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This paper describes a computer program for high school timetabling which has completely solved an

instance taken without simplification from a large and tightly constrained high school. A timetable

specification language allows the program to handle the many idiosyncratic constraints of such instances

in a uniform way. New algorithms are introduced which attack the problem more intelligently than
traditional search methods.

Received ...

1. INTRODUCTION

The basic timetabling problem is to assign times,
teachers, students and rooms to a collection of classes
and other meetings in such a way that none of the
participants is required to attend two meetings simultan-
eously. Real instances can be very large, with hundreds
of participants and hundreds of meetings squeezed into
a week of about 40 meeting times; and they have
additional requirements of various kinds.

As Lions [16] observed 25 years ago, the ultimate test
of a computer-generated timetable is “Will the school
buy it?”. Computer programs have had some successes:
the problem of assigning students to sections of univer-
sity courses after the times are fixed has been solved,
practically speaking [8, 14] and the literature does
contain occasional reports of a school adopting a
computer-generated timetable. However, the authors
have been unable to find any report of a computer
program for the full problem which is passing the test
set by Lions regularly and reliably.

The most popular approach [1, 2, 4, 5, 9] has been to
search through the assignments remaining to be made
to find the one that is most tightly constrained, then to
make that assignment in the way which constrains
subsequent assignments as little as possible and repeat.
Following the traditional hand method, there is often a
second phase in which previous assignments are
exchanged in an attempt to open up possibilities for
further assignments.

This approach is widely reported to make 95-98% of
the required assignments at best before getting stuck
and one often sees a statement that the residual problems
were or could be removed by manual adjustment. For
example: “Very often, as many as six runs have been
needed to obtain a solution for a single daily problem,
with the average number of runs being about two or
three. Frequently analyst intervention to correct one
problem was frustrated by the emergence of a new
problem. .... There occurs a point at which it is better
to turn the problem over to the school for the final
touches” [16].

The literature also contains a number of more theoret-
ical papers. Gotlieb [12] proposed a method based on
detecting some subtle forced assignments and making a
single arbitrary assignment when there are no forced
ones. Csima [6] seems to have been the first to find a
solution for an almost realistic special case which could
be implemented in polynomial time. Even et al. [7]
demonstrated this implementation and proved the gen-
eral problem to be NP-hard, although graph colouring,
which is well known to be closely related to timetabling
[19], was proved NP-hard earlier by Garey et al. [10].
Several papers by de Werra [20, 21] propose network
flow solutions to various subproblems and are closest
to our own work. Kitagawa and Ikeda [13] have
attempted to generalize and unify the many special
requirements of real instances. The bibliography by
Schmidt and Strohlein [18] has a clear account of
developments up to 1979.

If a program is ever to solve timetabling problems
regularly and reliably, it must produce 100% solutions,
and it must be portable between institutions, implying
that all special requirements must be notated in the
input, not fixed within the program. The Sydney timetab-
ling project is an attempt at building such a program;
this paper describes our progress to date. We have
developed a language for formally expressing real
instances of the timetabling problem, and a novel pro-
gram incorporating heuristic, network flow and tree
searching techniques, which we call TT1. This program
has completely solved one real instance, taken without
simplification from a large high school in the Sydney
area. We will refer to this instance as BGHS.

2. THE LANGUAGE AND PROBLEM
SPECIFICATION

Real instances of the timetabling problem abound in
peculiarities: teachers available only on certain days,
Science laboratories which can also be used as ordinary
classrooms, double periods (where a class occupies two
adjacent time periods) and so on. As already mentioned,
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such peculiarities must be notated in the input, so we
have introduced a simple language, which we call TTLI1,
for specifying instances. In this section we define TTL1
and show how most of the requirements of real instances
can be specified within it.

One puzzling aspect of the literature to date is the
universal assumption that individual teachers will be
preassigned to classes before the program takes over.
Not only does this place a heavy burden on the human
timetabler, it reduces the choices open to the program
and hence its chance of finding a solution. TTL1 permits
preassignments, but it does not require them.

A TTLI1 instance consists of groups and meetings.
Groups contain elements which are the participants in
the timetable, and subgroups which indicate the functions
that the elements perform. There may be arbitrarily
many groups, each with arbitrarily many elements and
subgroups.

In high school timetabling the groups are normally
Teachers, Students, Rooms, and Times. For example,

group Teachers is
subgroups English, Science, Computing;

Smith in English, Computing;
Jones in Science, Computing;
Robinson in English;

end Teachers;

specifies a Teachers group with three elements (Smith,
Jones and Robinson), two of which can perform the
English function (teach English) and so on. Similarly,

group Rooms is
subgroups Ordinary, ScienceLab, MusicRoom;

R1 in Ordinary;,

L1 in ScienceLab, Ordinary;
L2 in ScienceLab, Ordinary;
M1 in MusicRoom;

end Rooms;

expresses the requirement mentioned earlier that Science
laboratories be available as ordinary classrooms. It
would be simpler if each element had just one function,
but overlapping functions are extremely common. They
can be very confusing for the human timetabler, but, as
we will see below, a computer program can use bipartite
matching to solve the problems they pose very quickly
and elegantly.

In typical instances the Times and Students groups
simply name the available times and student forms with
no subgroup structure. If the subject choices of individual
students are to be taken into account, the Students group
would list all the students, with subgroups corresponding
to the subjects available.

These groups make it clear that the roles played by
teachers, students and rooms are essentially the same,
an observation which goes back to Appleby et al. [1] at

least. Our program accordingly treats all these groups
in the same manner, using the same code. Although the
Times group has the same syntax as the others, it is
distinguished by the fundamental requirement that no
element of any group may attend two meetings at the
same time and it seems that the implementation must
treat Times as a special case. Elements of the special
Times group will be called times; elements of the other
groups will be called resources.

Meetings are collections of slots which are to be
assigned elements of the various groups. For example,
the following is a typical meeting from the BGHS
instance:

meeting 10-English is
from Students select YearlO0;
from Teachers.JunEnglish select 5;
from Rooms.Large select 5,
from Times select 6;
end 10-English;

It contains one slot which must be filled by the Year10
resource from the Students group (representing all
Year 10 students); five slots to be filled by resources
from the JunEnglish subgroup of the Teachers group;
five slots to be filled by large rooms; and six time slots.
There may be any number of meetings, each containing
any number of selections from any group or subgroup.
Each selection may be a preassignment of a particular
element, or it may be an integer, or it may be all,
meaning every element.

Formally, the meaning is that the selected resources
will all be occupied together for the selected times. In
the case of the meeting above, we understand that the
Year 10 students will be split into five groups, each
meeting for six times with one of the five teachers in one
of the five rooms; the meeting is an aggregation of 30
smaller meetings. It would be possible to disaggregate
them to some extent, using five meetings of the form

meeting 10-EnglishA is
from Students select Year10A4;
from Teachers.JunEnglish select 1;
from Rooms.Large select 1,
from Times select 6;

end /0-EnglishA;

The major difference is that these five meetings are no
longer constrained to run concurrently. A further disag-
gregation of each of these into six parts would fail to
specify that the same teacher is required for all six times.
In general, larger meetings lead to fewer meetings, a
smaller solution space and less chance of success; smaller
meetings are less constrained but may yield a chaotic
timetable.

There are some subtle requirements related to aggrega-
tion. For example, the 10- English meeting above specifies
that the same five rooms be used at all six times, but
this is not required in fact. Another requirement, charac-
teristic of university timetables, is that some classes are
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offered at several different times and each student is
allocated to one of those times. We have not addressed
these requirements in TTLI1.

We have found that TTL1 can express most of the
requirements of high school timetabling, with a little
ingenuity. For example, to say that a teacher may teach
for no more than 30 of the 40 available times, we create
a meeting occupying that teacher for 10 times:

meeting SmithFree is
from Teachers select Smith;
from Times select 10;

end SmithFree;

By selecting from a subgroup of Times we can constrain
the choice of free times if we wish. The only omission at
present (as far as high school timetabling is concerned)
is control of the spread of classes through the week,
including double periods, avoiding giving one class the
last time in each day or too many times in the one day
and so on.

Our timetabling problem is NP-hard in at least two
different ways. First, the problem of avoiding clashes is
well known to be a version of graph colouring, assuming
that arbitrary selections are permitted [19]. Second, the
allocation of teachers to classes in such a way that no
teacher is overloaded is easily seen to be a version of
bin packing, where each teacher is one bin. A polynomial
solution exists for the special case where each meeting
selects exactly one nominated class, one nominated
teacher, and any number of times, the latter not pre-
assigned [7].

The BGHS instance, which is the only one we have
tested our program on thus far, contains four groups:
Times, Students, Teachers and Rooms, with 40, 22, 53
and 46 elements, respectively. For each teacher there is
a meeting like SmithFree above; there are meetings of
the various faculties (English, Mathematics, etc.) one
time per week; and there are 152 other meetings repres-
enting ordinary classes. Most of these meetings are
aggregates, like 10-English above. Some aggregates
express electives, where a decision has been made in
advance that certain meetings will be run concurrently
and students advised to choose one; others express
runarounds, where the classes of 1 year cycle through
scarce resources such as the unique Technics room and
teacher. The latter could easily be disaggregated, but we
see no harm in helping the program along a little by
encoding solutions to small subproblems, following
school practice.

3. INVARIANTS

The postcondition of the timetabling problem may be
expressed as

All slots are filled and no resource is assigned to two
meetings which share a time.

It is natural to take the second part of this condition as

invariant and assign times and resources to slots until
the first part holds. We call this fundamental invariant
the exclusion invariant.!

Our program maintains a rather subtle generaliza-
tion of the exclusion invariant that we call the resource
sufficiency invariant:

For each time t, the total resource requirements of the
meetings scheduled for time t can be filled by the
available resources.

This is an extremely important invariant, which can be
applied to many algorithms, and is used throughout our
program. It allows the program to assign times to
meetings, keeping within resource limits; and it can take
into account the subgroup structure (e.g. the fact that a
teacher may teach both English and History) without
actually committing any resource to any slot. It strongly
constrains the search path without ruling out any
solutions.

In the unrealistic special case where each resource lies
in exactly one subgroup, we may evaluate this invariant
at time t by comparing the supply of resources in each
subgroup with the demand for elements of that subgroup.
However, in general, correct evaluation amounts to
finding a matching in a bipartite graph, as we now show
by example. Given the resources

Smith in Mathematics;

Jones in Mathematics, Computing;
Robinson in Science, Computing;
Taylor in Science;

suppose we ask whether a requirement for two
Computing and two Science teachers at some time t can
be met. The bipartite graph has one left-hand node for
each resource slot, and one right-hand node for each
resource. Edges join each resource slot node to the
resources in its subgroup:

The invariant holds at time ¢ if this graph has a matching,
defined here as a subset of the edges such that each slot
node is incident to exactly one edge, and each resource
node is incident to at most one edge. There is no

! The opposite approach, taking the first part as invariant and
exchanging assignments until the second part holds, has also been
tried [3].
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matching in this example, despite the presence of two
Science and two Computing teachers.

Efficient algorithms for bipartite matching are well-
known [17]. Most importantly, one can insert and delete
nodes and edges, modifying a previous matching to
reflect the changes, in linear time per change and usually
much faster. This provides a quick test of the feasibility
of assigning a particular time ¢t to a meeting: add the
meeting’s resource requirements to a graph permanently
associated with time ¢ and attempt to augment the
existing matching. Notice that although the matching
defines an assignment of resources, that assignment is
not actually made.

The remainder of this section is devoted to two
invariants which address issues quite unrelated to
resource sufficiency. Although these two invariants are
not maintained at present by the TT1 program, we hope
to add them in the future. In general, we contend that
the addition of invariants is an important way to improve
timetabling algorithms.

The essence of the resource sufficiency invariant is to
check whether certain meetings can occur simultan-
eously; the particular times chosen are irrelevant to that
invariant. We speak of a decision to run two meetings
simultaneously as an assignment to those meetings of a
common prototime; an actual time must be assigned
separately to the prototime.

The assignment of actual times to prototimes is natur-
ally done last, since it is usually only slightly constrained.
However, some meetings do specify particular actual
times: Sport on Thursday afternoons, or a meeting
between a teacher and all the Monday times, included
to leave that teacher free on Mondays. To avoid
assigning prototimes in a way inconsistent with these
actual time assignments, a time consistency invariant
is needed:

There exists an assignment of actual times to prototimes
consistent with all restrictions on time slots.

This invariant would prevent the assignment of different
prototimes to two time slots which were preassigned the
same actual time and also the assignment of a common
prototime to two time slots which were preassigned
different actual times. A bipartite matching from proto-
times to actual times may be used to evaluate this
invariant. The nodes are fixed and edges are deleted as
prototimes are assigned to time slots which constrain
the actual times.

We have not implemented this invariant, because the
identity mapping between real times and prototimes was
sufficient for BGHS. However, it will be the foundation
of future work on the spread of classes through the week.

Our second example of an invariant whose mainten-
ance would improve the TT1 program is motivated by
the following situation, which arose during the solution
of BGHS. One time slot of a Drama meeting was
assigned the same prototime as the English faculty
meeting (attended by all English teachers), while another

time slot was assigned the same prototime as the History
faculty meeting. Unfortunately, every Drama teacher
had to attend one of these other meetings, hence no
single suitable teacher was available at all the times.
This did not contradict the resource sufficiency invariant;
resources were sufficient at each individual time. It would
be possible to prevent this with a resource constancy
invariant:

For each resource slot there exists a single resource
which may be assigned to that slot for all the required
times, without violating the resource sufficiency invari-
ant at those times.

One might hope to assert the existence of such assign-
ments to all resource slots simultaneously; but that
invariant encompasses the NP-hard bin-packing prob-
lem, so it cannot be evaluated efficiently. We do, in fact,
partly implement this invariant in one part of our
algorithm (Section 4.3).

4. ALGORITHMS

Below are the algorithms we tried and the ideas out of
which our final solution is built. Note that the relation-
ship they bear to each other is important, but they are
all fairly general-purpose ideas that can be used in
isolation as well.

4.1. Brute force assignment

This well-known algorithm explores all possible assign-
ments to a nominated set of slots, which may include
both time and resource slots. The only pruning of the
search tree is that carried out by consulting the
invariants.

Brute force search is useless as a general-purpose
algorithm, but we still use it in one part of our program.
We look for small, independent subproblems where it
may be applied, such as the assignment of Science
laboratories to Science classes whose times have been
fixed.

4.2. Most-constrained assignment

In this very popular method, first the unassigned slot
with the fewest available choices of assignment is found,
then heuristics are used to select the most appropriate
element for that slot, it is assigned and the method
repeats. If a slot with no available elements is encountered,
an attempt is made to remedy this by making a few
exchanges of previous assignments. After this the slot is
either assigned or abandoned and the method repeats.
This algorithm was the second to be implemented by
the authors, who had some hopes of solving the entire
problem with it. Our heuristic for deciding which slot
to fill next was based on comparing the demand for the
resources of each subgroup with their supply at each
time (an idea which later evolved into the resource
sufficiency invariant). When no element was free to fill
some slot, we would perform an exhaustive search for a
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chain of assignments and deassignments which would
solve the problem. Owing to the combinatorial explosion
it was not possible to explore chains longer than about
five steps.

Today, we can find nothing positive to say about this
algorithm. Blind to the difficult subproblems lying in its
path, chaotic in its patterns of assignments, it stumbles
against an impenetrable wall after about 90-95% of the
assignments have been made. Its attempts to bypass the
obstacles by exchanges are hopelessly ineffective, because
it does not understand their nature.

4.3. Forced assignment

Forced assignments arise when previous assignments
bring the system to a state where only one element may
be assigned to some slot without violating any invariant.
It is natural to make this assignment immediately, and
doubtless many disasters are averted by doing so.

Forced assignments can be detected by assigning each
possible element in turn to a slot and checking the
invariants. When only one element is permitted, that is
a forced assignment. Lions [15] found the forced assign-
ments of Gotlieb’s method [12] in this way, using
bipartite graph matching for an efficient check.

Forced assignments can be implemented easily within
brute force search, by placing them in the main line of
assignments immediately after the assignment which
caused them and backtracking over them without
branching. Our program encounters forced assignments
only during initialization and resource assignment, where
no assignments are ever undone. This is important
because, if care is not taken, a forced assignment might
persist after its cause has been removed.

4.4. Meta-matching assignment

The failure of most-constrained assignment prompted a
major re-think. We wanted algorithms which understood
the nature of the obstacles to be overcome. Meta-
matching, the first fruit of this reorientation, is a highly
effective algorithm for assigning prototimes to meetings.
A set of meetings will be called a time-disjoint meeting-
set if no two of the meetings may occur simultaneously.
For example, the set of meetings attended by the Year 12
students must be time-disjoint, because these students
cannot attend two meetings at the same time. Appleby
et al. [1] pointed out some useful properties of these
sets and used them in invariant checking.
Meta-matching is an efficient method for finding an
assignment of prototimes to all the time slots of a time-
disjoint meeting-set, consistent with the resource suffi-
ciency invariant. It constructs a bipartite graph whose
left-hand nodes are the time slots and whose right-hand
nodes are all the prototimes (one for each actual time).
Then it enquires of the resource sufficiency invariant
whether the first prototime may be assigned to the first
time slot of the first meeting. As described in Section 3,
the resource sufficiency invariant answers this by adding

a node for each resource slot of the first meeting to the
bipartite resource graph permanently associated with
the first prototime and attempting to augment the
existing matching. If this assignment can be made, then
an edge is drawn connecting the two nodes.

This process is repeated for each slot—prototime pair.
If there are 40 times in the week and 40 meetings of 1 h,
there would be 40 x 40= 1600 invariant checks. In prac-
tice, however, the time slots of any one meeting are
usually indistinguishable and this reduces the number of
checks to a few hundred at most.

A matching of the resulting bipartite graph yields an
assignment of prototimes to time slots. We call this a
meta-matching because the matching is performed on a
graph whose edges represent resource matchings.

Each prototime receives at most one assignment, so
the resource sufficiency invariant must hold after all the
assignments are made. Problems with other invariants
can be prevented to some extent by testing each edge
against them before including it in the graph.

Meta-matching is a generalization of a network model
of de Werra [21], whose resource selections were limited
to a single nominated class and teacher per meeting. It
was invented independently by the present authors. We
point out that the resource matchings could return a
numerical quality measure, in which case the meta-
matching would become a weighted matching. The
method can be applied to any set of meetings, but since
it yields only time-disjoint assignments, we reserve its
use to time-disjoint meetings.

Although the assignment of times to meetings by
meta-matching is a major step towards a solution,
substantial problems remain. Pure meta-matching can
produce a chaotic timetable and resources must still be
assigned to slots. These problems are addressed in the
following sections.

4.5. Time-coherent assignment

If meta-matching succeeds in finding one assignment of
prototimes to meetings, there are usually many alternat-
ive assignments. Other assignment algorithms also have
this property, and so the question arises of whether there
is any reason to choose one assignment over another.

Heuristically, it seems clear that the assignment of
prototimes to meetings should be time-coherent, i.e.
meetings should either overlap completely in time, or
not at all, as far as possible. A visual analogy is the idea
of filling a box with blocks: more blocks will fit if they
are lined up neatly rather than thrown in randomly. We
have developed an algorithm for time-coherent assign-
ment, and used it in conjunction with both most-
constrained assignment and meta-matching.

The meta-matching version proceeds as fcllows. First,
we check for the existence of a meta-matching in the
usual way. Then, for each meeting of the time-disjoint
set in turn (largest first), we search for a set of prototimes
to assign to that meeting (briefly, a time-set) with the
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following properties: (i) the time-set is permitted by the
resource sufficiency and other invariants; (ii) if the time-
set is assigned to the meeting, a meta-matching for the
remaining unassigned meetings of the time-disjoint set
can still be found; and (iii) the time-set is time-coherent
in the following sense. Our strategy is to find a time-set
satisfying (i) and (ii) which is a subset of (and preferably
equal to) the union of the fewest possible number of
existing time-sets. What this means in practice is that
we usually find an existing time-set, used by many other
meetings, to assign to this new meeting; failing that we
try to break up a larger meeting or fuse together two or
more smaller meetings; and failing anything of this sort
(e.g. before any meetings have been assigned a time-set),
we take the times generated arbitrarily by the meta-
matching.

This method works very well in practice. An efficient
implementation using bit vectors of prototimes ensures
that the time complexity is proportional to the number
of subsets of the set of previous time-sets tried, and
pruning nearly always halts the search after pairs of
existing time-sets at worst, since triples rate very poorly
in any case. Continual reference to the meta-matching
ensures that an assignment will be found if one exists at
all and inspection of the output confirms that a highly
time-coherent assignment usually results.

This algorithm was originally applied to most-
constrained assignment, before meta-matching was
developed, and it performed extremely well there
(Section 6). Incidentally, there are paihological cases
where enforcing time-coherence actually rules out all
solutions (Appendix).

4.6. Beam-search set covering

We now present our method of assigning resources to
meetings, assuming that all time slots have been assigned
a prototime. Note that it is not necessary to assign
actual times to prototimes before doing this: a resource
may safely be assigned to two or more meetings if those
meetings do not share a prototime.

If all our meetings contained only one time slot, the
resource sufficiency invariant would trivially provide us
with an assignment of resources to slots and our task
would be over. However, in general, a meeting has
several times and each of its resource slots must be
occupied by the same resource at all times. For example,
a Science meeting must be assigned the same Science
teacher at all of its times, not a different teacher at each
time. We call this the resource constancy requirement; it
is related to the resource constancy invariant discussed
in Section 3.

Even though we assume that the resource sufficiency
invariant holds, or in other words that sufficient
resources are available at each individual prototime, the
resource constancy requirement makes resource assign-
ment an NP-hard problem, related to bin packing and
set covering.

Teacher constancy is a major practical problem in
BGHS, because the teachers are utilized right to the
limit imposed by their terms of employment (30 times
per week). If, for example, all the meetings open to a
teacher have exactly four time slots, then any assignment
must leave two of the 30 times unused, since 4 does not
evenly divide 30, and this wastage alone might render
the instance provably unsolvable. The school solves this
problem by having some meetings with one or two time
slots that many teachers are qualified for (e.g. Sport)
and also by violating teacher constancy in some junior
classes.

Constancy is not a problem with the other resource
groups. Room constancy is an artificial requirement
imposed by TTLI, not by the school. Student constancy
is trivial since the student resources are all preassigned.
Incidentally, resource assignment can be carried out
independently for each resource group once prototimes
are assigned.

The difficulty that we anticipated in satisfying the
teacher constancy requirement led us to view the
resource assignment problem as one of utilizing each
resource as completely as possible. Our algorithm, which
we call beam-search set covering, accordingly takes one
resource and assigns it to meetings which occupy as
many times as possible.

We first find the set of all meetings to which the
resource in question could be assigned. To qualify, a
meeting must have an unassigned resource slot of an
appropriate type and its prototimes must not include
any when the resource is already assigned elsewhere
(from preassignments or forced assignments). More gen-
erally, it must be possible to assign the resource to the
slot without violating the resource sufficiency invariant
at any prototime.

The problem now is to choose a disjoint subset of
these meetings, including any meetings to which this
resource is already assigned, having as many times as
possible. This is easily seen to be equivalent to the NP-
hard exact covering problem [11, p.221]: for each
prototime we have one set whose elements are the names
of the meetings to which that prototime is assigned and
we wish to choose a collection of these meetings that
exactly covers all the prototimes.

We solve this problem approximately with a beam
search of possible coverings i.e. a tree search with the
number of active nodes at any moment restricted to the
k most likely, for a small constant k. A variety of tree
pruning rules is used: we discard meetings whose proto-
times intersect with the prototimes of chosen meetings;
we check that the remaining unassigned meetings contain
enough times to improve on the current best; and we
check that the sizes of these meetings are not too large
to rule out such an improvement.

5. THE TT1 PROGRAM

This section describes the high-level structure of the TT1
program.
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The first step is to read the input, set up the data
structures and insert any preassignments. Failure to do
a preassignment indicates that the instance has no
solution.

Also in our initialization stage, we need to create the
time-disjoint meeting-sets. If we have a set of meetings
all preassigned the same resource, they must be a time-
disjoint set. More generally, a set of meetings is time-
disjoint if each one selects a number of elements from
some resource group greater than half the size of the
subgroup. This subsumes the previous case, since
selecting a single nominated resource can be viewed as
selecting every element of a subgroup of size 1. Any
meetings not represented in any of these time-disjoint
meeting-sets are put into sets by themselves.

The next step is to apply the time-coherent meta-
matching algorithm to each time-disjoint meeting-set in
turn, from largest to smallest. If the meta-matching
succeeds, we make the indicated assignments of proto-
times to time slots and proceed to the next largest time-
disjoint set.

If the meta-matching fails, we try to bypass the
problem as follows. First, we deassign one previously
matched set chosen at random and try again to match
the problem set. If this succeeds, we rematch the de-
assigned set, and if that succeeds we can continue. If it
fails, we try the same procedure again using a different
randomly chosen matched set and so on. If no single set
deassignment solves the problem, we try all pairs of
deassignments in a random order, then triples and so on.

Towards the end of a hard problem, we may see the
same meeting-sets being assigned and deassigned several
times. This is not evidence of going around in circles,
because each time the meetings are assigned different
(but always time-coherent) times.

If this procedure terminates successfully, the result is
an assignment of prototimes to all the meetings which
satisfy the resource sufficiency invariant. The next step
is to assign resources.

If a resource subgroup (e.g. the Science laboratories)
contains less than six elements, it is feasible to apply
brute force assignment to the set of all slots which select
that subgroup. This method is ideal when the subgroup
is completely isolated (its elements are not lying in any
other subgroups), but we use it on partly isolated
subgroups as well.

The remaining resources are assigned by applying
beam-search set covering to each in turn. After each is
assigned to its set of meetings, we check for and make
forced assignments of other resources.

Some resource slots may remain unassigned at the
end of this step. Since the resource sufficiency invariant
is maintained throughout, resources are available for all
these slots; however, the resource constancy requirement
cannot now be satisfied at any of them.

Finally, we assign real times to prototimes. TT1 does
not address the issue of the spread of classes through
the week, so at present we just take the identity mapping.

6. RESULTS

In this section we report the results of our programs.
Our tests to date have been confined to the BGHS
instance. Although other instances must be solved before
we can claim the portability between institutions that is
our goal, BGHS is an excellent test, being large, real
and populated with a variety of tightly constrained
subproblems.

Our implementation of the most-constrained method
assigned 90% of all slots, rising to 92% when exchanges
were added. Exchanges are relatively ineffective in the
presence of large aggregate meetings. We tried several
ideas but were unable to make any improvement until
we added time-coherent assignment. The result was a
dramatic improvement to 99% and in fact only four
slots were left unassigned. We do not regard this as
success, however, because the problem of completing the
timetable from that point appeared to us to be
intractable.

Meta-matching without time-coherent assignment
assigned all but four meeting-sets, representing about
85% of the prototime slots, and would have immediately
produced better results had we allowed it to split up
meeting-sets, avoiding the deassignment of an entire
meeting-set for the sake of one meeting. This result
should be rated more highly than the corresponding
90% result from the most-constrained method, because
the resource sufficiency invariant was maintained.

When time-coherent assignment was added, the 100%
mark was reached in under 3 min of CPU time on a
MIPS computer. Given the size of the instance, the
heavy utilization of teachers and some special-purpose
rooms, and the previous failure of most-constrained
assignment with exchanges, we regard this as a major
achievement. Relatively little deassignment occurred, and
the deassignment of pairs of time-disjoint sets was
quite rare.

The program then proceeded to find an assignment
of resources which satisfied the resource constancy
requirement at 95% of the teacher slots and 91% of the
room slots, taking 9 min of MIPS CPU time. The
resource sufficiency invariant was maintained through-
out, so these results could be improved immediately to
100% by violating resource constancy. Room constancy
is an artificial requirement in any case (imposed by
TTL1, not by the school), and a small number of
violations of teacher constancy is acceptable, and pos-
sibly inevitable (the school’s solution has a similar level
of teacher constancy). We hope to improve on this in
the future; meanwhile the result is an acceptable
timetable.

7. CONCLUSION

Despite the inherent intractability of the high school
timetabling problem, we have developed a program
which is capable of solving it in practice. Most notable
are the use of bipartite matching to check the resource
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sufficiency invariant, the time-coherent meta-matching
algorithm for assigning prototimes to meetings and the
beam-search set covering algorithm for resource assign-
ment. We have also created a specification language
which is able to express the complexities of real instances
while itself remaining quite simple.

Efficiency is naturally an important consideration
when dealing with NP-hard problems. However, we
found it important to concentrate on polynomial-time
algorithms that were not of too high degree, and expo-
nential algorithms that were still feasible, rather than
spend time optimising the code for constant-factor
increases.

As it stands, the TTL1 language does not permit any
expression of preferences, such as ‘Room 21 is less
desirable than the others’ or ‘Smith prefers to teach
Economics’. One way to incorporate such preferences
into the algorithms would be simply to always try the
most preferred option first. A fully developed system of
numerical preferences is also conceivable, provided it
does not obscure the fact that with many constraints, a
timetable is either acceptable or not acceptable.

We have a design for an extension to TTLI1 for
expressing the spread of classes through the week, which
awaits implementation. After that it will be time to take
our solution back to the high school for comment and
to seek out other real instances.

In the longer term, we hope that the program will
evolve until it can be used routinely to solve most
instances of high school timetabling. We also plan to
investigate the problem of assigning resources to one of
several equivalent meetings (e.g. when a student has a
choice of several laboratory times), with a view to
extending our language and program to university
timetabling.

We conclude with a lesson we have learnt about
assignment algorithms that seems to us to be important.
An assignment algorithm which is unaware of a tightly
constrained subproblem lying in its path will often fail
to solve that subproblem. However, an assignment algo-
rithm specifically designed to solve that subproblem can
actually benefit from the tight constraints it imposes.
For example, the need for Year 12 meetings to be time-
disjoint places a strong constraint on those meetings,
which meta-matching uses to rapidly generate assign-
ments for the entire set. Similarly, the need to utilize all
teachers completely is a daunting obstacle, until set
covering methods convert it into a powerful heuristic.
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APPENDIX

Time-coherence

We show here that enforcing time-coherence may exclude
all solutions in some instances. We do this by exhibiting
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a TTL1 instance with the following properties: (i) all
meetings have the same number of time slots, and this
number evenly divides the number of elements in the
Times group (ii) a solution to the instance exists and
(iii) no fully time-coherent solution exists.

Let the Times group have six times, called 1 to 6. Let
the meetings be called ab for all a and b such that
1 <a<b<6; there are 15 such meetings. Let each
meeting have two time slots, establishing condition (i).
For all pairs of meetings ab and c¢d such that
{ab}n{c,d} = &, let both meetings select a resource
constant called abcd. This ensures that these pairs of
meetings will be time-disjoint.

This instance can be solved by assigning times a and
b to meeting ab for all meetings; but this solution is not
time-coherent. A fully time-coherent solution would be
equivalent to a three-colouring of a graph which has
one node for each meeting and an edge between each

pair of meetings which select the same resource constant.
It is easy to check that no such three-colouring exists
and in fact the nine-element induced subgraph

has no three-colouring. This construction is due to Dr
C. D. H. Cooper (private communication).
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