear as operands in the regular expression.
The number of states required by our approach is a
fraction of what is needed by Thompson.

The acceptance status of the initial node (whether or
not final) and its in-degree (whether or not zero) will
respectively depend on whether ¢ € L(M) and where the
Kleene star operator appears in the regular expression.
Similarly, the number of final nodes (one or more) and
their out-degree will depend on whether the Kleene star
operator appears in the regular expression input. If
e ¢ L(M), this nfa requires only one final node, with
an out-degree of zero. Since the construction of nfas
from regular expressions has many applications in
areas that require pattern matching and parsing
[1,3,6,7,10,13, 14], the savings gained here (in terms
of space and time) could have practical applications in
those areas.
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