GRIDS—A Parallel Programming System for
Grid-Based Algorithms

U. GEUDER, M. HARDTNER, A. REUTER, B. WORNER AND R. ZINK

Institute of Parallel and Distributed High Performance Systems, University of Stuttgart,
Breitwiesenstrafle 20-22, D-70565 Stuttgart, Germany

Received June 1993; revised September 1993

1. INTRODUCTION

There is general consensus that scientific progress is
hampered by two problems: lack of funding money and
shortage of compute power. The problem collections
such as the ‘grand challenges’ (National Science
Foundation, 1991) have been compiled in order to
illustrate the pervasiveness of this phenomenon. There
are many pressing problems in climatic research, high
energy physics, aerodynamics, genetic engineering and
drug design (Smith et al., 1991; Simon, 1992) calling for
much more compute power than current supercomputers
can deliver. There is also a consensus—albeit on a
smaller scale—that conventional scalar and vector pro-
cessor architectures will never reach the levels of per-
formance required, simply because of the speed of light.
Therefore, the next quantum leap in computing perform-
ance can only be achieved by harnessing parallelism.
However, parallel computing is still a ‘niche’ technology.
Some special, isolated problems that have been imple-
mented on a parallel machine (Ayakanat et al., 1988;
Lee et al., 1988; Evans and Yousif, 1988)—usually with
considerable effort—demonstrate both the feasibility and
usefulness of the approach, but whenever somebody gets
a significant program running on a parallel computer,
this is still considered interesting news, which illustrates
the point.

Why is this so? One reason is that parallel computers
still are experimental vehicles rather than computational
commodities. They are difficult to use, they have poor
availability and, given the fact that they are not general
purpose, they are pretty expensive. However, the real
reason has to do with software. For all the large,
interesting scientific problems, there exists a huge body
of code, usually written in FORTRAN or some other
classical, sequential programming language. In many
cases, the performance-critical parts of this code have
been carefully optimized for some specific machine archi-
tecture—for vector machines mostly. When this code is
put on a parallel machine without further measures, it
will use exactly one of its processors, resulting in terrible
performance. So there are two options: (i) to parallelize
the existing code and (ii) to completely rewrite the
critical parts with a parallel machine as the target
architecture.

This state of affairs has two major consequences.
Programs designed to run on a parallel computer not
only have to consider the algorithmic aspects, they also
have to deal with all the operating system and commun-

ication issues implied by parallel execution. Since the
functionality for controlling parallel execution is highly
idiosyncratic for each type of parallel machine, such
programs are strictly tied to the platform for which they
have been developed.

Thus in order to make parallel programming more
useful and more efficient, it will be necessary to consolid-
ate some of the low level functionality. One such effort
is the standardization of a message passing interface
(MPIF, 1993). On such a platform, it will be easier to
develop programming models that can be supported on
a variety of platforms, rather than on just one type of
machine.

The GRIDS system described in this paper is one
such effort. Its goal is to offer the engineer or scientific
user (as usual in scientific computing, no distinction is
made between application programmer and user) access
to efficient parallel computing without the need for
explicit parallel programming. This is certainly less than
the ultimate goal of fully automatic parallelization, but
it is feasible with current technology, and it is very useful.

The paper is organized as follows. Section 2 presents
an analysis of basic approaches to automatic paralleliz-
ation. In Section 3, the GRIDS approach is introduced.
Its programming model is described in detail in
Section 4. In Section 5, we present a sample GRIDS
program to give an idea of how the system is used.
Section 6 discusses the key implementation aspects.
Section 7 presents a summary and points to a number
of extensions to the GRIDS system.

2. BASIC APPROACHES TO AUTOMATIC
PARALLELIZATION

Parallel programming typically follows a ‘holistic’
approach. Algorithm design, data partitioning, message
exchange and synchronization are considered explicitly
and must be handled by the programmer. This is an
unfortunate situation, because coding a, say, numerical
algorithm is a different issue from controlling its parallel
execution. Coping with parallelism is inherently complex
and error-prone, and therefore should be done automat-
ically whenever possible. The current status of parallel
programming is very much like the early days of
machine-language programming, where the programmer
was responsible for everything, from the application
down to the external storage devices.

A compiler capable of automatically parallelizing
arbitrary sequential programs, written in conventional

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

GRIDS 703

programming languages, is infeasible for fundamental
reasons, which we will not discuss here.

Given that the magic transformation of FORTRAN
‘dusty decks’ into efficient parallel programs is beyond
reach, research into parallel programming focuses on
two aspects:

® The first line of research assumes that the algorithms
are coded in conventional sequential programming
languages. One then attempts to augment these pro-
grams with additional information (expressed in a
descriptive, non-procedural way) that assists a com-
piler in detecting independent portions in such pro-
grams so it can automatically generate the code for
its parallel execution. This approach typically is called
‘semi-automatic parallelization’. Its major advantage
is that it is still as ‘general purpose’ as the program-
ming language used; the price to be paid for this
generality is a potentially low parallel efficiency of
the resulting code.

® The second line of research does not strive for general-
ity but for performance. It still uses conventional
sequential programming languages, but the annota-
tions are assumed to pertain to certain types of
applications or algorithms. This restricts the number
of parallel computations to be generated by a com-
piler to a well-known class and thus can be planned
ahead. Usefulness and scope of this approach are
largely determined by how general the application
class is that the system is based on.

There is a third line of research aiming at fully automatic
parallelization. In this case, one gives up the use of
conventional programming languages and assumes
other, non-procedural languages instead, for which a
compilation into parallel units of execution is feasible.
The most notable example of this category is SQL
(Pirahesh et al., 1990; DeWitt and Gray, 1992). However,
since both the type of language and the application
domain are radically different from what is typically
found in scientific computing, we will ignore this
approach for our purposes.

2.1. Semi-automatic parallelization

Semi-automatic parallelization based on hints from the
programmer generally exploits the potential for data
parallel execution of programs written in a conventional
programming language. This language is moderately
extended to allow for the control of parallelism, when-
ever it is required. The approach is designed to support
medium to coarse-grained data parallelism. Typical units
of parallel execution are loop bodies, where the set of
values of the loop counter is distributed across the
compute nodes.

The programmer has to understand data partitioning,
and has to make sure code pieces work correctly and
are instantiated at different processors. This requires a
certain coding discipline, in particular restricted use of
pointers.

High performance FORTRAN (HPFF, 1993) is an
example of this approach. Data partitions are described
by annotations to a conventional FORTRAN program.
Further annotations can be used to assert the independ-
ence of statements with respect to control and data flow.
All such annotations are made by the programmer and
serve as hints to the compiler in order to generate code
for parallel execution.

An increasing number of tools support the program-
mer during the annotation process by analyzing data
dependencies, creating usage statistics of critical state-
ments and program sections, and so forth (Zima et al.,
1988; Levesque, 1990; Kennedy et al., 1991).

2.2. Restricted automatic parallelization

A different approach is pursued by what could be called
‘restricted automatic parallelization’. Rather than just
creating the code that controls the parallel execution,
the declaration, allocation and maintenance of the data
structures containing the independent data partitions is
also done automatically. This is as close to automatic
parallelization as one can get with conventional pro-
gramming languages—at the price of restricting applic-
ability to certain types of algorithmic structures.
Examples of this approach are: Paragrid (Poggi et al.,
1990) and GRIDS (Geuder et al., 1993).

The compiler incorporates knowledge about the inher-
ent parallelism for that class and thus can generate
efficient parallel code for any given instantiation. In the
ideal case, the programmer does not have to deal with
any aspect of parallel execution. All that is required is a
proper use of the descriptive language constructs that
describe the overall computational structure.

3. THE GRIDS APPROACH

The key observation motivating the GRIDS approach
is the following. Users (application programmers) in the
scientific domain typically have a very good understand-
ing of the structure of the problem they want to solve.
However, they do not want to be bothered with mapping
the structure onto a parallel runtime environment—
which in many cases is much more complicated than
solving the problem itself. Users do also have a good
idea of what domain decomposition means and how it
applies to their problem. Yet they do not want to manage
the domains and map them onto processes, threads, etc.

This is exactly the gap the GRIDS system tries to
bridge. It asks the user to program its iterative solvers
in a sequential programming language, in the same
fashion this would be done on a conventional machine.
It also provides the user with an interface that allows
him to describe the problem structure in terms of domain
decomposition, from which independent units of parallel
execution can be derived. Once this is done, the indi-
vidual domains together with the iteration procedures
can automatically be mapped onto processors and
processes.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

704

U. GEUDER et al.

Of course, neighbouring domains will share certain
variables and there will also be the need for global
variables, but all this can be expressed by the user in a
descriptive rather than a procedural way, and the
GRIDS compiler can automatically generate code for
synchronizing access to such shared variables and min-
imize the delay incurred by synchronization. The runtime
system provides the functionality to manage and execute
the precompiled GRIDS program on a parallel platform.

The key components of the GRIDS approach are
shown in Figure 1. They will be described in detail in
the rest of the paper. All three components, the applica-
tion class, the programming model and the runtime
system, must be adapted to the underlying algorithmic
‘metaphor’, i.e. iterations on grids, to achieve high paral-
lel efficiency.

Grid-based applications can be characterized as
follows:

® The problem has an underlying topology defining
the ‘grid’, i.e. a set of (heterogeneous) elements among
which neighbourhood relationships are defined.

® [terative calculations are carried out on the constitu-
ents of the grid until the solution converges, or the
last time step has been reached, or until it is decided
that the iteration does not converge.

® Values of one iteration step are computed from the
local variables of an element and (some of) its
neighbours in the previous step.

As will be demonstrated later, the notion of ‘clement’
is very general and should not be confused with the
same word in the context of ‘finite element’ modeling
(see Section 4.1). In the typical case, an element is a
point, an edge, a surface, a cube, etc.,, but it can be
associated with other constituents of a problem space.

Grid-based algorithms can be found in computational
fluid dynamics and structure mechanics, just to mention
a few. The multi-grid algorithm for solving partial differ-
ential equations is a generalization of this idea.

The components of the GRIDS system reflect this
style of grid-based computation. The notions of elements,
associated variables, topology, neighbourhood, etc., are
part of the GRIDS programming model. The user
expresses the computations using these application level

T'(P) = g(F(P) +£(Q)) +1(Q2)))

Grid-based
Applications

—

-_—
°
Programming Model Parallel
Runtime System
FIGURE 1. Key components of the GRIDS approach.

terms. The complexity of parallel programming is hidden
underneath the (topological) domain decomposition.
For example, there is no way the user can talk about
messages—and no need to do so on his part.

While the GRIDS programming model is geared
towards general MIMD architectures, the runtime
system must exploit the properties of the underlying
hardware in order to achieve efficient resource utiliza-
tion. It also has to map the units of parallel computations
onto processors and processes, applying standard optim-
ization techniques such as message bundling, send ahead,
etc. In addition to that, the runtime system is responsible
for load balancing. The GRIDS runtime system is pre-
sented in detail in Section 6.

4. THE GRIDS PROGRAMMING MODEL

This section describes the ideas behind the GRIDS
programming model. For a more detailed explanation
of the user interface, syntax, and the system structure
see Geuder et al. (1993).

As was mentioned before, a GRIDS program consists
of two parts, a description of the computation topology
(the grid) and a description of the algorithm to be
executed on the elements of the topology. Beside the
advantages discussed below, the separation of topolo-
gical and algorithmic aspects enables also the potential
of code reuse, because the same algorithms can be used
with different topologies at no extra cost on the program-
mer’s part.

Since all topological aspects such as neighbourhood,
variable sharing, synchronization, update propagation,
etc., are mapped to simple language constructs that can
be used in a conventional sequential manner. Separating
the topological and the algorithmic part effectively
means separating the handling of parallelism from the
sequential algorithms. The topology can be managed by
the GRIDS system instead of being coded into the
application program, thus keeping programming free of
irrelevant technical details.

Moreover, the topology declaration provides informa-
tion about data dependencies that can be used by the
precompiler and the runtime system to generate efficient
parallel code and schedule it accordingly.

The algorithms to be executed for each topological
element are typically nested iterative methods. These
algorithms are represented by the problem-specific itera-
tion procedures. Different procedures can be invoked as
steps in different phases of the overall computation.

All this is specified in a descriptive manner when
declaring the script. By script we denote a set of declara-
tions saying which algorithms (step routines) are to be
executed on which topological element under which
circumstances. The roles of each component will become
more obvious during the following discussions and
examples.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

GRIDS 705

4.1. Topology and variables

All computations in GRIDS are based on an underlying
topological structure, the grid. A grid consists of grid
elements of different types and of neighbourhood rela-
tions between the grid elements. GRIDS does not define
any semantics, neither in the typing of grid elements nor
in the typing of the neighbourhood relations. Figure 2
gives an example, using a simple geometry and its
derived topology. Note that vertices and surfaces are
Just different types of topological elements in GRIDS,
the interpretation of which is left to the application.
Geometric information—if there is any—is not treated
differently from any other values stored in the element
variables. There are no restrictions imposed on the
topology. The number of element types and types of
neighbourhood relations is only limited by the machine
resources.

4.1.1. Grid elements

A grid element, ie. an element maintaining topological
relations with other elements, has a user-specified set of
local data. All variables in a GRIDS program are
associated with a grid element and accessible only in the
local context of this grid element. There is also a way of
using global variables, but we will ignore this for the
current.

An iteration algorithm typically refers to different
types of grid elements. Of course, each type has different
local variables, and different neighbourhood relations.
Each variable is replicated for each grid element of the
same type. All instances of the same variable are called
a variable pool.

Each grid element may maintain different neighbour-
hood relationships to other grid elements of the same
or any other type. In the simple three-dimensional
example used in Figure 2 one can define the vertices and
surfaces as different types of grid elements, containing
different variables. One neighbourhood relationship con-
nects vertices that have common edges, another one
connects adjacent surfaces.

10

topological
description

grid element types: neighborhood relazion types:

IO vertex m— vertex-vertex

. of s sUrface-vertex
suriace surface-surface

FIGURE 2. Topology example.

4.1.2. Neighbourhood relations

The neighbourhood relations specified in the topology
describe the legal directions of data access ‘out of’ an
element. Neighbourhood relations are typed in order to
give additional information for selective use of data.
According to their role as data access specifications, the
relations are not necessarily symmetric nor transitive
nor reflexive. In Figure 2 the neighbourhood relation
surface—vertex connecting surface elements to vertex
elements is unsymmetrical, since vertex elements cannot
access variables of surfaces via this neighbourhood
relation.

Each grid element may have several neighbours within
one relation.

4.1.3. Sets of grid elements

Types of grid elements can be refined into sub-types,
because often algorithms need to execute different opera-
tions on elements of the same type or the sequence of
steps has to be changed. For example, one may have
specified the type ‘node’, but a node is updated differently
depending on whether it is a boundary node, or an
internal node. Every ‘node’ has the same local variables,
but the computations performed are different. Therefore
the elements of a certain type can be partitioned into
disjoint sets (sub-types). Algorithms (step routines) can
be associated with either types or sub-types.

4.14. Global data

As mentioned before, all variables in GRIDS are associ-
ated with grid elements. In other words: no global
variables accessible from everywhere exist. However, the
effect of a global variable can be achieved by defining a
special grid element that is connected to every other
element. Since explicitly declaring such elements is rather
tedious, GRIDS provides the type of a global element
as part of the language. It also treats these elements as
‘special citizens’ by replicating their data across all nodes
in order to speed up access to the global information.

Although global variables are not heavily used in
grid-based computations, there is at least one common
case where they are needed. Convergence of an iteration
is a property of the entire computation, not of a single
grid element. Therefore, the result of a convergence test
has to be stored in a variable attached to a global
element.

4.2. Algorithms associated with grid elements

The basic concept of the GRIDS system is a two-tier
approach to coding the algorithms—which is why the
topology description was introduced in the first place.
At one level, the iterations are specified from the local
view of a single grid element. At the next level, the
iteration on the whole grid is described from a global
perspective.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy PaPeojumod

706 U. GEUDER et al.

4.2.1. The local view: step routines and access functions

GRIDS executes steps in the context of one grid element.
A step is a sequence of operations on the data of this
element. The description of a step contains information
about the variables used (and updated) by the step. It
can use data values of neighbouring elements as input,
but it will not refer to those variables again during its
execution.

The program code to carry out the computation of a
single step is contained in a step routine. Technically
speaking, step routines are parameterless subroutines
implemented in say FORTRAN77, or C, or whatever.
They use the GRIDS constructs to access the element
variables and to refer to the topology.

GRIDS automatically grants access to all variables
needed. A step routine has access to variables belonging
to either the current element or to its neighbours. The
step routine can read and write all variables of the local
element; in fact, the task of a step routine is to iterate
the contents of some. variables of the current element.
Access to variables of neighbouring elements is restricted
to read-only.

The variables of the current element can be accessed
using the function Own_Value (variable). This expression
can be used anywhere in the code. The read access to
variables of other grid elements is achieved using the
function Neighbour_Value (neighbour_relation, neigh-
bour, variable). Both functions are generic; the type is
determined by the GRIDS preprocessor. Topological
information can be determined by ancillary functions,
such as get_neighbours (neighbour-relation), which
returns the number of neighbours in a neighbourhood
relation.

4.2.2. The global view: script

The script is an implicit description of the data flow
using GRIDS constructs and describes the structure of
the iteration from a global perspective. It defines the
order of computations to be carried out on a grid. From
this global perspective, the computation is a sequence
of step specifications together with rules that say when
an iterated value of an element can be made accessible
to its neighbours (grid_update). Each step specification
names a step routine and a set of grid elements, on
which the routine is to be executed.

Each step has its well-defined position within the
sequence of grid updates. This allows the precompiler
and the runtime system to determine the relative posi-
tions of all steps with respect to each other. On the
other hand, the programmer knows precisely in which
‘global’ state a step is executed.

Iteration. Grid computations are iterative computa-
tions. Putting it simply, each iteration (used to denote
one step of an iterative method) consists of two phases.
First, there is the local computation of new values,
followed by the propagation of these values to the
neighbours. It is important to understand that variables

of neighbour elements do not change their values as
visual from the outside during the first phase. Changes
become visible only when the next round of iteration
starts. After phase two of each iteration, all variables
are in a globally consistent state. Their values can now
be used for convergence tests and output operations. It
should be noted that the ‘globally consistent state’ does
not imply the need for a global synchronization of
the system.

In the general case, many algorithms iterate on differ-
ent variables. These variables may depend on each other.
In such cases, computations have to be carried out in a
specified sequence. This requires new values to be prop-
agated to neighbour elements within an iteration. This
is supported by so-called grid updates, which allow for
propagating of selected variables to neighbouring ele-
ments at arbitrary (user-defined) points in time.

Grid update. Within a single iteration, propagation of
updated variables is explicitly controlled by grid updates.
Step computations change the values of variables local
to the current element. A grid update makes these
changes visible to neighbouring elements. A grid update
is executed in virtual synchrony for all variables in the
same variable pool. Again, no actual global synchroniza-
tion is performed by the system, but the user can write
his code as though global synchronization would be
enforced.

Each step routine on a grid element accesses all non-
local variables (those belonging to neighbours) in the
state after the last grid update for these variables. If a
local variable of a grid element is modified by a step,
the effect is local until the next grid update for this
variable has occurred. The access to variables in neigh-
bouring grid elements always returns the ‘old’ value,
independent of the state of the calculation on other grid
elements. This is essential for being able to freely schedule
computations on different grid elements in parallel.

Convergence test. Determining convergence of the
overall computation involves global information. In a
parallel environment, it can be expensive to explicitly
create a globally consistent state. In GRIDS, the trans-
ition to the next iteration is an occasion to gather
information pertaining to such a state.

The convergence test is performed using a set of
functions that implement global operations such as
global sum or average for a variable pool. Because
global operations are expensive, the system provides
them in optimized form. There exists the possibility to
skip the execution of the convergence test for some
iterations.

Order of execution. The GRIDS programming model
does not define a strict execution order for the step
routines. The only ordering that is relevant for execution
control results from the data dependencies incurred by
interplay of data access and grid update among the
neighbouring elements.

Therefore the runtime system will rearrange the execu-
tion of steps quite liberally to make sure the maximum

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

GRIDS 707

level of parallelism is achieved. This holds for data
parallelism as well as for function parallelism. For
example, steps not participating in a certain grid update
may change order with this update.

5. AN EXTENDED EXAMPLE

This section demonstrates the use of all components of
the GRIDS system. As a sample application we have
chosen the solution of a two-dimensional steady flow
problem using the Euler equations. A simple finite
volume method with linear convection is implemented.
For a complete syntax description see Geuder et al.
(1993).

5.1. The declarations

In this example three different grid element types are
defined; triangles, edges and nodes. Triangles are associ-
ated with all the conservation variables and, of course,
represent the finite volumes. The flow variables are
associated with the edges and nodes carry the geometric
information (coordinates). A global element is used to
execute the convergence test and to control the iterations.

There are several sub-types defined for the three grid
element types. Edges are distinguished into the sub-types:

EdgEl Internal edge with two adjacent triangles,
default.

EInBnd Boundary edge with one adjacent triangle,
wall boundary condition.

EExBnd Boundary edge with one adjacent triangle,
free flow boundary condition.

For triangles there is only one type TriEl, because the
flow is computed along the edges, and integration is
done accessing the values associated with the edges.

The neighbourhood relations in this example are
defined according to the access requirements from one
grid element type to the variables of elements of the
same or different element types. To calculate the triangle
area, the triangles need to access the coordinates of their
three bounding nodes. Therefore, a neighbourhood rela-
tion- TriNod is defined, linking triangles to nodes. An
Edge grid element accesses the coordinates of its end
nodes via the neighbourhood relation EdgNod binding
edges to nodes.

o node element

A triangle element
/ edge element

neighborhood
relation

e

FIGURE 3. Grid element types and neighbour relations.

NodEl

Values X: double precision, /* X coordinate */
Y: double precision, /* Y coordinate */

EdgEl

Values FIRho: double precision,
FIRhoU: double precision,

/* Flow across the edge */
/* Flow across the edge */

/* Access of coordinate values */
/* Flow directed “From -> To” */

Relations EdgNod with NodEl,
EdgTriFrom with TriaEl,

EdgTriTo with TriaEl
Tags EExBnd, EInBnd
TriaEl
Values Area: double precision, /* Area of the triangle */
Rho: double precision, /* Density */
:I:DT: double precision, /* difference to last iteration */

/* Used for local boundary info */
/* Access of coordinate values ¥/

Bander: integer
Relations TriNod with NodEl,

TriEdgFrom with EdgEl, /* Flow is directed “From -> To™ */
TriEdgTo with EdgEl
Global CntrEl
Values Iter: integer, /* Number of iteration */
Res: double precision, /* Residual */

FIGURE 4. Sample GRIDS program (declarations part).

Two neighbourhood relations are defined for the Edge
type to associate edges with triangles. They are called
EdgTriFrom and EdgTriTo, respectively, thus estab-
lishing a direction for the flow. The same is described
from the triangles perspective by the relations
TriEdgFrom and TriEdgTo, respectively. The topolo-
gical elements for the two-dimensional flow problem are
illustrated in Figure 3. To give an idea of the descriptive
elements of the GRIDS language, an excerpt of the
topology declaration is shown in Figure 4.

5.2. The script

This section illustrates the description of the iteration
process from the global perspective. Since the computa-
tion is very simple, only one type of iteration without
nesting is sufficient. The first phase of the iteration
computes new approximation of the flow for all edges
and propagates the new values to neighbours
(Grid_Update). The second phase integrates the conser-
vation variables for all triangles and makes them access-
ible to the neighbours. Finally, a test for convergence is
done. This strategy is specified by code as illustrated in
Figure 5.

BEGIN ITERATION
FlowEdges(EdgEl,EExBnd,EInBnd) /* calculate flow ¥/

Grid_Update(EdgEl, FIRho, EdgEl, FIRhoU, ...) /* make the new values visible to */

/* neighbor elements */
Integrate(TriaEl) /* calculate new state */
Grid_Update(TriaEl Rho, ...) /* make the new values visible to */
/* neighbor elements */

END ITERATION
/* gather global state */

CONVERGENCE Ctest(CntrEl)

FIGURE 5. Sample GRIDS program (script part).

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

708 U. GEUDER et al.

5.3. The step routine

This section shows the use of generic GRIDS functions
accessing both local variables and data of neighbour
elements. These functions allow the user to write sequen-
tial code that can automatically be executed in parallel.

In the sample script, there are two step routines and
one convergence test. The iteration step routines
FlowEdges() and Integrate() calculate the new values
for the flow, conservation variables, respectively. In
order to illustrate the concept, the code for the step
routine Integrate() is shown in Figure 6 in some detail.

5.4. Generating a specific topology

The specifications made so far describe the type of the
problem to be solved, they declare the type of topology
to be used, etc. For solving any given problem, however,
we must instantiate this type description by generating
specific triangles, specific edges, and so on. In addition,
some initial values of local variables must be set. There
is a set of functions to instantiate a pre-declared topo-
logy. Of course the size of any realistic topology descrip-
tion is too large to be presented here completely. So we
restrict ourselves in Figure 7 to show some sample calls
that can cover the idea. Note that this sequence was
generated by a simple filter program from the output of

C
(TriaEl, Area IN, Rho INOUT, ...)
2 step_routine Integrate (
3 TriEdgFrom, FIRho, TriEdgTo. FIRho,

7 TriNod, X, TriNod, Y
8 CntEl, DT)

integer n, i
double precision OldRho, DTS

C the integration is controlled by a variable at the global clement

C 30 first we get the actual time step size from global element

C and compute the local integration factor by dividing through the triangie area
DTS=neighbor_value(CntrEl, 1 DTS) / own_value(Area)

C now we do the actual integration in two loops
C first we loop over all edges with flow to the current triangle
C get the number of neighbor edges with flow into the triangle
noget_neighbors(TriEdgFrom)
do 10i=1,n
own_value(Rho) = own_value(Rho) +
1 DTS * neighbor_value(TriEdgFrom,i,FiRho)

10 continue
C get the number of neighbor edges with flow pointing out of the triangle
naget_neighbors(TriEdgTo)
do 20 i=ln
own_value(Rho) = own_value(Rho) -
1 DTS * neighbor_value(TriEdgTo,i,FIRho)

20 continve
END
C

FIGURE 6. Sample GRIDS program (excerpt from step routines
part).

Insert_Element(NodEl, 1, X, -5.000000¢-01, Y, 0.000000¢+00)
Insert_Element(NodEl, 2, X, 5.000000¢-01, Y, 0.000000¢ +00)
Insert_Element(TriaEL 1)

;wm_Ncighba(TriJ.EL 1, TriNod, 7)

Insert_Neighbor(TriaEl 1, TriNod, 43)

.] EL1)
Insert_Neighbor(EdgEL, 1, EdgNod, 1)
Insert_Neighbor(EdgEl. 1, EdgNod, 52)

Set_Tag(NodEl, 3, NExBnd)
Set_Tag(NodEl, 1, NInBnd)

FIGURE 7. Sample GRIDS program (topology inslan(iation),

a public domain net generator for two-dimensional CF
problems (Bank and Chan, 1986).

6. IMPLEMENTATION OF THE GRIDS
SYSTEM

In this section we present some basic issues of the
GRIDS prototype implementation. One version of the
prototype runs on a network of RS/6000 workstations
using TCP/IP. Another version has been implemented
on the Intel Paragon. There are only few system depend-
ent components other than the communication subsys-
tem. Communication is implemented in a package called
SPPL (Zink, 1993), so porting effort is low and concen-
trated within SPPL. User programs are independent of
the target system, and only need to be recompiled when
moving from one platform to the next.

The approach of how to parallelize grid-based compu-
tations in GRIDS is simple. The grid is partitioned into
disjoint sets of domains and each processor works on
one of the resulting partitions.

Preparing a GRIDS program for execution consists
of three phases. First the preprocessor processes the
GRIDS source program. The declaration file and the
script are converted into an internal representation.
The script is translated into a data dependency graph,
as explained below. The step routines are processed by
both a GRIDS-specific precompiler and a standard
FORTRAN compiler. The resulting FORTRAN rou-
tines are compiled and linked to the GRIDS runtime
kernel using standard system utilities. The steps men-
tioned so far are denoted as GRIDS preprocessing. Se¢
Figure 8.

The remaining two phases are handled by the runtime
system. Execution starts with a setup phase. First, the
topology description is read and the initial partitioning
of grid topological elements across processors is deter-
mined. Each physical processor is assigned a sin'gle
partition of the grid. Each processor runs an operating
system process called ‘worker’ that executes the St¢P
routines for elements in its partition. After receiving ItS
partition, each worker adapts the data dependency gf?Ph
produced by the script preprocessor to its local partition
and to the partitions its elements are neighbours of.

The final phase is the execution of the iterative SteP

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

¥202 I4dy 01 uo 3senb Aq +91.809/20./8/9€/8191e/|ullioo/woo dno-olwepeoe//:sdiy woij papeojumod

GRIDS 709

GRIDS Program
S Y L5

User Inter

Precompilation

Internal Data

Parallel System

FIGURE 8. Implementation overview.

routines. Within the routines each worker accesses local
data only. Data of neighbour elements assigned to
another partition are transparently cached in so-called
wrap guard elements.

6.1. Partitioning the grid across processors

The basic prerequisite for parallel computing is the
distribution of independent units of work among the
available processors. Considering the computational grid
as a graph, distributing the work is equivalent to graph
partitioning, an NP-complete problem. Finding an
optimal partitioning depends on the cost measure.
However, costs of the computation in a grid element are
usually not known in advance. Moreover, they may vary
over time. As a consequence, a distribution of work that
is (near) optimal in the beginning might not be adequate
for the entire calculation.

To support efficient heuristic work load distribution,
we need approximate solutions for the following partial
problems:

® What is the average work load per grid element?

® What is the trade-off between an unbalanced work
load distribution and the overhead for finding a
better one and actually redistributing the work?

® What is an efficient heuristic method to solve the
graph partitioning problem?

6.1.1. The cost function for the step routines

GRIDS uses the following cost model to estimate the
work load on a single partition; it includes both CPU
cost and communication overhead.

T(Pl) = ’I;tartupNPi + Z T;end (e)
e€S(P;)

+ Z ’1:ec(e)+ Z ’I::al(e)
e€ R(P;) e€(Py

P; denotes the set of grid elements of partition i. S(P;)
and R(P;) denote the set of grid elements that have
neighbourhood relations to other partitions, to which
they send data or from which they access data. T,,(e) is
the CPU load of the grid element e in time units. T,,,4(e)
and T, (e) are the accumulated costs of send and receive
operations to and from neighbouring elements, again in
units of time. These costs can be estimated based on the
amount of data to be transferred and the performance
of the communication system. Np is the number of
neighbouring partitions to P, i.e. partitions containing
neighbouring elements. T, is the communication
system’s start-up cost for a single message.

The optimization goal is to find a partitioning with
the lowest max(T(P;)). Other criteria, such as the lowest
variance are conceivable, but our choice has proven to
be efficient and easy to approximate.

6.1.2. The partitioning algorithm

The partitioning algorithm has few dependencies on the
other components of the runtime system. So the design
decision for the first prototype was to implement a
rather simple solution. This version, in addition to using
simple heuristics throughout, is based on a number of
simplifying assumptions, which are briefly listed in the
following:

® T.., Tna and T, are based on user estimates for
each element type. Constant values are provided
as default.

® There is no repartitioning. (This is mostly a shortcut
in order to have a running prototype earlier rather
than a design decision. The next release will be able
to do repartitioning. Other runtime system
components can cope with repartitioning. Cost data
for non-initial partitions will be estimated from
figures measured in the previous interval.)

® The partitioning algorithm is executed sequentially.
It consists of three steps: Greedy partitioning, com-
munication reduction and load balance correction.

The initial partitioning is determined by a greedy algo-
rithm (Farhat and Lesoinne, 1993). It generates parti-
tions with roughly the same T(P;). This is done by
adding neighbours to a partition until 1/p (where p is
the number of processors) of the total cost is reached.
This algorithm has linear complexity. It usually yields
p—1 good partitions with respect to communication
cost. However, the remaining partition is typically scat-

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

710

U. GEUDER et al.

tered across the grid and this causes high communica-
tion cost.

Communication reduction is done next. In order to
reduce the communication load, the algorithm examines
whether it is advantageous to exchange grid elements
between adjacent partitions. It is linear in the number
of neighbourhood relationships crossing partitioning
boundaries. Finally load imbalances introduced by
the communication reduction can be compensated by
moving single elements from overloaded partitions to a
neighbouring partition.

6.2. Execution control

Another important component of the GRIDS runtime
system is execution control. Computations on neigh-
bouring partitions must be synchronized periodically for
data to be transmitted among adjacent elements.

The execution control component exploits three types
of information:

® Specification of the global computation structures as
provided by the script.

® The actual grid topology.

® The current partitioning and mapping of partitions
to processors.

The script contains all computation steps to be executed
and defines a partial order on them. The partial order
is induced by the data dependencies specified in the
procedure headers. The data dependencies must be ‘inter-
preted’ from the perspective of the actual topology to
decide which steps can be executed in parallel.

6.2.1. Concepts and strategies

In order to reach efficient execution in a distributed
environment it is important to minimize delays due to
synchronization and communication. Such delays can
arise if data needed by a step routine are not computed
in time by a neighbour, if a send operation gets deferred,
or if there is a message delay in the communication
system.

Besides trying to minimize the overall number of
messages sent, the GRIDS system applies the following
tricks inside each partition in order to avoid delays
whenever possible:

® Use of wrap guards.

® Data exchange on availability (in contrast to
exchange on request).

® Data-send-ahead.

® Use of asynchronous communication.

Storing values owned by a neighbouring partition in
local wrap guards avoids multiple transfers of identical
data. The other methods try to move ready computed
data to the process where they are needed as soon as
possible. Remember that the topology description says
precisely where they will be needed. Data of grid elements
at a partition boundary are computed before internal

elements whenever possible. Such data are sent to the
receiving partitions after completion. On the other hand,
as long as no boundary element can be computed
because of outstanding messages, computation can con-
tinue on local grid elements that do not depend on
neighbouring partitions. With compact partitioning,
there are many such internal elements. This strategy
allows one to overcome temporary load imbalances and
accidental message delays.

6.2.2. Task-internal load balancing

To support these strategies, the GRIDS execution con-
trol component uses local refinement on each partition.
The key idea is to use tasks with priorities. Each grid
partition is locally divided into smaller pieces, called
GRIDS tasks. A task in GRIDS is a subset of grid
elements of same type inside a single partition, together
with the operations to be executed on these elements.
(The term ‘task’ should not be confused with the operat-
ing system task. However, a GRIDS task could be
mapped to an operating system task, given an operating
system that supports those lightweight processes.) The
code comprises the step routines, a convergence test or
the grid update operations on the tasks elements. Tasks
are the basic units of control. From a logical point of
view, execution of a piece of code on all elements of a
task appears to be atomic, i.e. any communication occurs
either as the first (receive) or as the last (send) activity
of task execution. The precedence relations among tasks
are derived from the partial order defined for their
member grid elements.

6.2.3. Data structures for execution control

The key data structure of the GRIDS execution control
is a data dependency graph (DDG), as shown in
Figure 9. The nodes of the GRIDS-DDG contain all
information needed to perform a specified task. It
includes:

® The action to be executed (step routine, convergence
test, grid_update).

® Priority and current state of the task.

® Description of the data accessed.

® Grid elements belonging to the task.

The edges of the GRIDS-DDG describe the partial
order among the tasks imposed by data dependencies.
Loops in the GRIDS-DDG reflect the fact that overall
computations are repeated iteratively.

The DDG implicitly describes all valid execution
orders for the specified computations. Additionally the
tasks are assigned priorities according to their possible
effect on the parallel execution. Based on the information
in the DDG and the priorities the execution order is
determined dynamically at each node. By executing the
ready task with the highest priority next the most
efficient execution order can be easily detected at each
moment. There is no need to evaluate all possible
execution orders explicitly at the beginning of the run.

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

GRIDS 711

(=Y

]
TYPE_1, VAR2

[l]

(TYPE_2) STEPI

[rewi]
(et v ceen)

[eenv] (]

[rs J[xn: TYPE_2 VAR1 (REL_e2)]

Output:][(TYPE_2) WRITEOUT
vaR1
on SET2_1

FIGURE 9. Data dependency graph for GRIDS execution control.

7. SUMMARY AND OUTLOOK

In this paper we have presented the GRIDS program-
ming system for parallel computations. It has been argued
that defining problem-oriented programming models
allows us to handle all aspects of parallelization automat-
ically. Grid-based methods are quite important in the
field of scientific computing. This class has been selected
for GRIDS. In contrast to many so-called general pur-
pose approaches to parallel programming, it supports
unstructured grids. The main part of the GRIDS pro-
gramming interface offers a sequential language slightly
enhanced by grid constructs. Most of the problem-
specific parallelism is present in the programming model.
Detailed information on specific dependencies are cap-
tured by the grid specific constructs at the programming
interface. Keeping the overall parallel structure of the
algorithm by means of a well-suited programming model
makes automatic parallelization feasible. The concepts
integrated in the programming interface to the GRIDS
system have been discussed in detail and an example of
a GRIDS program has been given.

Predictions of performance-related figures such as the
optimal number of processors for a given problem and
a given set of performance parameters of the parallel
system need further work. A taxonomy of algorithms
with respect to achievable parallel efficiency is a related
field of research.

Future extensions of the GRIDS system are needed in
two areas. The first group of extensions contains features
that can be included without changing the programming
model. The most attractive enhancements are: dynamic
load balancing, intelligent checkpointing and other fault-
tolerance measures supporting for long-running computa-
tions, and parallel execution of the partitioning. The
second group of enhancements require extensions to the

programming model and, consequently, to the user inter-
face. Such extensions are: support of multi-grid methods,
modification of the grid at runtime to support adaptive
solvers and general modification of the topology at
runtime as a result of the computations.

It might be interesting to see how far beyond the
scope of scientific computing the idea of topology-based
programming can be made to carry.

REFERENCES

Ayakanat, C., Ozgiiner, F., Ercal, F. and Sadayappan, P. (1988)
Iterative algorithms for solution of sparse systems of linear
equations on hypercubes. IEEE Trans. Comp., 37,
1554-1568.

Bank, R. E. and Chan, T. F. (1986) PLTMGC: a multi grid
continuation program for parametrized nonlinear elliptic
systems. SIAM J. Sci. Stat. Comput., T, 540-559.

DeWitt, D. and Gray, J. (1992) Parallel database systems: the
future of high performance database systems. Commun.
ACM, 35, 85-98.

Evans, D. J. and Yousif, W. S. (1990) The implementation of
the explicit block iterative methods on the Balance 8000
parallel computer. Parallel Computing, 16, 81-97.

Farhat, C. and Lesoinne, M. (1993) Automatic partitioning of
unstructured meshes for the parallel solution of problems in
computational mechanics. Int. J. Numerical Methods Eng.,
36, 745-764.

Geuder, U., Hirdtner, M., Worner, B. and Zink, R. (1993)
GRIDS User’s Guide. Computer Science Report 4/1993,
Department of Computer Science, University of Stuttgart.

National Science Foundation (1991) Grand Challenges: High
Performance Computing and Communication. Committee on
Physical, Mathematical, and Engineering Sciences, National
Science Foundation, Washington DC.

High Performance Fortran Forum (1993) High Performance
Fortran Language Specification. Rice University, Houston,
TX.

Levesque, J. M. (1990) FORGE90: A Parallel Programming
Environment. IEEE Parallel Programming, pp. 291-294.

Lee, J. Shragowitz, E. and Sahni, S. (1988) A hypercube
algorithm for the 0/1 knapsack problem. J. Parallel
Distributed Comp., 5, 438—456.

Kennedy, K., McKinley, K. S. and Tseng, C.-W. (1991)
Interactive parallel programming using the parascope editor.
IEEE Trans. Parallel Distributed Syst.

Message Passing Interface Forum (1993) DRAFT Document
for a Standard Message-Passing Interface. MPIF.

Poggi, F., Dellagiacoma, F., Paoletti, S. and Vitaletti, M.
(1990) Paragrid: A Parallel Multi-block Environment for
Distributed Memory Systems—Application Programmer’s
Guide. IBM ECSEC Technical Report, Rome.

Pirahesh, H., Mohan, C., Cheng, J., Liu, T. S. and Selinger, P.
(1990) Parallelism in relational data base systems: architec-
tural issues and design approaches. In Proc. DPDS, IEEE
Computer Society Press, Los Alomitos, pp. 4-29.

Simon, H. D., Van Dalsem, W. R. and Dagum, L. (eds) (1992)
Parallel CFD: current status and future requirements. In
Parallel Computational Fluid Dynamics: Implementation and
Results. MIT Press, Cambridge, MA.

Smith, R. D., Dukowicz, J. K. and Malone, R. C. (1991)
Massively Parallel Global Ocean Modelling. Technical Report
LA-UR-91-2583, Los Alamos National Laboratory, Los
Alamos, NM.

Zima, H. P., Bast, H.-J. and Gerndt, M. (1989) SUPERB: a
tool for semi-automatic MIMD/SIMD parallelization.
Parallel Computing, 6, 1-18.

Zink, R. (1993) The Stuttgart parallel processing library SPPL
and the X windows parallel debugger XPDB. In Proc.
Parallel Systems Fair, IPPS '93, IPPS ’93, Newport Beach,
pp. 50-55.

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq +91809/20./8/9€/2191e/|ulwod/Wwod dNodlWepes.//:SA)Y WOy Papeojumod

