Solving Large and Sparse Linear Equations
in Analog Circuit Simulation on a Cluster
of Workstations

M. SCHNEIDER*, U. WEVERT AND Q. ZHENGT
* Technische Universitit Miinchen, Institut fiir Informatik, D-80290 Miinchen, Germany
1 Siemens AG, Zentralabteilung Forschung und Entwicklung BT SE 43, Otto-Hahn-Ring 6,
D-81739 Miinchen, Germany

For developing analog circuits at Siemens AG, the method of Harmonic Balance was integrated into the

circuit simulator TITAN. The equations of Harmonic Balance are solved by Newton’s method. The

corresponding Jacobian is a very large sparse block matrix. Hitherto this kind of problem was computed

either on a single workstation or on a vector computer. In this paper, we present an algorithm that

makes it possible to simulate analog circuits on a cluster of workstations. Since the bulk of data is stored

in a distributed way, even very large problems which often cannot be processed on vector computers due
to insufficient memory capacity may now be solved.

Received June 1993; revised September 1993

1. INTRODUCTION

Frequency analysis is an important aspect in the design
of analog circuits like filters, oscillators, modulator and
demodulator circuits. In order to cope with autonomous
oscillations and general non-linear effects, a variety of
algorithms for non-linear frequency analysis has been
developed and published. One of the most gensral algo-
rithms is Harmonic Balance, which has been integrated
into the circuit simulator TITAN at Siemens AG, where
it is intensively used for the development of different
kinds of analog circuits (see Feldmann et al., 1992).

This algorithm is reported to suffer from excessive
CPU times and large memory requirements that make
simulations of huge problems slow on a single work-
station or even impossible on a vector computer, because
of insufficient memory capacity.

In this paper we present a parallel algorithm which
performs the computation of Harmonic Balance in a
distributed way on a cluster of workstations and thus
reduces the inherent disadvantages of Harmonic
Balance.

In Section 2, we give a short introduction to the
problem and the structure of the systems of equations
that are generated. Section 3 gives a general outline of
how to distribute the Harmonic Balance as a whole. In
Section 4, we concentrate on the most important aspect,
i.e. the parallelization of the LU-decomposition. The
distribution of the Jacobian is discussed in Section 5.
Finally speedup results of a real life example are analysed
in Section 6.

2. THE EQUATIONS OF HARMONIC
BALANCE

In the following a rough derivation of the equations of
Harmonic Balance is given, for more details see
Feldmann (1992) or Schneider et al. (1993).

The network equations are generated by Kirchhoff’s
laws and form a system of N non-linear Differential
Algebraic Equations (DAE:s):

d
S (x(2), X(1), t):=g(x(2), t)+ CI(X() =0,

with g:R" x R >R" and ¢q:R" —»R". The node poten-
tials that are to be computed are expressed by x € RY.
The static part of the network equations is described by

d
g, the dynamic part by a q(x(t)).

For the periodic solution of this system of equations,
the Harmonic Balance uses the following approach:

K
)—— + Z a; cos(wjt) + b sin(wjt))

with ag, a,, by, ..., ag, by € R".

The (2K + 1)N variables of the 2K+ 1 vectors
Ay, a1, by, ...,ax € RY¥ are determined by a Galerkin
approach, and with the notation X:=(a,,ay, by, ...,
ag, bx)T, the resulting equation is

F(X)=0,

which is solved by Newton’s method, starting with
the value X° In each Newton step v, a linear system
of equations is created and solved by a block
LU-decomposition followed by a forward/backward
substitution. Here, each Jacobian has the structure of a
sparse block matrix (M, ;); j=;,....n, Where each M, ;is a
(2K + 1) x (2K + 1) submatrix. The iteration stops when
the solution is of the desired accuracy. For realistic
applications, the LU-decomposition of the system matrix
requires more than 97% of the overall computation
time, the rest includes all other operations such as model

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy | uo }sanb Aq 0G| 809/589/8/9€/0191E/|ulWOo/Wod dNodlWepes.//:SA)Y WOy PEPEojuUMOQ

686 M. SCHNEIDER, U. WEVER AND Q. ZHENQ

evaluation and forward/backward substitution. Thus it
makes sense to directly parallize the solver.

Figure 1 shows a typically structured Jacobian corres-
ponding to an oscillator circuit (N = 30, 125 non-zero
blocks).

3. GENERAL STEPS OF THE
PARALLELIZATION

In this section we give a rough description of how the
parallelization of Harmonic Balance works.

1. In each process the circuit simulator TITAN is started
with the same input data. First a template is set up
which indicates the position of non-zero blocks in the
sparse Jacobian.

2. In a second step a heuristic distribution of rows to
the processes is determined. The distribution is chosen
such that there is an even distribution in memory
and work. More details are given in Section 5.

3. Now, on each process the total model is evaluated
but only those rows of the Jacobian are generated
which belong to this process. Thus the immense
amount of data which is responsible for more than
95% of the total memory requirement are distributed
among the processes.

4. The fourth step performs the LU-decomposition of
the Jacobian and the forward/backward substitution
of the solution vector. For this, each process waits
for the row-wise results sent to it from other processes,
uses these results for its own computations, and then,
in turn, distributes its own rows to the other processes.
The LU-decomposition requires the largest part of
the total computation time. During this step, there is
a large load on the net, which is a potential bottleneck.
In order to keep idle times low, the parallelization

[LTI T 11

i

-

FIGURE 1. Sparse block structure of a Jacobian.

must be implemented in a rather careful way that will
be presented in the next section.

5. Those parts of the solution vector belonging to the
rows of the Jacobian on one process are now sent to
all other processors in order to allow a new model
evaluation. These communications can be performed
by broadcasting.

Steps 1 and 2 are initialization steps. They can be
performed without any net communication. Steps 3, 4
and 5 represent the Newton iteration and have to be
performed until convergence.

4. PARALLEL LU-DECOMPOSITION

In this section, all for-loops are executed as index sets
(ordering insensitive) or as a list of numbers (ordering
sensitive).

For the following algorithm we define:

® P is the number of processes.

® Ri:={M; My+#0,k=1,..,N},i=1,...,N.
® [.:={1,2,..., P}

® [Lw...wIk =1y a partition of I.

® T7:={TF};j=12,. ..~ With T =1 for M,; non-zero

block and T?;=0else,p=1,2,..., P.
The classical LU-decomposition is given below:

Algorithm 1:
fori=1,..,N
[Q-R=M;
for(jefi+1,...,N})
if (M #0)

[Mjis=M;;* Mi;' = M;;-R™1- Q7!
for (kefi+1,..,N}):
L i (My#0) My:=My—M;- M,

L

For the computation of Mj the QR-decomposition
of M;; is used. A simple way of parallelizing the
LU-decomposition is shown in Algorithm 2.

Algorithm 2:
fori=1,...,N
[for (pefl,..., P}):
[if (ielR)
[Q'R=M;
| send row R; to all other processes
else
wait for row R; (1)
for (jelg,j>1i) (2)
if (M; #0) (3)
[Mj=M;-M;'=M;-R™'-Q!
for(kef{i+1,...,N}):
L i (My#0) Mj:=Mj, — M;;* M

L

In this algorithm, all processes are synchronized at (1),
and then the j-loop is parallelized at (2). This procedure
is optimal with respect to processor utilisation for a full

THE COMPUTER JOURNAL,

VoL. 36,

No. 8, 1993

20z Iudy | uo }sanb Aq 0G| 809/589/8/9€/0191E/|ulWOo/Wod dNodlWepes.//:SA)Y WOy PEPEojuUMOQ

DisSTRIBUTED CIRCUIT SIMULATION 687

matrix. In a sparse matrix, after receiving row R;, a
process due to (3) may very often stay idle until receiving
row R;, ;. This can take some time, because the process
which processes R, is often busy with the subtraction
of R;. In order to avoid these idle times, we claim that:

® Any concurrencies that arise from the sparseness of
the block matrix must be detected and exploited
dynamically at runtime.

® Every row where the computations are finished must
be sent immediately only to those processes that need
these data.

® Every computed or received result has to be processed
as soon as possible. If there is any choice, working
steps referring to rows with smaller numbers should
be performed first.

In Algorithm 3 the meaning of T% is slightly changed.
This change indicates the progress of computations on
these rows:

T = 0: row R; does not need to be subtracted from
row R;.

T?;= —1. row R; must still be subtracted from row R;.

T%= 1. row R; has already been subtracted from
row R;.

The LU-decomposition is performed by:

Algorithm 3:
for (pe{l,..., P}):
[Initialize_For_LU-decomposition
| Compute_LU-decomposition

In Initialize_For_LU-decomposition, process p contains
all rows R;, i € I%. The index set IZ which contains the
indices of those rows of process p having finished the
computations is created as the empty set.

Initialize_For_LU-decomposition:
for (ielI})
[for (je{l,...,i—1})
if (Th=1) Th=-1
L Ig:= &

Then, in Compute_LU-decomposition, process p repeats
the following loop as long as not all rows of process p
have been completely processed. (Label is referenced in
Phase_Of_Subtracting.)

Compute_LU-decomposition:
Label: while (I§\ I} # &)
[Phase_Of_Sending
| Phase_Of_Subtracting

During the Phase_Of_Sending, at first those rows of
process p from which a row must no longer be subtracted
any more, but which still do not belong to 12, are united
in the temporary index set I£. In each of these rows, the
diagonal block is QR-decomposed first. Then, for this
row, the set I? of just those processes that can make use
of row R; is built. In this case, the corresponding process
q needs row R;, and if g #p, q is included in I?. The

diagonal block M;; and all blocks to the right of it in
row R; are sent to all processes in I?. Finally, all rows
of I} are included in If, because the computations are
completed.

Phase_Of_Sending:
[IF:={ieIR\I5: T+ —1,Vj<i}
for (ielf)
[M;=0Q-R
IT:={qe{l,..,P}\{p}:3jel4: T, = —1}
| for (q € I?) send row R; to processor q
LI§=1501}

In the Phase_Of_Subtracting, the set I? is built containing
all indices of rows which are completely computed and
which process p can handle. I? is the union of I3 and
I? which must be evaluated at this time. In I? all rows
are registered that are sent to p from the other processes
and that have not yet been removed by process p. Then,
for each element i of I? in ascending order the set I7,
(indices of rows) is built up that belong to p and from
which row R; can now be subtracted. Then, where R; is
external, i.e., was sent from another process, a check is
made to determine whether there remains a row of
process p to which R; can be applied. If not R; is
removed. Then the Phase_Of Subtracting is quit by a
jump to Label at the start of Compute_LU-decomposition.

Phase_Of_Subtracting
[Determine I
IP:=1201?
for (ielb)
[1={jelR\I]: T= -1
ATH#—-1v Th=0,Yk<i)}
if (15, # &)
[for (jel3,)
[Mj=M;-R™'-Q!
for (ke{i+1,...,N})
if (T #0) Mjk’=Mjk—Mji'Mik
[T%:=1
ifG¢lIR)
[Th={jelR:j>1,TH=—1}
Lif I}, = &) remove row R,
L

L
| goto Label

The following properties together with the uniqueness
of the LU-decomposition imply the correctness of the
algorithm:

1. The algorithm terminates after (N + 1)N/2 steps
because after each step the number of {Uf_,I?} or
{p-1ZY;=, T%} increases.

2. Each update operation is an equivalence transforma-
tion in the sense of linear algebra.

3. After termination, all blocks under the diagonal one
are updated (T%# —1, Vp=1,..,P, i,j=1,..,N)
and all diagonal blocks are QR-decomposed
(I3=1%,Vp=1,...,P).

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy | uo }sanb Aq 0G| 809/589/8/9€/0191E/|ulWOo/Wod dNodlWepes.//:SA)Y WOy PEPEojuUMOQ

688 M. SCHNEIDER, U. WEVER AND Q. ZHENQ

5. THE DISTRIBUTION OF THE ROWS

The efficiency of the outlined algorithm depends strongly
on the distribution of rows among the processes. Efficient
exploitation of memory demands an even distribution
of blocks among all processes. Even distribution of work
requires a more sophisticated strategy. For instance, we
have to prevent that successive rows are computed by
the same process. Otherwise, according to algorithm 3
from Section 4, after a row R; is subtracted from a
row R;, R; would not be sent despite being ready for it,
because the process that possesses R; is busy with
subtracting R; from R;,,, R;,, and so on. This measure
also increases the degree of concurrency of elimination
steps on different rows for each process.

These requirements are realized by the following heur-
istic algorithm.

1. Define the average number of non-zero blocks in a
row and of blocks on a process:
Ag:=(number of full entrances of the block matrix)/N
Ap:=(number of full entrances of the block matrix)/P

2. Distribute the rows with more than C x Az non-zero
entries. (C is an experimentally determined value:
C =5 for the example in Section 6)

3. Distribute the remaining rows with a high or a middle
index number:

i:=N
repeat
[B:={remaining processes with less than Ap
blocks}
for (je{l,...,|B|}):
contribute row R;_;,, to process j
Li=i—|B|
until(i < N/3)

Change the process number of successive rows until no
process has more than Ap + 2 blocks.

4. Distribute the remaining rows such that every process
has between Ap —2 and Ap + 2 submatrices.

Other strategies may try to achieve an even distribution
of the number of matrix operations or the number of
external blocks that every process must read. By trans-
forming the block matrix according to nested dissection
as shown in George (1973), we can also attempt to
reduce the network load and interprocess data depend-
ences. But for real life simulations, the computation on
single rows becomes dominant, if many computers are
employed. Then, for any strategy, further splitting of
blocks or rows is necessary.

6. RESULTS AND DISCUSSION
6.1. Hardware

Our algorithm has been implemented on a workstation
cluster at the Institut fiir Informatik of the Technische
Universitdit Miinchen. It consists of Hewlett-Packard
HP720 workstations that are connected by an Ethernet
at a transfer rate of 10 MBit/s. At the chair of Professor
Zenger, in a parallelization of another algorithm which

has far less communication and inherent data depend-
ence, 110 workstations achieved a performance of more
than 1 GFlops (see Griebel et al., 1993).

For our implementation we used a cluster of 16 work-
stations. Each HP has about 16 MFlops and a free main
storage of about 15 MByte (see Bonk and Riide, 1992).
On 14 HPs, there is an additional swap space of
15 MByte, 2 HPs have an extended swap space of
300 MByte. We achieved 8 MFlops for matrix multi-
plications, and less for the QR-decompositions and for
the calculation of Mj;- M;;! on a single machine.

6.2. Network communication

Almost all net communication takes place during the
LU-decomposition. After the computations in a matrix
row are finished, those blocks to the right of the diagonal
block are sent to the process utilizing these data. In our
real life examples, there are only two or three such
processes, because of the sparseness of the matrix. In
this test example with a matrix size of 200 MByte,
250 MByte have to be sent. Due to the occurrence of
collisions, it is realistic to assume that on an Ethernet
the transmission of 250 MByte takes between 500 and
1000s. Even if the distributed LU-decomposition
requires more than 1000 s, the fact that the row transmis-
sion is considerably delayed will increase the idle times
of the processes and, consequently, the total computation
time significantly.

In order to reduce the load of the network at the
Institut fiir Informatik at the Technische Universitit
Miinchen we started to implement a broadcast proced-
ure based on the UDP protocol. It allows each data
package to be transferred only once, and in the course
of this one circulation, it is read by all interested
processes. Thus, in our test example only 100 MByte
would have to be transmitted. First experiences with our
broadcast procedure make us expect that the data will
then be transferred on the Ethernet within about 150 s.

Since this broadcast procedure is not fully available,
we decided to send the floating point numbers with only
4-byte accuracy. This decision is based on the assump-
tion that the corresponding rounding errors caused
thereby can be balanced out by a few extra Newton
iterations. In our example, the transmission of the
resulting 125 MByte of data can be handled by the
Ethernet even with collisions in 250 to 500 s.

6.3. Test results

The efficiency of the parallel implementation has been
demonstrated on an analog converter circuit. It consists
of 86 bipolar transistors and has 247 nodes, i.e. N = 247.
1631 blocks of the Jacobian are non-zero. During the
LU-decomposition 247 QR-decompositions, 696 matrix
divisions and 2160 matrix multiplications must be per-
formed. In most tests, the number of frequencies K is
set to 59, that is the dimension of one block is 119.
Then, each block has a size of about 120 KByte if the

THE COMPUTER JOURNAL,

VoL.36, No.8, 1993

20z Iudy | uo }sanb Aq 0G| 809/589/8/9€/0191E/|ulWOo/Wod dNodlWepes.//:SA)Y WOy PEPEojuUMOQ

DiISTRIBUTED CIRCUIT SIMULATION 689

TABLE 1. An LU-decomposition with different K on 15 workstations

39 49 59 69 79

264 396 550 740 960

88 113 198 265 352
231 6.01 10.5 16.80 2521

Number of frequencies K 19 29
Computation time (s) 84 180
Storage needed (MByte) 22 49
Floating point operations (GFlop) 0.35 1.25
5 — T
45 :
4 t+ p
[=9
= 357t 1
'
3 37 -
2.
S 25t
2t -
1.5t 1
1 L 1
12 10 15

Number of Computers

FIGURE 2. Speed-up results for a entire Newton iteration.

floating point numbers are given in 8-byte accuracy. A
QR-decomposition of one block needs 1.1 MFlop, each
of the others 3.4 MFlop. Due to the different code
optimizations, a matrix multiplication of these blocks
needs 0.4s, and a QR-decomposition and a matrix
division 1.0s. The total amount of data of the system
matrix is 198 MByte and 10.5 GFlop must be executed
for a LU-decomposition.

We will present the speedup results of the computation
of an entire Newton iteration including the
LU-decomposition for our test problem with K =59 on
1,2, 10 and 15 workstations. The measured computation
times are 102, 62, 28 and 21 min, respectively. The
corresponding speed-up diagram is given in Figure 2.

The fact that the speedup results do not scale with
the number of processors is due to the chosen example.
Many circuit elements accessing the same node produce
a row in the Jacobian with very many non-zero blocks.
Here one row has 84 non-zero blocks in contrast to six
blocks on average. Therefore no even distribution of
work can be achieved for several processors.

For larger examples (N > 247) this disadvantage can
be balanced out by a reasonable distribution of rows.

The various K values and the corresponding times
are given in Table 1 that also includes the corresponding
memory and CPU requirements.

7. CONCLUSION

The Harmonic Balance is one of the most general
methods of non-linear frequency analysis. The inherent
disadvantages of this method—enormous memory and
CPU requirements—can be compensated by parallel
implementation on a cluster of workstations. Since the
Jacobian is created, stored and worked on in a distrib-
uted way, it is possible to solve problems that need
extensive memory capacity. Since the sparseness of the
block matrix is additionally exploited during the
LU-decomposition good speedup results have been
achieved.

Acknowledgements

The authors would like to thank Professor Zenger and
the department of Dr Gilg for many helpful discussions.

REFERENCES

Bonk, T. and Riide, U. (1992) Performance Analysis and
Optimization of Numerically Intensive Programs. SFB-Bericht
342/26/92 A, TU Miinchen, Germany.

Feldmann, U., Wever, U., Zheng, Q., Schultz, R. and Wriedt,
H. (1992) Algorithms for modern circuit simulation. Archiv
fiir Elektronik und Ubertragungstechnik, 46, 274-285.

George, A. (1973) Nested dissection of a regular finite element
mesh. SIAM J. Numer. Anal., 10, 345-363.

Griebel, M., Huber, W., Stortkuhl, T. and Zenger, C. (1993)
On the parallel solution of 3D PDEs on a network of
workstations and on vector computers. Springer Lecture
Notes, in press.

Schneider, M., Wever, U. and Zheng, Q. (1993) Parallel
Harmonic Balance. Paper presented at VSLI-Conf. 1993,
Grenoble, France.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy | uo }sanb Aq 0G| 809/589/8/9€/0191E/|ulWOo/Wod dNodlWepes.//:SA)Y WOy PEPEojuUMOQ

