Concurrent Interconnect for Parallel Systems

PETER THOMPSON
INMOS Ltd, 1000 Aztec West, Almondsbury, Bristol BS12 45Q, UK

A new type of computer systems interconnect is motivated and described, which allows any number of

devices to interact concurrently, scales well with system size and has a low implementation cost. The

architecture of a commercially available device from which such interconnect can be constructed (the

IMS C104) is described and an example of using such interconnect for communication between processors
is given.

Received May 1993; revised September 1993

1. REQUIREMENTS FOR A NEW
INTERCONNECT

Practically all modern electronic systems are ‘parallel’,
in that they consist of a number of relatively complex
subsystems connected together. Even in a humble PC
there are subsystems for 1/O, for controlling the key-
board and screen, interfacing to networks and so forth.
At the other end of the scale, it is increasingly widely
recognised that the most economic way to build very
high-performance systems is by using many identical
components of moderate performance working together.
Such systems can provide very high computational
power [in massively parallel processors (MPPs) such as
the CM-5 or the Parsytec GC-machine], fast response
(for transaction processing or distributed control), and
very large I/O throughput [as in telecommunication
switches and redundant arrays of inexpensive disks
(RAID) systems]. They also have the potential to be
more reliable, maintainable and expandable than con-
ventional, monolithic systems.

The construction of high-performance systems with
parallel processing and/or parallel I/O demands a fast,
cheap, scalable, low-latency interconnect. The intercon-
nect must be fast and low-latency, otherwise it will be
the limiting factor in system performance, and it must
be cheap, or else it will dominate the system cost. It
must also scale well in both performance and cost
relative to the system size, otherwise large parallel sys-
tems will either be limited in performance or highly
expensive, perhaps both. Available interconnects do not
meet these criteria, either because they are based on a
bus, so that the contention for shared resources limits
overall performance and scalability; or because they are
designed for communication over long distances, which
incurs high costs; or because they aim at the extreme of
currently achievable performance, which increases costs
out of proportion to performance.

1.1. Interfacing to the interconnect

The requirement of low cost implies that at least an
interface to the interconnect must be implementable with
a relatively small amount of circuitry in a non-exotic

technology, since every subsystem must have such an
interface. This means that the protocols used to com-
municate across the interconnect must be simple and
require only minimal buffering, otherwise an unac-
ceptable amount of circuitry will be required to imple-
ment them. An interface requiring even one extra chip
would be considered expensive in high-volume applica-
tions, so the interface should ideally be integrated with
another device, such as a processor or ASIC. Too many
pins per connection would make such integration
impractical, limit the maximum number of connections
available on a device (or force the use of exotic, expensive
packaging) and lead to skew-control problems, thereby
increasing the cost of printed circuit boards (PCBs), etc.
Thus, where ‘cost’ includes not only the price of compon-
ents, but also the engineering effort required to use them
successfully, each interface must require both a minimal
amount of circuitry and a minimum number of wires.

1.2. Interconnect components

To ensure cost-effectiveness, any active components of
the interconnect in addition to the interfaces should
ideally be made with the lowest-cost technology, cur-
rently CMOS. Since there is an element of the system
cost associated with each component which is independ-
ent of how large or complex the component is (including
the cost of maintaining an inventory of that component,
the cost of pick-and-placing it onto a circuit board, and
so forth), it would be as well for the number of additional
components to be small. Since some complexity is to be
expected in a high-performance interconnect, this implies
that the active components must be highly integrated.
Putting these factors together suggests that the intercon-
nect should be constructed using CMOS VLSI chips.
Since modern CMOS processes provide a very high level
of interconnectivity on chip (for instance an entire 64-bit
bus can be fitted into the width of a single 0.15 mm
PCB track) this seems to be a promising approach.

In order for VLSI chips to be cheap, they must be
manufactured in large volumes, which means that they
should not be too specialized in their application. For
interconnect chips, this implies that few assumptions

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

CONCURRENT INTERCONNECT 779

should be made about the parallel systems in which they
are to be used. Thus flexibility becomes another factor
to be considered along with performance and chip size,
since the economics of VLSI make it worthwhile to
increase the size and/or complexity of a chip if this
results in a significant increase in its applicability.
Moreover, it will not be generally attractive to integrate
an interface to an interconnect into other chips unless
the interconnect is standard, which again implies that
its applicability must be broad. Scalability is also import-
ant here, since an interconnect will not be widely used
unless it is suitable for small systems as well as large
ones. Systems requiring the interconnection of hundreds
of subsystems will probably be unusual until after the
turn of the century, so an interconnect which is only
useful or cost-effective at such scales will not become
standard.

Thus we see a requirement for an interconnect for
parallel systems where the emphasis is (unusually) on
cost-effectiveness, flexibility and applicability to small
systems rather than maximum performance of the largest
possible configuration. One approach to the construc-
tion of such an interconnect which has resulted in a
commercially available CMOS device is outlined in the
rest of this paper.

2. CONVERGING SOLUTIONS

In this section we examine current trends at the two
extremes of the interconnect scale (local busses and
teleccommunications) to see whether they are showing
any tendency towards meeting the requirements we have
set out for a new type of interconnect.

For a relatively small number of components which
are physically close together the standard method of
interconnection is a bus and in many cases this is
perfectly adequate. However, as the number of compon-
ents and/or the distances between them increase a bus
suffers from capacitive loading and contention. The
fundamental limits now affecting bus performance are
driving a trend to deep pipelining leading to a’more
‘packetized’ type of interaction and also to increasing
numbers of independent paths (Gustavson, 197?).
Recognising that a cabled bus with a total length of
cable up to several tens of metres would be severely
limited by the bus capacitance, the P1394 Serial Bus
(Teener, 1992) uses point-to-point cables and performs
the actual bus function in silicon, where the lower
capacitance offers an order of magnitude faster perform-
ance. Unfortunately any type of bus still suffers from the
problem of increasing contention as the number of sub-
systems connected to it increases and so cannot provide
scalable performance (Walker, 1992). Busses are also
inherently inefficient, since the maximum average utiliza-
tion of each subsystems’ transmitting logic is inversely
proportional to the number of subsystems on the bus.

The well-established trend in the electronics industry
is for increasing levels of integration in individual subsys-

tems and ever-increasing clock rates. Since the speed of
light unfortunately does not increase, communication
between subsystems tends to take a larger number of
clock cycles. This can be seen in the trend towards
processors whose internal clock speed is several times
the frequency at which the bus operates. As the clock
rate increases the ‘distance’ between subsystems (as a
number of clock cycles) also increases, so todays’ parallel
system tends to resemble yesterdays’ distributed system.
Thus we may gain some insight into the parallel systems
interconnect of tomorrow by looking at techniques used
in telecommunications today.

Telecommunications systems are characterized by
sparse connections, whose bandwidth must be shared
between a number of uses. In the days when computa-
tional resources were expensive, it was easiest to allocate
the bandwidth of a telecommunications connection in a
static, predefined way such as time-division multiplexing
(TDM). However cheaper processing has made it more
cost-effective to allocate bandwidth dynamically by
means of packet-switching. The most widespread form
of packet switching is X.25 (Black, 1989), whose proto-
cols contain a high overhead for error correction because
of their origins in the days when typical bit-error rates
(BERs) were 1072 Now that the use of optical fibres
has brought BERs down to 108, X.25 is being replaced
with much simpler protocols such as Frame Relay
(Dettmer, 1992), in which any error correction required
is performed end-to-end.

Thus as busses become longer, faster or connect to
more components, they are becoming serial, like telecom-
munications. On the other hand, as telecommunication
channels become more reliable (like the channels which
exist inside electronic equipment) and higher levels of
integration make processing cheaper, telecommunica-
tions systems are moving towards lightweight packet
switching protocols. Thus there is a convergence towards
serial channels carrying ultra-lightweight packet proto-
cols, with packet switching performed using the tremend-
ous interconnective capabilities of VLSI. This becomes
our starting point for a standard interconnect for paral-
lel systems.

3. CONCURRENT INTERCONNECT

In this section we consider a consistent approach to
constructing a parallel systems interconnect, following
directly from the requirements and trends identified in
previous sections.

As discussed previously, an interconnect for parallel
systems must have high performance, good scalability
and low cost. Since these requirements are no different
from those of the whole parallel system, a similar
approach can be followed in order to satisfy them. Just
as a parallel system can provide high performance by
allowing many identical components to work concur-
rently, the interconnect can provide a high aggregate
bandwidth by allowing many separate connections with

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

780 P. THOMPSON

moderate performance to operate simultaneously. This
is exactly opposite to the operation of a bus, in which
one high performance connection is used sequentially
for each transfer. For both the parallel system and the
concurrent interconnect, each component or connection
need not be very high performance (provided it can be
well-utilized), allowing both component and engineering
costs to be kept down while providing high performance.

Busses are complex and inefficient because of the need
to share access to the wires. When using a number of
concurrent connections, maximum simplicity, modu-
larity and fault-tolerance can be achieved by making
each connection unshared, ie. point-to-point. The
number of wires per connection, which affects the cost
of the interface, is minimized by making each connection
serial. Thus we propose a concurrent interconnect con-
sisting of many serial point-to-point connections operat-
ing simultaneously. This resembles a telecommunications
network in miniature, but uses much simpler protocols
to take advantage of the high reliability of connections
within a system.

3.1. Serial routing

To connect many devices together using point-to-point
connections, it is not feasible to provide a direct, physical
path between every pair, even when the connections use
a minimum number of wires. Nor is it acceptable to
connect only certain pairs of devices unless the connec-
tion pattern happens to match that required by the
application. Thus data must be able to travel from one
node to another via one or more intermediate nodes, i.e.
it must be through-routed. Although networks exist
which allow any set of pairs of devices to be intercon-
nected (Clos, 1953), in order for every pair of devices to
be able to communicate, data must be routed in different
ways at different times. One way of achieving this is to
configure the intermediate nodes to make each connec-
tion before sending the data, such as in a telephone
exchange. Unfortunately this generally requires that the
destination of the data must be supplied in advance to
a central controller, which increases latency and creates
a system bottleneck unless the rate at which connections
are altered is very low. This approach can be used in
very tightly coupled, SIMD-style machines, in which the
communication pattern is pre-determined, but since we
wish to avoid restricting the applicability of our intercon-
nect to a limited class of systems, a better solution is to
make the data self-routing so that it contains within it
the information which determines which way it should
be routed. Self-routing interconnect is equally appro-
priate both in systems where data moves in an orderly
fashion along pre-defined routes and in those whose
communication requirements arise dynamically at run-
time. It also enables the control function to be distrib-
uted, and hence to scale in performance with the size of
the system.

We call a piece of data together with its associated

routing information a packet. The requirement of low-
latency implies that packets must be limited in length,
since otherwise connections could be occupied indefin-
itely by long packets, making latency unbounded for
other packets requiring the same connection. In addition,
short messages are frequently required in parallel systems
for control and synchronisation. Thus it is important to
transmit such short messages efficiently, and so it must
be possible to send them as packets which are no larger
than absolutely necessary, and the overhead on each
packet must be small. On the other hand, when sending
a large amount of data it is more efficient to divide it
into packets of a reasonable size in order to reduce the
proportionate cost of the overheads. Thus the packet
size must be variable to allow both large and small
amounts of data to be sent efficiently.

3.1.1. Wormhole routing

A technique used for minimizing latency in parallel
computers is wormhole routing (Ni and McKinley, 1993),
in which only the header of the packet is initially read
in by the routing node. The routing decision is taken,
the header is output and the rest of the packet is sent
directly from the input to the output without being
stored in the node. This means that a packet can be
passing through several nodes at the same time and the
header of the packet may be received by the destination
even before the whole packet has been transmitted by
the source. Thus this method can be thought of as a
form of dynamic circuit switching, in which the header
of the packet, in passing through a sequence of nodes,
creates a temporary circuit (the ‘wormbhole’) through
which the data flows. As the tail of the packet is pulled
through, the circuit vanishes. The transmission of a
single packet may thus be pipelined through a series of
devices. As well as minimizing latency, wormhole routing
has the further advantage that it is independent of the
packet length, thereby making the interconnect more
general purpose.

In a wormhole routing system, if a packet is unable
to proceed because the output it requires from a node
is busy, the progress of the packet must be stalled until
the required output is free. This is usually achieved by
adding extra handshaking signals to the physical chan-
nel, but this conflicts with the goal of minimising the
number of wires per connection. An attractive solution
to this dilemma is to use bi-directional connections, and
use each set of wires to transmit both data and flow-
control information. This trades a slight increase in
protocol complexity for the elimination of wires which
do not directly contribute to the data rate.

Wormhole routing systems typically consider each
packet to be a multiple of a basic unit of data, called a
flit’, and control the flow of the packet by either allowing
or preventing the transmission of each individual flit
from one node to the next. Where wide channels are
used, with extra wires to perform the flow-control, the

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

CONCURRENT INTERCONNECT 781

natural size of a flit is the width of the channel, but this
approach breaks down when the channel is serial, since
single bit flits are clearly not efficient. To minimize the
overhead of multiplexing flow control information with
the data, the flow of data must be managed in blocks of
a reasonable size, but to consider such blocks ‘flits’ leads
to a loss of efficiency when sending messages which are
not a multiple of the block and implicitly imposes a
minimum packet size, conflicting with the need to
send small messages efficiently. A better solution is to
decouple the flow control from the packets, so that a
packet is regarded as a sequence of units which are as
small as possible (e.g. bytes), whose flow is controlled at
a coarser grain at the expense of a small amount of
buffering. (Although Dally (1990) discusses a more gen-
eral relationship between flits and phits, the physical
unit of data transfer, he does not consider the possibility
of a packet which is not an integral number of flits.)
This results in a simple layered protocol, whose lower
levels implement a bi-directional pair of handshaken
FIFOs between each connected pair of devices. Packets
then pass through these FIFOs, which are dynamically
interconnected to perform routing.

3.1.2. Advantages and disadvantages of serial connections

Guided by converging trends, we have arrived at the
combination of wormhole routing with lightweight
layered protocols on serial channels. This is unusual;
most, if not all, wormhole routing systems to date have
employed considerable wider channels. One reason is
that wider channels are easier to construct; a
bi-directional data rate of 20 MBytes/s requires only
10 MHz signals on a pair of byte-wide channels whereas
it requires 50 MHz signals on a four-wire bi-directional
serial link (May et al., 1993). The ability to implement
such links reliably with low-cost technology has only
been developed in the last few years. Another reason for
the preponderance of wide channels is that the analyses
performed by the parallel processing community favour
low-dimensional networks. For instance, Dally (1990)
concludes that two- or three-dimensional networks pro-
vide the best performance, which implies that routing
nodes should have a valency (number of channels) of no
more than six, each of which should be as wide as
possible in order to maximize the performance of the
routing node. However, this analysis is based on the
assumption that the principal limiting factor is the
number of wires crossing a bisection of the system. In
considering the pin-count of the routing devices as
another limiting factor, Dally (1991) concludes that
somewhat higher-dimensional structures give better per-
formance, as does Agarwal (1991) when considering the
effect of node delay. However, none of these analyses
consider the issue of system cost: they are only concerned
with maximizing performance under one constraint or
another. Using low-dimensional networks increases the
minimum number of routing chips which are needed to

interconnect a given number of devices and using wide
channels increases the minimum number of pins which
are required for the interface on each device. Serial
channels provide the lowest minimum costs, e.g. using
four-wire bi-directional serial links, a 32-valent single-
chip router (described in Section 4) can be constructed
in standard CMOS VLSI. This allows up to 32 devices
to be connected full-duplex with only one routing chip
and (for example) 512 devices to be interconnected using
only 48 routing chips (May et al., 1993). Lower valency
routers can obviously be built at even lower cost. Serial
channels also provide the maximum flexibility, since
they can always be run in bundles to provide the
bandwidth of a wider channel. A further advantage of
the high valency available by using serial channels is the
ease with which fault-tolerant interconnects can be con-
structed (Thompson, 1993).

The chief disadvantage of serial channels is of course
the latency of packet transmission. While the overall
bandwidth on a collection of serial channels can be as
high as if the same number of wires were used for a
smaller number of wider channels (or even higher, since
the problem of skew between different signals is minim-
ized), the latency for each packet is increased. The
latency for the header of the packet to be delivered is
not increased substantially provided the header can be
kept short, but the time for the whole packet to be
transmitted is increased, particularly if the packet is
long, because its body is transferred at a lower rate.
However, in message-passing systems it is frequently the
latency for the arrival of the header which is crucial and,
in distributed shared memory systems, packets are typic-
ally short, so the effect of the increase in latency is not
so great as might at first be assumed.

There is clearly a trade-off between the number of
genuinely concurrent communications supported by the
interconnect and the maximum performance of an indi-
vidual communication, and in this sense an interconnect
based on serial channels is at the opposite end of the
spectrum from a shared bus. There are many systems in
which a bus is the most appropriate form of interconnect.
However, as parallel systems become more prevalent,
the number in which a concurrent interconnect is the
most appropriate will increase. In many systems, both
forms of interconnect may be used for different purposes,
as discussed in Walker (1992).

4. COMPONENTS FOR CONCURRENT
INTERCONNECT

We have developed a concurrent interconnect which can
be constructed from standard VLSI components. In this
section we describe the architecture of one such compon-
ent, the IMS C104 packet routing chip.

The IMS C104 has 32 bi-directional serial interfaces.
Each of these interfaces may be connected to a similar
interface on another device (which may be another IMS
C104) to form a bi-directional serial link, called a

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

782 P. THOMPSON

DS-Link. (DS-Link is a trademark of INMOS Ltd.)
Each DS-Link transmits at a programmable speed up
to 100 MBits/s using a novel two-wire encoding which
requires a maximum frequency of only 50 MHz on each
wire. One wire carries the digital signal and the other
wire (the ‘strobe’) changes state only when the data does
not, so that only one wire is changing state at a given
moment. [This is very similar to the self-timed signalling
convention described in McAuley (1992).] These signals
are decoded with self-timed logic which has only to
discriminate the order in which edges occur on the two
wires, giving a whole bit-time of skew tolerance. The
self-timed decoding circuitry enables a DS-Link to
receive data at any rate, regardless of its transmission
speed. Each byte of data is transmitted as a 10-bit
sequence, which includes a parity check bit and a flag
to distinguish control sequences, which are used to
delineate the ends of packets, and to implement the
flow-control mechanism. The protocols used on
DS-Links are described in detail in May et al., (1993)
and INMOS (1993), and are the subject of an IEEE
draft standard (Whitby-Stevens, 1993).

The data arriving on each link is interpreted as a
sequence of packets, each starting with a routing header
and ending with a special control character called a
terminator. Headers are kept short to minimize latency
and the overhead on bandwidth, and may be 1 or 2
bytes. One byte headers are sufficient for systems of
moderate size (up to 256 connections), while 2 byte
headers allow very large systems to be constructed (up
to 64 k connections). Each link is equipped with an
independent packet processing engine which can route
over 7 million packets per second, all of which operate
concurrently, giving an aggregate peak processing rate
of over 220 million packets per second. Each packet
processor contains a programmable set of registers which
define the routing algorithm, using the concept of inter-
val routing (van Leeuwen and Tan, 1987). Even though
in most cases the registers of each link will be pro-
grammed identically, so that the routing of a packet
depends only on the value of its header, the provision
of a set for each link ensures that there is no contention
for shared resources within the device, and enables the
device to be partitioned into separate logical devices for
system security, if required.

The main functional components of the IMS C104
are illustrated in Figure 1. The IMS C104 implements
wormhole routing, as previously described, so that the
routing decision for each packet can be taken as soon
as the header has been received. The data streams
through the links are interconnected by a full 32-way
crossbar inside the IMS C104, so that the only conten-
tion which occurs is when two or more packets are
routed to the same output. To deal with this case, there
is high-speed arbitration circuitry associated with each
link output which allows one of the packets to be routed
while stalling all others. Flow-control signals are dynam-
ically interconnected by the crossbar in the reverse

direction to the data paths, thus ensuring that flow
control is preserved through the chip. When a packet is
stalled data flows until all buffering along its path is
filled, at which point the flow-control protocol of the
DS-Links communicates the stall to the preceeding
device. As soon as one packet has been transmitted from
a link, the arbiter for that link allows the next one to
proceed, ensuring that every packet is sent after a
bounded delay. The arbitration is performed round-
robbin, since although FIFO arbitration is better theor-
etically, in simulations the difference in performance is
only a few percent, which in practice would be more
than offset by the slower operation of a more complex
arbiter.

A single IMS C104 connects up to 32 devices and
arbitrary numbers of IMS C104s can be connected
together to construct packet-switching interconnect for
any number of devices. Because all of the links and
packet processors of the interconnect operate independ-
ently, the performance of the system scales with its size,
and because of the high valency of the IMS C104 many
devices can be connected using relatively few routers,
making the interconnect highly cost-effective.

We have considered the necessity for the interconnect
to be scalable and flexible to maximize its range of
application. To achieve this the IMS C104 is highly
programmable, for instance, the routing can be varied
to allow a variety of network topologies to be used
efficiently. The IMS C104 performs the routing decision
for each packet by comparing the value of its header
with a set of address intervals and selecting the link
corresponding to the interval into which the header falls.
This is extremely efficient, but places some restrictions
on how the terminal links of an interconnect can be
numbered. However, any link output can be pro-
grammed to discard the routing header as a packet
leaves the interconnect, so this restriction can be trans-
parent to the devices using the interconnect. Any packet
identification required by the receiving device can be
included after the routing header. This header deletion
mechanism also allows an interconnect to be con-
structed hierarchically, with the numbering of devices
also being hierarchical, in a similar way to the
local/national/international structure of telephone num-
bers. The fact that header deletion changes the length of
the packet causes no problems because the operation of
the device is independent of the packet length.

The IMS C104 supports locally adaptive routing by
allowing a free choice between a programmed ‘hunt
group’ of output links. Provided every link is connected
to the same device or to an entirely equivalent device,
the choice of which link of the group to use can be made
on the basis of which link is available first. This maxim-
izes performance by ensuring that there are not several
packets waiting to use one link when another equivalent
link is idle. The IMS C104 also supports a method for
preventing interconnect hot-spots called Universal
Routing. A system of IMS C104s can be programmed

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

CONCURRENT INTERCONNECT 783

Control Unit

—» Control &—
L Link O L
—

Set Interval
Selector

Random o
Header '
Generator

Error
Ermor
Co

>
1|8

[a)

Re.

Request

Crossbar
Switch

Header Buffer

Output Link Arbitration

Link Module

Header Stripper

FIGURE 1. Main functional blocks of the IMS C104.

so that each packet entering it is routed first to a
randomly chosen IMS C104 and from there to its
original destination. By spreading the load across the
interconnect this maximizes the number of links which
can transport it, thereby increasing bandwidth and redu-
cing latency under high load conditions, at the expense
of peak bandwidth and minimum latency under low load.

Preliminary details of the IMS C104 are given in
INMOS (1991).

5. USING CONCURRENT INTERCONNECT
FOR INTERPROCESSOR COMMUNICATION

The most common component in highly parallel systems
is a processor, so in this section we consider how
processors can communicate most effectively using an
interconnect of the type described in this paper. The
construction of packets for transmission and the inter-
pretation of packets received are both quite computa-
tionally intensive activities, particularly when the data
rate of the interconnect is high and the packet size is
small. Since high data rates are clearly desirable and
small packets are necessary to keep latency bounded,
this is a problem which cannot be avoided without
compromising performance. In Ramachandran et al.
(1990) a convincing case is made for hardware support
of interprocessor communication, but there is little data
available for evaluating cost. In this section we show
that this cost need not be very high.

One example of a processor with such hardware
support is the IMS T9000 transputer (INMOS, 1993),
the general layout of which is illustrated in Figure 2.
The external communications of the T9000 are managed

Cu FPU VCP

Links

EMI

X-BAR

CACHE CPU CACHE

FIGURE 2. Layout of the T9000.

by a sophisticated on-chip communications processor
called the ‘Virtual Channel Processor’ (VCP). The main
function of the VCP is to accept high-level communica-
tion commands from the processor and translate them
into sequences of packet exchanges on serial links obey-
ing a strict protocol. The VCP multiplexes simultaneous
communications on an arbitrary number of uni-
directional channels, which couples well to a concurrent
interconnect. It does this by keeping information relating
to each virtual channel in a data structure in memory.
Each time a packet relating to a particular channel is to
be sent, the VCP adds the corresponding data structure
to a linked list. As each one is taken from the head of a
list, the VCP sets up a DMA transfer directly from the
workspace of the communicating process using the chan-
nel to one of four serial DS-Links. Every packet starts
with a header taken from the data structure and contains
at most 32 bytes of data, giving a effective bi-directional
data rate of upto 17.6 Mbytes/s per link.

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

784 P. THOMPSON

The VCP of the IMS T9000 provides a high data rate
interface to a concurrent interconnect. It interacts with
the CPU to implement an extremely simple program-
ming model of synchronized communication along an
arbitrary number of logical channels, which can be
connected through the interconnect to an arbitrary
number of other processors and other devices. Since the
VCP occupies only 16% of the total chip area, this
shows that the capability of a concurrent interconnect
can be exploited without excessive cost, even compared
with standard busses, which generally require buffers,
drivers and control logic external to the processor chip.
Integrated interfaces to busses such as PCI require
similar amounts of silicon as the IMS T9000 VCP
(DEC, 1993).

6. CONCLUSIONS

For high-performance parallel systems to become com-
monplace, they require an interconnect whose
cost/performance matches that of the systems themselves.
Converging industry trends suggest the use of a concur-
rent interconnect, which derives its performance from
the simultaneous operation of many independent com-
munication channels. This means that the performance
of each channel need not be excessively high, permitting
an implementation with low-cost CMOS technology,
using simple protocols on serial channels. This allows
an interface to the interconnect to be integrated with
another device such as a processor and allows the
interconnect itself to be constructed from standard
CMOS chips.

ACKNOWLEDGEMENTS

I would like to thank my present and former colleagues
at INMOS for their assistance and support, particularly
David May, Paul Walker and Colin Whitby-Strevens.
Some of the work described in this paper has been
supported by the EC ESPRIT programme.

REFERENCES

Agarwal, A. (1991) Limits on interconnection network perform-
ance. I[EEE Trans. Parallel Distributed Systems, 2, 398—412.

Black, U. D. (1989) Data Networks: Concepts, Theory, and
Practice. Prentice-Hall, New York.

Clos, C. (1953) A study of non-blocking switching networks.
Bell Systems Tech. J., 32.

Dally, W. J. (1990) Performance analysis of k-ary n-cube
interconnection networks. IEEE Trans. Comp., 39, 775-785.

Dally, W. J. (1991) Express cubes: improving the performance
of k-ary n-cube interconnection networks. IEEE Trans.
Comp., 40, 1016-1023.

Dettmer, R. (1992) Frame relay: the networker express. [EEE
Rev., November/December, 381-385.

DEC (1993) DECchip 21066—alpha AXP processor for low-
cost applications. In Proc. HOT Chips V. IEEE CS, Stanford.

Gustavson, D. B. (199?) Bus guidelines and trends. In Di
Giacomo, J. (ed.), Digital Bus Handbook. McGraw-Hill,
New York.

INMOS Ltd (1991) The T9000 Transputer Products Overview
Manual. INMOS Ltd, Bristol.

INMOS Ltd (1993) The T9000 Transputer Hardware Reference
Manual. INMOS Ltd, Bristol.

van Leeuwen, J. and Tan, R. B. (1987) Interval routing. Comp.
J., 30, 298-307.

May, M. D,, Thompson, P. W. and Welch, P. H. (eds) (1993)
Networks, Routers and Transputers: Function, Performance
and Applications. I0S Press, Amsterdam.

McAuley, A. J. (1992) Four state asynchronous architectures.
IEEE Trans. Comp., 41, 129-142.

Ni, L. M. and McKinley, P. K. (1993) A survey of wormhole
routing techniques in direct networks. IEEE Comp., 26,
62-76.

Ramachandran, U., Solomon, M. and Verson, M. K. (1990)
Hardware support for interprocess communication. IEEE
Trans. Parallel Distributed Systems, 1, 318—329.

Teener, M. (1992) A bus on a diet In Proc. CompCon '92.
IEEE Computer Society.

Thompson, P. W. (1993) Globally connected fault-tolerant
systems. In Kerridge, J. (ed.), Transputer and Occam
Research: New Directions. IOS Press, Amsterdam.

Walker, C. P. H. (1992) The bus-less computing environment.
In Proc. BUSCON/92-West, Vol. 11, pp. 549-557. Conference
Management Co., Long Beach.

Whitby-Strevens, C. (1993) Standard for Heterogeneous
Interconnect (Draft). INMOS Ltd, Bristol.

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

20z Iudy 01 uo 1sanb Aq 91.2809/8.2/8/9€/2191e/|ulwo9/Wwod dNodjWepes.//:SA)Y WOy papeojumod

