Overview of Parallel Architectures for
Databases

B. BERGSTEN*, M. COUPRIET AND P. VALDURIEZ]

*Bull Systems & Products, Rue Jean Jaures, BP68, 78340 Les Clayes-sous-Bois, France
TESIEE, 2, boulevard Blaise Pascal, BP99, 93162 Noisy-le-grand Cedex, France
tINRIA & Bull, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex, France

We present and compare hardware and system architectures for databases that take advantage of

parallelism. First, we state the problem and identify the main comparison criterions (price, performance,

extensibility, data availability). Then, we review the major architecture classes (shared nothing, shared

everything, shared disks, hybrid) and discuss their advantages and drawbacks for different kinds of
workloads.

Received June 1993; revised September 1993

1. INTRODUCTION

In the information management system market, the
demand for more processing power and storage capacity
is still growing exponentially. Parallelism is a way to
cope with this problem, but different approaches are
possible and choices must be made. What is the best
architecture? For what kind of applications? What are
the advantages and drawbacks of each known solution?

Many papers have been devoted to this topic in recent
years, ranging from quantitative, detailed, model-based
studies, to more qualitative and synthetic approaches.

Most often, modelling is used to study particular
modules in the system, such as the concurrency control
and coherency control, which are critical for perform-
ance, under a wide range of workloads. An overview of
modelling studies on these topics can be found in
Rahm (1991).

Few studies, such as Bhide (1988), tried to use this
approach to compare different architectures. Although
these studies are useful, they consider only a small
number of system configurations and workloads, and
concentrate only on performance criterions (throughput,
response time, etc.).

Thus, there is a need for a more synthetic, qualitative
approach to architecture comparison. In this paper, we
review the major architecture classes (shared nothing,
shared everything, shared disks, hybrid) and discuss
their advantages and drawbacks for different kinds of
workloads.

Before we go on more deeply into detail, let us define
the main criteria to compare the different architectures
and let us show what benefits parallelism can offer with
respect to these criteria. In fact, these criteria summarize
the claims of any DataBase Management System
(DBMS) customer: competitive price, high performance,
extensibility and data availability.

® Price. An important advantage of parallel systems is
to allow the use of inexpensive standard elements,

collaborating together and offering a performance
level as good as sophisticated, expensive systems
(traditional mainframes).

® Performance. Two metrics are commonly used to
measure database systems performance: throughput
(in transactions per second, t.p.s.) and response time.
Parallelism increases the global throughput when
several queries are processed concurrently (inter-
query parallelism) and decreases the response time if
several processing elements cooperate to process the
same query (intra-query parallelism). Nevertheless,
intra-query parallelism implies some overhead (ini-
tialization, synchronization, communication) and if
one tries to enhance response time using intra-query
parallelism, this will probably result in degrading the
global throughput. Thus, throughput and response
time cannot be tuned independently.

® Extensibility. Two metrics are commonly used to
measure parallel system extensibility: speedup and
scaleup. Speedup is the performance gain obtained
by multiplying processing elements. Scaleup measures
the growth of the database size allowed by the
addition of more processing elements, while main-
taining a constant performance level. If multiplying
the number of processing elements always multiplies
the performance by the same factor, the speedup is
said to be linear. Similarly, if multiplying the number
of processing elements always multiplies the allowed
database size (with equal performance) by the same
factor, the scaleup is said to be linear.

In a parallel system, it should be easy to cope with
the growth of data size and/or processing power
needs. Ideally, it should be sufficient to add new
identical processing elements, in proportion with the
new requirements. Actually, several factors play
against speedup and scaleup linearity, mainly: paral-
lelization overhead, communication and synchroniza-
tion costs, bottleneck saturation, and poor load
balancing.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

PARALLEL ARCHITECTURE FOR DATABASES 735

® Data availability. Traditionally, data availability is
limited by all kinds of failures (hardware or system)
and by maintenance operations.

Since a parallel system is composed of several
identical elements, data replication among these ele-
ments may be exploited in order to increase data
availability. For example, in case of a disk failure,
another copy of the data should be available on the
other disks. Of course, this is done at the expense of
multiplying disks and a protocol must be used to
ensure the coherence of multiple copies. This protocol
consumes CPU and communication resources, and
introduces some delays due to synchronization.

Now, let us consider the DBMS designer’s point of view.
What are the problems to solve in order to meet the
customer’s requirements?

® Disk I/0 throughput. The main problem in traditional
DBMS is the disk I/O bottleneck, due to the high
disk access time, typically 10000 times the main
memory access time. The performance of many data-
base applications is limited by the I/O access time.
Such applications are called I/0-bound.

Parallelism may help to increase the I/O through-
put in several ways. The disks may be shared, physic-
ally or logically, by all processing elements (shared
disk, shared everything) or distributed among the
different processing elements (shared nothing). A
different approach is to associate several disks with
an ‘intelligent’ disk controller in charge of managing
the data distribution and redundancy among the
disks (disk arrays). Such a disk array can be seen
from the outside as a very fast reliable disk.

® CPU power. In addition to simple and repetitive
transactions that used to be the main workload of
traditional DBMS, there is a growing proportion of
more complex, longer, and sometimes ad hoc transac-
tions. For example, decision support queries may need
to sort and join very large relations. The use of
integrity constraints also contributes to complexify
some very basic operations, such as updates. Some
of these complex queries may be more CPU-bound
than I/O-bound. A parallel system offers a large
spectrum of configurations, which allows to balance
the number and the power of CPUs and disks in
order to avoid resource contention.

® Communication. In order to cooperate, the processing
elements must exchange various kinds of informa-
tions, such as: intermediate results, synchronization
messages, concurrency control messages, etc. Such
communication is a part of the parallelism overhead.
Furthermore, the interconnection network through-
put has to be sufficient to avoid a communication
bottleneck. Caching techniques are generally used to
lower the communication volume. Besides, the
interconnection network often limits the scability of
parallel systems.

® [oad balancing. An homogeneous distribution of the
load between the processing elements is a prime
condition to achieve linear speedup and linear
scaleup. Load balancing can be a more or less difficult
problem, depending on the class of applications
(debit/credit, decision support, etc) and the
architecture.

These are the four main points to consider when design-
ing a parallel database system. The designer must also
consider implementation issues such as design com-
plexity, portability, which may depend on the chosen
architecture.

In the next section, we examine the general framework
of client/server architectures, which is commonly
adopted in modern information systems. Section 3 ana-
lyses the different parallel database server architectures
(shared everything, shared nothing, shared disk, hybrid),
with their respective advantages and drawbacks.
Section 4 concludes the overview of parallel architectures
for databases.

2. CLIENT-SERVER ARCHITECTURES

Modern information systems are all based on a cli-
ent-server organization. A client-server computational
model implies a relationship between two processes in
which one makes requests to the other. This organization
allows a decomposition of functionality in complex
systems, e.g. in database systems, where presentation
services are usually supported by the client, and database
accesses are managed by the server.

Typically, client processes are executed in worksta-
tions, while server processes are executed in powerful
platforms. In many cases, the application is mostly
written in a host language (C or COBOL) for the user
interface part and for specific computations, and embeds
database requests written in a database language (such
as SQL or CODASYL).

The connection between the host language and the
database language introduces a data type conversion
overhead, that can be avoided by using a DataBase
Programming Languages (DBPL). In this case, the
application programmer uses a common language and
data types for database access and programming which
deals with both persistent and volatile data (Atkinson,
1987). In order to be efficient, the DBPL-based systems
separate persistent and volatile data, either statically or
dynamically. Thus, the ‘programming’ part is separated
from the ‘database access’ part, even if this separation is
invisible to the user.

An application may either trigger few complex data-
base queries (coarse grain interaction—access to more
10000 data items) or many simple database queries (fine
grain interaction—access to less than 10 data items).
Applications may be classified depending on their inter-
action grain:

® Decision support applications are coarse grained (a
decision support application typically accesses a large

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

736 B. BERGSTEN, M. COUPRIE AND P. VALDURIEZ

data volume in a non-predictable manner). The
Wisconsin Benchmark (Gray, 1991) characterizes
typically this class of applications.

® OLTP (On Line Transaction Processing) applications
are medium grained. The TPC-A and TPC-B (Gray,
1991) characterize typically this class of applications.

® Deductive applications (deduction and integrity con-
straints) are medium grained (a deductive application
dealing with very large data volumes may be consid-
ered as a decision support application). Today, no
Benchmarks characterize this class correctly, mainly
because this class is new and only partially supported
by current Database Management Systems. However,
TPC-C (TPC, 1992) is a step toward this direction,
since key and referential integrity constraints have to
be satisfied.

® The applications that ‘navigate’ in the database under
the control of a program are fine grained (CAD,
CAM, CASE-type applications). This class is typically
characterized by the 001 (Gray, 1991) and 007 (Carey,
1993) Benchmarks.

Note that we just classified applications, not systems.
In the following, we describe client—server architectures
for fine grained applications and client—server architec-
tures for coarse grained applications, and we discuss
their suitability with the different application classes. We
do not describe specifically architectures for medium
grained applications since these applications are most
of the time well supported by architectures designed for
coarse grained applications.

2.1. Architectures for fine grained applications

This is the case where the application ‘navigates’ in the
database. Each navigation step involves a short inter-
action with the DBMS. This approach is historically the
oldest one (CODASYL systems), but has recently gained
much popularity with object-oriented systems like
Versant, ObjectStore, O,. Typically, the application is
written in a programming language (C/C + +, Smalltalk,
COBOL, Pascal, FORTRAN, etc.) and embeds the
database access queries.

A fine grain application needs to be closely coupled
with the DBMS in order to avoid high database access
overhead (often compared with the impedance mismatch
between electronic components). To achieve a reduction
of the communication and data conversion costs, the
DBMS must be split into a client DBMS, running with
the application on the same workstation, and a server
DBMS, running on the server machine (Figure 1). A
data caching mechanism may thus be used to reduce
client-server communication and allow a local naviga-
tion in the client machine. On a cache miss, the client
sends a page or an object demand to the server. The
server is thus reduced to a page (or object) server,
consuming few CPU resources. Still, a high I/O through-
put may be needed, depending on the number of con-

CLIENTS
application application
client DBMS client DBMS
(Cache) (Cache)
SERVER
server DBMS
FIGURE 1. Client-server architecture for fine grained applications.

nected clients. Disk I/O parallelism may be necessary in
the server to achieve this throughput.

With this architecture, a multiple cache coherency
protocol is needed, either to make sure that an update
in a page is automatically propagated to all clients which
cache it or to invalidate pages that are no longer
up-to-date.

Note that, if we want to execute transactions in
parallel (intra-transaction parallelism), we need a parallel
client, not a parallel server. Besides, as clients usually
run on different workstations, we have inter-transaction
parallelism, without a parallel server. The client main
memory should be large enough to hold the frequently
accessed data (the so-called ‘hot data’), in order to avoid
swapping (from client’s main memory to client’s disk or
to server).

A recent study (Franklin, 1992) investigates global
memory management strategies for client—server archi-
tectures, that allow a better utilization of the clients’
memories and reduce data replication in the system.

Advantages

® Reduced communication thanks to client cache.

® Use of the local client’s processors (less costly than
server’s processors) to achieve inter-query parallelism.

® Offload the server of some DBMS work.

® Simple server.

Drawbacks

® Swapping if the client’s memory is not large enough.

® Cost of the multiple copy coherency protocol.

® High communication volume if there is little data
locality.

® Complex to optimize.

2.2. Architectures for coarse grained applications

The coarse grained applications (decision support
applications) benefit from a parallel computation of the
database queries, which reduces the response time. These

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

PARALLEL ARCHITECTURE FOR DATABASES 737

applications may be loosely coupled with the DBMS,
since there are few interactions (Figure 2).

Some coarse grained queries cannot be expressed in
some query languages. It is the case, for example, with
SQL, which cannot express actions like conditionals,
complex predicates or transitive closure. This lack in
expressive power forces the application to gather all the
potentially useful data, and then to do the computation
locally (and sequentially).

This problem may be approached by three different
and complementary ways:

® By ADTs (Abstract Data Types): some user-defined
methods (programs), associated to data definition
templates, may be loaded and executed (possibly in
parallel) on the server.

® By procedures including several queries: the execution
unit is no longer the query, but rather a set of queries.
It is a traditional way to obtain good performance
with debit/credit-type applications.

® By supporting new operators or adopting a more
powerful query language, allowing recursion.

Advantages

® [ittle communication volume (only queries and final
results) if most of the work can be done in the server.

® No need for a coherency control protocol between
clients.

Drawbacks

® (lient resources (CPU, disk) may be underloaded,
while the server may be a bottleneck.

3. PARALLEL SERVER ARCHITECTURES

In this section, we describe and discuss the main classes
of parallel server architectures: the systems sharing both
disks and main memory (shared everything, SE), the
systems with distributed memory but sharing, logically
or physically, the I/O subsystem (shared disk, SD), the

CLIENTS

application application

SERVER

server DBMS

FIGURE 2. Client-server architecture for coarse grained applica-
tions.

systems with distributed memory and disks (shared noth-
ing, SN) and hybrid SD-SE systems. We will consider
that an architecture with physically distributed disks can
be classified as a shared disks architecture, if there is a
system layer that hides the data distribution on disks to
the higher level layers (data sharing system).

3.1. SE architecture

With this architecture (Figure 3), all processors share in
a symmetrical way all the main memory and all the
disks. In general, the allocation of processors to processes
is done automatically by the operating system. Thus, a
parallel execution can be easily obtained by creating
several processes (or threads).

Actually, each processor has a cache memory (typic-
ally 64 KB to 4 MB). The coherence between the differ-
ent caches is often ensured by a mechanism based on
some specific hardware. This mechanism is generally
based on a shared bus that is continuously ‘snooped’ by
all processor boards, to see if their cached data is
required elsewhere.

This kind of architecture offers the best processor
utilization because the load balancing is easily and
efficiently handled by the run-time system, and because
the cache memories provide fast access to the most
frequently used data and code. Besides, the specific
hardware that supports the cache coherency protocol is
expensive, precisely because it is specific. It is likely that
this cost will lower as multiprocessor UNIX servers
become a market standard.

Inter-query parallelism is easily achieved by forking
processes. Intra-query parallelism is still rather simple
to obtain for read-only queries: one straightforward
solution is to use classical parallel algorithms for costly
operators in the query execution graph (like sort and
join). Also, some administration procedures like index
creation can be parallelized easily.

Advantages

® Simple for inter-query parallelism.

® Quite simple for intra-query parallelism.

® Good resource utilization: efficient automatic load-
balancing.

® Inter-processor communication using the shared
memory (very fast).

proc proc mem disk

FIGURE 3. Shared everything.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

738 B. BERGSTEN, M. COUPRIE AND P. VALDURIEZ

Drawbacks

® Limited scalability (10-20 processors).
® Data availability cannot be easily enhanced.
® Quite expensive today, but will probably lower.

Systems

® Exploitation of inter-query parallelism: DB2, Oracle,
etc., ported on classical multiprocessor mainframes
(IBM 3090, Bull DPSS8, etc.). Oracle, Ingres, Sybase,
etc, on UNIX based multiprocessors (Sequent,
Encore, etc.).

® Exploitation of intra-query parallelism: Research pro-
totypes: XPRS (Berkeley) (Stonebraker, 1988), DBS3
(Bull-RAD/BDI) (Bergsten, 1991).

3.2. SD architecture

In a SD architecture (Figure 4), the main memory is
distributed, but the disks may be accessed by any node
(composed of one or several processors with some local
memory) in a symmetrical manner. The distributed
software system, or the application software, must ensure
the coherency between the multiple copies of disk pages
requested by several nodes. This problem is similar to
the cache coherency control problem in SE systems. The
major differences are that coherency control protocols
for SD are implemented by software, using a communica-
tion link that is typically 10-100 times slower than in
SE, and deals with objects (pages) having a coarser
granularity.

Several studies have shown the benefit of tightly
coupling the concurrency control and coherency control
mechanisms, in order to reduce the overheads and the
communication volume. See Rahm (1991) for a survey
of such techniques.

SD architectures are interesting for database systems
for two major reasons: (i) they allow better scalability
and availability than SE and (ii) database management
systems designed for centralized systems may evoluate
to SD, while this is not true for SN. Oracle V4.2 has
been ported on a parallel NCUBE with 64 nodes, sharing
128 disks, and is presently the fastest relational transac-
tional system with more than 1000 TPC-B transactions
per second.

The disks may be physically coupled to the nodes
(like in SN), but they must be logically shared: every
page on every disk must be accessible from any node
with (roughly) the same access time. In general, accessing
a page that is not stored on a local disk is not much
longer than a local access, because a page transfer on

iy -

\ / \

proc mem oo proc mem disks

FIGURE 4. Shared disk.

the network is typically 10 times faster than a page I/O.
It is thus possible to mix diskless nodes with disk-
owning nodes, and new disks may be easily added to
the system without reorganizing the database.

With this architecture, the transaction code need not
migrate where the data resides (like in SN). It is also
possible to balance the load dynamically (according to
the current node utilization), rather than statically
(according to the data placement). Also, a transaction
may be processed by a single node, as in traditional
systems (porting a centralized DBMS on a SD system
is feasible).

Unlike SN, data accessed in read mode may be
replicated on several nodes by the cache mechanism,
transparently to the user/programmer. This contributes
to reducing ‘hot spots’ (frequently accessed data that
become bottlenecks).

Surprisingly, little interest has been shown for intra-
query parallelization in SD systems.

Advantages

® Good scalability (100 processors).

® [ow cost because of the use of standard components.

® Possible migration of centralized systems to SD
systems.

® Good load balancing (automatic replication of ‘hot’
data).

® Good availability and reliability.

Drawbacks

® Cost of the multiple copy coherency mechanism,
especially if there are many updates.

® The interconnection network may be saturated by
the page transfer traffic.

Systems

® Exploitation of inter-query parallelism: IBM:
IMS/VS Data Sharing Product (Strickland, 1982),
TPF (Scrutchin, 1987), Amoeba (Shoens, 1985);
DEC: VAX DBMS, VAX Rdb/VMS (Kronenberg,
1986); NEC: DCS (Sekino, 1984); Oracle on NCUBE
and on Vax Cluster.

3.3. SN architecture

This architecture has attracted a great deal of attention
in the database research community, certainly because
it is scalable to a large number of processors (some
authors speak about ‘massive parallelism’) and, besides,
it can be constructed from cheap components. The SN
architecture appeared as a solution to the major problem
of databases: the disk I/O parallelization. Each node of
the SN system independently manages one or several
disks (Figure 5). For example, to scan a relation (that is
distributed on several nodes) in parallel, the query is
simply divided into sub-queries that are executed on the
different nodes holding parts of the relation. Techniques
for parallelization of relational operations in SN are
now well understood (Ozsu, 1990).

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

PARALLEL ARCHITECTURE FOR DATABASES 739

il fios-

proc mem disk(s) oo proc mem disk(s)

FIGURE 5. Shared nothing.

The major advantage of SN over SD is that the
messages exchanged by the nodes contain only useful
data. In SD, the pages (typically 1-8 KBytes) that are
exchanged via the interconnection network may contain
a proportion of data that will not be used. Thus, the
network traffic is lower in SN and the scalability should
be better.

On the other hand good load balancing is very difficult
to obtain in a SN architecture. This is because load
balancing is mainly obtained by the physical (and static)
distribution of data among the nodes. In order to
enhance load balancing, some researchers proposed to
distribute data according to a measure of the ‘relation
heat’ (based on the access frequency) and ‘temperature’
(based on size) (Copeland, 1988), but this raises the
problem of applications with highly variable access
pattern (some queries are triggered only in the evening,
or at the end of the month, etc). In such cases, the
relation heat is difficult to define, and it would be costly
to reorganize the database according to heat variations.
Note also that, if this architecture is physically very
scalable, adding or suppressing nodes implies a reorgan-
ization of the database.

Unlike SD, if a data item is frequently accessed, the
node where this data resides must sequentially manage
these accesses. Thus, this node may become a bottleneck
and degrade the system’s performance. A solution to
this problem should be to replicate this data on several
nodes, but an explicit coherency protocol is needed (e.g.
ROWA, Read One, Write All). The use of such tech-
niques, together with the load balancing techniques,
raise very difficult administration problems.

Last but not least, a major problem with SN is that
all queries, even the simplest ones, must be parallelized.
Let us consider a query that has to compare two data
items I, I, that reside on two different nodes N,, N,.
Then, the compiler must produce two code fragments.
The first code fragment will be executed on N,, and will
send I, to the second node N,. The second code fragment
will be executed on N,, to receive I; and compare it
with I,. Because of this necessary parallelization of all
queries, centralized DBMSs cannot be ported on this
kind of architecture.

Advantages

® Very good scalability (1000 processors).
® Cheap hardware.
® Good availability and reliability.

Drawbacks

® Hard to administrate.

® Parallelization overhead, even for simple queries.
® [oad balancing is difficult.

® Centralized DBMSs cannot be ported.

Systems

® Exploitation of intra- and inter-query parallelism:
TANDEM: NonStop SQL (Englert, 1989); Teradata:
DBC/1012 (Teradata, 1983, 1985); MCC: Bubba
(Boral, 1990); Univ. Wisconsin: Gamma (DeWitt,
1990); EDS ESPRIT project: EDBS (EDS, 1990).

3.4. Hybrid architecture (SD-SE)

We conclude from the previous sections that SE systems
are best for load balancing, but their scalability is limited;
SD systems offer better scalability and still good load
balancing, but page transfers may saturate the network;
and, finally, SN systems are best for scalability, but load
balancing is very difficult. Thus, SD looks like a good
compromise between scalability and load balancing. In
order to reduce the number of nodes, and consequently,
the page traffic, it is necessary to increase the power of
each node. A possible solution is to have several SE
systems as nodes of a SD system. The disks may be
shared logically and distributed physically (Figure 6) or
they may be physically shared (Figure 7).

As each node is a multiprocessor machine, it must be
fed by a high speed disk system. A solution is to connect
RAIDs (redundant array of inexpensive disks) to each
node, or to each couple of nodes (Teradata uses this last
option in order to increase fault tolerance). In a hybrid
SD-SE system based on physically shared disks, one

il e

lcomm comm,

FIGURE 6. Hybrid architecture, with logical disk sharing.

com. comm.

FIGURE 7. Hybrid architecture, with physical disk sharing.

THE COMPUTER JOURNAL,

VoLr. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

740 B. BERGSTEN, M. COUPRIE AND P. VALDURIEZ

may need an ‘intelligent’ controller to manage a set
of RAIDs.

This hybrid architecture allows us to execute parallel
queries in a single SE node. It is an advantage since it
is easier to parallelize a query in SE than in a distributed
system. Furthermore, the parallelism degree available on
a single SE node may be sufficient for some applications.

For OLTP applications, logging may be done locally
in each node, saving some communication.

The main disadvantages of SE (low scalability, data
availability difficult to enhance) disappear with several
nodes.

Such an architecture may be composed of standard
parallel UNIX servers, interconnected by a standard
network.

Advantages: same as SD, plus:

® Flexibility in the configuration (number of nodes,
number of disks, CPUs per node) according to the
application and database profile.

® For a fixed processing power, reduces the commun-
ication traffic on the network by reducing the number
of nodes.

® The possible parallelization of a complex query on a
single multiprocessor SE node (exploiting all the SE
nodes to speed-up single queries is difficult).

Drawbacks:

® Cost of the multiple copy coherency mechanism.
® Price of the SE nodes.

4. CONCLUSIONS

As an alternative to conventional mainframe technology,
standard and unexpensive components can be used to
build high performance parallel systems. Furthermore,
the parallel systems ease scalability and data availability.

Each multiprocessor parallel architecture (shared
everything, shared disks, shared nothing, hybrid) has
advantages and drawbacks, that we discussed in this
paper.

A parallel DBMS is usually integrated in a more
general client/server organization. A coarse grained
interaction between the application and the DBMS
allows a full exploitation of the parallel server power. A
high level interface (through SQL, for example) favours
such a coarse grained client/server interaction.

Two important factors let us conclude that DBMSs
take most advantage of the parallel architecture
technology:

® The existence of high level query languages (a single
SQL query can be parallelized automatically, without
modifying the application program).

® Parallelism may be obtained by data partitioning,

which may be logical and/or physical. In a relational
system, this partitioning is quite easy to achieve.

ACKNOWLEDGEMENTS

This work has been partially supported by the CEC
under the Esprit project no. 7091, Pythagoras.

References

Atkinson, M. and Buneman, P. (1987) Types and persistence
in database programming languages. ACM Comp. Surv., 19.

Bergsten, B., Couprie, M. and Valduriez, P. (1991) Prototyping
DBS3, a shared-memory parallel database System. Proc. Int.
Conf. on Parallel and Distributed Information Systems.

Bhide, A. (1988) An analysis of three transaction processing
architectures. Proc. Int. Conf. on Very Large DataBases
(VLDB).

Boral, H. et al. (1990) Prototyping Bubba, A highly parallel
database system. IEEE Knowledge and Data Engineering, 2.

Carey, M. J., DeWitt, D. J. and Naughton, J. F. (1993) The
007 Benchmark. Proc. Int. Conf. on Very Large DataBases
(VLDB’93).

Copeland, G., et al. (1988) Data placement in Bubba. Proc.
ACM SIGMOD Int. Conf. on Management of Data.

DeWitt, D., et al. (1990) The Gamma database machine
project. IEEE Knowledge and Data Engineering, 2.

EDS Database Group (1990) EDS—collaborating for a high-
performance parallel relational database. Proc. ESPRIT
Conf.

Englert, S., et al. (1989) A Benchmark of NonStop SQL Release
2 Demonstrating Near-Linear Speedup and Scaleup on Large
Databases. Technical Report 89.4. Tandem Computers,
Cupertino, CA.

Franklin, M. and Carey, M. (1992) Global memory manage-
ment in client-server DBMS architectures. Proc. Int. Conf.
on Very Large DataBases (VLDB).

Gray, J. (1991) The Benchmark Handbook. Morgan Kaufmann,
San Mateo, CA.

Kronenberg, N., Levy, H. and Strecker, W. (1986) VAXCclusters:
a closely coupled distributed system. ACM Trans. Comp.
Syst., 4.

Ozsu, T. and Valduriez, P. (1990) Principles of Distributed
Database Systems. Prentice Hall, Englewood Cliffs, NJ.

Rahm, E. (1991) Concurrency and Coherency Control in
Database Sharing Systems. Technical Report, University of
Kaiserslautern, Germany.

Scrutchin, T. (1987) TPF: performance, capacity, availability.
Proc. IEEE Compcon, Spring.

Sekino, A., Moritani, K., Masai, T., Tasaki, T. and Goto, K.
(1984) The DCS—a new approach to multisystem data
sharing. Proc. Natl. Computer Conf.

Shoens, K., et al. (1985) Amoeba Project. Proc. IEEE
Compcon, Spring.

Stonebraker, M., et al. (1988) The design of XPRS. Proc. Int.
Conf. on Very Large DataBases (VLDB).

Strickland, J., Uhrowczik, P. and Watts, V. (1982) IMS/VS:
an evoluting system. IBM Syst. J., 21.

Teradata Corp. (1983) DBC/1012 Database Computer Concepts
and Facilities. Document No. C02-0001-00, Teradata Corp.

Teradata Corp. (1985) DBC/1012 Database Computer System
Manual Release 2.0. Document No. C10-0001-00, Teradata
Corp.

TPC (1992) TPC Benchmark C—Draft 6.6 Proposed Standard.
Transaction Processing Performance Council, ITOM Int.
Co., Los Altos, CA.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z 1udy GO uo 1sanb Aq L81809/¥€ 2/8/9€/8191E/|ulwoo/Wwod dNodlWepeo.//:SA)Y WOy PaPeojumod

