Degeneracy in Geometric Computation and the
Perturbation Approach

PETER SCHORN
Institut fiir Theoretische Informatik, ETH, CH-8092 Ziirich, Switzerland

We study the problem of degeneracy in geometric algorithms and show that degeneracies arise even in
simple Euclidean constructions with ruler and compass. We distinguish between problem-dependent and
algorithm-dependent degeneracies, and argue that the popular perturbation approach is suitable for
removing only the latter but not the former. Examples demonstrate the dangers of removing problem-
dependent degeneracies using the perturbation approach and we identify circumstances where this method
is justified. We propose to deal with degeneracies by giving precise input—output specifications of the
geometric problem under consideration and by handling problem-dependent degenerate cases individually
right from the beginning of algorithm construction. Algorithm-dependent degeneracies are removed using
perturbation or its simplest version, lexicographic ordering. As an example of this approach we present
an algorithm for the computation of the winding number which yields provably correct results when
implemented in integer and floating point arithmetic.

1. THE PROBLEM OF DEGENERACY IN
GEOMETRIC COMPUTATION

Implementors of geometric algorithms will testify that
special cases, or degeneracies, often cause the greatest
difficulties when creating a program that works for all
inputs. In order to illustrate the concept of degeneracy
consider the following Euclidean construction which can
be viewed as a tiny geometric algorithm. Given a point
p and a circle ¢ with positive radius, find a iine through
p that touches c (i.e. a tangent). The standard construc-
tion, as depicted in Figure 1, works as follows:

1. Draw the straight line segment [from the center of ¢
to p.

2. Construct m, the middle point on /, by intersecting
the circle around p with radius r = d(p, center(c)) and
the circle around center(c) with radius r and con-
necting the intersecting points with a straight line
segment k. The intersection of [and k is m.

3. The touching points of the tangents on ¢ are given
as the intersection points of ¢ with the circle around

=

FIGURE 1. Constructing tangents with compass and ruler.

m with radius d(p, m) = d(center(c), m) (d denotes the
Euclidean distance).

Note that this construction works well when p is outside
the circle (two tangents exist), gives the right answer
when p is inside the circle (no tangent exists) but fails to
handle the degenerate case where p lies on c. In this
special case, the intersection of ¢ with the circle around
m with radius d(p, m) yields p itself (see Figure 2) which
is insufficient to determine a tangent. In this case we
need to find the perpendicular to ! through p, a task
easily accomplished by ruler and compass (Figure 2).

This example captures two essential characteristics of
geometric degeneracy:

1. Degenerate cases occur even for the simplest geo-
metric algorithms. In fact, geometric configurations
arising from real world applications tend to favour
degenerate configurations for two reasons:

a. The underlying number system (floating point or
integer) severely restricts the locations of geometric
objects to a finite grid. As a consequence, the
number of collinear points increases when point
data from a larger universe is rounded to lie on
the grid.

b. Real world spatial data such as floor plans, blue
prints, layouts, etc., exhibit a great deal of structure
such as vertices incident several edges, parallel
lines, etc. which is not found in random
configurations.

2. There appears to be no straightforward way to modify
the algorithm for the non-degenerate case in such a
way that it handles the degenerate case as well.
Therefore, special code may be required to deal with
degenerate configurations. In our example, this is no
accident since the case ‘p lies on ¢’ is fundamentally
different from the cases ‘p outside ¢’ and ‘p inside ¢’.
It is the only case where a unique tangent exists.

THE COMPUTER JOURNAL,

VoL. 37, No.1, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

36 P. SCHORN

FIGURE 2. The degenerate case ‘p lies on ¢’ calls for a different procedure.

One of the recent developments in computational
geometry was the introduction of (symbolic) perturba-
tion for the removal of degeneracies. Great hopes in its
capabilities can be found in Yap (1990, p.351) where
the perturbation approach is advertised as a contribution
towards the goal ‘to admit implementors to the theoreti-
cians’ paradise in which degeneracies are (virtually)
abolished’. This paper takes a more cautious view. We
distinguish between problem-dependent degeneracies
and algorithm-dependent degeneracies, and claim that
the latter can be removed by perturbation while the
former are dealt with precise input—output specifications.

The paper is organized as follows. Section 2 introduces
the idea of perturbation. Section 3 defines the notions
of problem-dependent and algorithm-dependent degen-
eracies. Section 4 discusses the merits and drawbacks of
the perturbation approach in geometric computation.
As a case study, section 5 presents in detail an algorithm
for the winding number and its robust implementation
in double precision integer arithmetic and floating point
arithmetic with guaranteed accuracy. Section 6 proposes
how degeneracies should be dealt with in general.

2. THE PRINCIPLE OF PERTURBATION
AND NUMERICAL ANALYSIS

The basic idea of the perturbation approach can be
formulated as follows:

Principle of perturbation The approximate result
computed by a program can be viewed as the exact
result on slightly perturbed input data.

In numerical analysis this method is known as back-
wards analysis and enables the analysis of roundoff
errors in floating point arithmetic. A simple example is
the fundamental property of floating point addition. Let
@ denote floating point addition and eps the machine
epsilon (eps=b'"P?2 where b is the base and p the
number of digits in the mantissa). Then the equation

a®@b=(a+b)-(1+eg=a-(1+e)+b-(1+¢)
with |¢| < eps

holds.
We interpret this formula such that the result of a

floating point addition of a and b is the exact sum of
two slightly perturbed numbers a-(1+¢) and b-(1 +¢).
Numerical analysis favors algorithms which can be
analyzed using backwards analysis and tries to bound
the amount of perturbation necessary to achieve exact
results.

The well known idea of lexicographic ordering can
also be viewed as perturbation in disguise. Consider a
plane sweep algorithm where the sweep line moves from
left to right, processing events according to their x-order.
This works well until two or more events with the same
x-coordinate exist (see Figure 3). A common remedy is
to break ties by taking the y-order into account (i.e.
lexicographic ordering) which can be viewed as a per-
turbation (see Figure 3).

sweep line

perturbation

FIGURE 3. Lexicographic ordering viewed as perturbation.

Before we can apply perturbation to geometric
algorithms in general we must analyze the notion of
degeneracy.

3. PROBLEM-DEPENDENT AND ALGORITHM-
DEPENDENT DEGENERACIES

Degeneracy of a configuration can be defined in at least
two different ways (Yap, 1990).

The first definition is geometry centered. We call
configuration C degenerate with respect to a problem P
iff the solution of P is sensitive to some infinitesimal
perturbation of C, ie. if for any ¢>0 there exists a
perturbation bounded by ¢ leading to a topologically
different result. For example, a configuration falling into
T, in Figure 4 is degenerate because the change of p,’s
x-coordinate by any amount leads to a new classification.
In other words, a degeneracy is a discontinuity in the
input—output mapping.

THE COMPUTER JOURNAL,

Vor.37, No.1, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

DEGENERACY IN GEOMETRIC COMPUTATION 37

Decision tree

P, Boundary P, Py
case
A A E
P
pl p2 p 1 pl 2
€T, eT, €T,

FIGURE 4. Partial decision tree

The second definition is algorithm centered. We use
the algebraic decision tree model of computation which
views all possible executions of a program as a tree
where algebraic functions govern which branch to take.
We think of a geometric algorithm A in terms of this
model. Consider the inner nodes of the decision tree
where some of the nodes contain predicates on the input
data. For the sake of simplicity we assume these predic-
ates to be testing the sign of a polynomial in many
variables. For example, the sign of the polynomial
(P« — 4)(a, —1,) = (p, — 4,)(q. —r,) determines on
which side of the directed line from point 4 to point r
the point p lies. A configuration C is called degenerate
with respect to algorithm A iff at least one of the test
polynomials encountered during A’s execution evaluates
to zero. For example, the polynomial from above evalu-
ates to zero iff the points p, ¢ and r are collinear. A
typical example of an algorithm-dependent degeneracy
for a plane sweep algorithm is a configuration of points
where more than two points share the same x-coordinate.

A degeneracy according to the first definition is called
a problem-dependent degeneracy while a degeneracy
according to the second definition which is not problem-
dependent is called algorithm-dependent. One can see
that degeneracies according to the first definition are
always degeneracies according to the second definition:
a degenerate configuration according to the first defini-
tion (e.g. to be found in T, in Figure 4) can be viewed
as a boundary case separating two types T; and T; of
solutions with distinct topological properties. Since an
algorithm A claiming to solve problem P must be able
to distinguish between the two topologically distinct
solutions, we can continuously change a configuration
with result in T; into a configuration with result in T;
forcing an appropriate test predicate to evaluate to zero
for a configuration in T;.

A typical example of a problem-dependent degeneracy
in the convex hull problem is a set of points where more
than two points lie on a hull edge. From a user’s point
of view problem-dependent degeneracies are the main

for the convex hull problem.

concern while algorithm-dependent degeneracies are
effects of a particular problem solving approach which
should be hidden from the user. Note also that non-
degeneracy conditions imposed are often more stringent
than our second definition: when constructing the convex
hull for example, one might want to exclude all config-
urations of points which contain more than two collinear
points, even though most of these configurations will
neither be problem-dependent nor algorithm-dependent
degeneracies.

4. PERTURBATION IN GEOMETRIC
COMPUTATION

Many researchers in geometric computation have
adopted the principle of perturbation as a sufficient
requirement for a geometric algorithm to be robust and
useful. This general principle promises to handle simul-
taneously three separate problems encountered when
creating robust geometric programs:

1. The removal of algorithm-dependent degeneracies
(e.g. vertical line segments in certain plain sweep
algorithms).

2. The removal of problem-solving degeneracies (e.g.
collinear points in a convex hull algorithm).

3. The ability to analyze programs built on imprecise
primitives, implemented in floating point arithmetic.

Furthermore, general methods have been devised that
solve these problems once and for all by building geomet-
ric algorithms on top of carefully designed primitives.
For example, Edelsbrunner and Miicke (1990), Yap
(1990) and Emiris and Canny (1992) address points 1
and 2, whereas Salesin et al. (1989) address 1, 2 and
even 3.

4.1. The inadequacy of perturbation

In the following we argue that the principle of perturba-
tion as stated above is inadequate for many geometric
algorithms because we loose the distinction between

THE COMPUTER JOURNAL,

Vor. 37, No.Il, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

38 P. SCHORN

algorithm-dependent degeneracies and problem-depend-
ent degeneracies. Therefore the general perturbation
methods will indiscriminately remove both types of
degeneracy. One might view this effect as a good thing,
but in practice it is not. The treatment of problem-
dependent degeneracies is not under the user’s control
and problem-dependent degeneracies which look very
similar can be handled quite differently by an algorithm
just adhering to the principle of perturbation. The follow-
ing examples show what can happen if a geometric
algorithm satisfies just the principle of perturbation.
Similar views were expressed by Mehlhorn (1993).

Point-in-polygon test. Given a polygon P and a point
p determine whether p lies inside P. If exact arithmetic
is used (e.g. Edelsbrunner and Miicke, 1990) and the
point lies on the boundary of the given polygon, the
algorithm can randomly choose between ‘in polygon’
and ‘outside polygon’ without violating the principle of
perturbation (see Figure 5). Although the schemes in
Edelsbrunner and Miicke (1990), Yap (1990) and Emiris
and Canny (1992) are deterministic, it is unclear for
which points on the boundary the test yields ‘inside’ and
for which ‘outside’. A better solution to this problem
would be to introduce a third possibility ‘on boundary’.
Edelsbrunner and Miicke (1990) acknowledge the exist-
ence of this problem and suggests testing ‘on boundary’
condition before running the point-in-polygon test. In
Section 5 we give a more efficient algorithm, nevertheless
based on the perturbation idea, that handles both the
problem-dependent degeneracy ‘on boundary’ and any
algorithm-dependent degeneracies.

The difficulties with the principle of perturbation
increase when imprecise primitives are allowed as is the
case in Salesin (1989). Here, a point close to the bound-
ary of the polygon might be considered ‘inside’ or
‘outside’ without giving the user an adequate warning
that a nearly degenerate configuration has been encoun-
tered (see Section 5 for a solution in floating point
arithmetic that either gives the correct result or detects
near degeneracy).

Convex hull. Find the smallest convex polyhedron C
that contains a set of points in d dimensions. Again, we
encounter the situation that problem-dependent degen-
eracies, i.e. in this case points that lie on C without
being vertices of C, are treated arbitrarily. A possible
better solution is to return C without any extraneous
points and to return other points on C separately.

Unfortunately it seems rather complicated to implement
this specification without taking this problem-dependent
degeneracy explicitly into special account. Note, in con-
trast, that the perturbation approach works perfectly
well for an algorithm that computes just the volume of
C because points on C are not problem-dependent
degeneracies but might be viewed as algorithm-depend-
ent degeneracies.

Line segment intersection. Compute all intersections of
n given line segments in the plane. Using the perturbation
approach we might encounter difficulties with line seg-
ments that overlap or merely touch each other. In both
cases an algorithm satisfying the principle of perturba-
tion is free to decide whether the segments intersect or
not. In this case post-processing, i.e. detecting degener-
acies, appears as hard as the original problem and is
therefore infeasible. Again, a more precise specification
of the desired output in problem degenerate cases helps
to solve the problem: one can define that two line
segments intersect iff there exists at least one point
common to both segments.

4.2. The adequacy of perturbation

The preceding examples show that indiscriminate use of
the perturbation approach can lead to difficulties. This
section identifies two circumstances under which the
perturbation approach is valid.

1. A precise specification of the result in case of problem-
dependent degeneracies may be unnecessary — any
solution is good enough. As an example, consider
computing the volume of the convex hull C of a given
point set in three dimensions. As an intermediate step
we employ a convex hull algorithm. Extraneous
points on C pose no problem since, in the worst case,
they could cause zero-volume tetrahedra if the volume
is computed using a tetrahedralization of C. Other
examples include extremal problems, like closest-pair,
Euclidean-minimum-spanning tree, etc.,, where the
solution is not necessarily unique.

2. Although perturbation is used, the problem-depend-
ent degeneracy can easily be recognized in the output.
An example is the computation of the Voronoi dia-
gram of a set of four co-circular points (see Figure 6).
Using perturbation we would obtain a Voronoi dia-
gram with a zero-length Voronoi edge. In a post-
processing stage we could fuse the two Voronoi

- urbation

outsideg perturbation
[)

FIGURE 5. Perturbation for the point-in-polygon test.

THE COMPUTER JOURNAL,

Vor.37, No.1, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

DEGENERACY IN GEOMETRIC COMPUTATION 39

o o [[]
zero-length edge

FIGURE 6. Perturbing a degenerate Voronoi diagram.

vertices or even allow zero-length Voronoi edges
facilitating the computation of the Delaunay triangu-
lation. Note that in the examples where we encoun-
tered difficulties with the perturbation approach, the
computed output did not reliably indicate problem-
dependent degeneracies. For example, in the line
segment intersection problem we can miss some
degenerate intersections and there is no way to detect
this fact afterwards.

5. CASESTUDY: COMPUTING THE
WINDING NUMBER ROBUSTLY

The winding number is a generalization of the point-in-
polygon test, a function often found in computer graph-
ics. This case study demonstrates how to compute the
winding number such that problem- and algorithm-
dependent degenerate cases are handled appropriately.
We give an exact version implemented in integer arith-
metic and a floating point arithmetic version with guar-
anteed accuracy. We use the perturbation approach for
algorithm development.

Definition (winding number). Given a polygon P, not
necessarily simple, and a point t not on P’s perimeter,
the winding number wn(P, t) is the number of complete
revolutions in the positive direction an observer in ¢ has
to make in order to follow an object that travels on P’s
perimeter in the positive direction until it returns to its
starting point. |

5.1. The ray shooting method

The standard algorithm for computing the winding
number works as follows. We choose a directed half ray
r emanating from ¢ and initialize a variable wn to 0. For
each directed edge of P that crosses r from left to right,
looking in direction r, we increment wn, and for each
directed edge that crosses from right to left we decrement
wn. Edges not intersecting r are ignored. After examining
all edges of P the variable wn contains the winding
number. The choice of the ray r is arbitrary, a horizontal
or vertical ray is efficient.

Instead of writing special code for the special cases
(e.g. the ray touches a vertex), we use a symbolic
perturbation approach (Edelsbrunner and Miicke, 1990).
We take a horizontal half ray emanating at t=(t,,t,)

FIGURE 7. The half ray method for computing the winding number.

and going to (t,,t, + ¢) and from there to (+ oo, t, + &)
where ¢ is a symbolic quantity only affecting the border-
line cases of comparisons (see Figure 7). In order to
detect whether a horizontal half ray intersects an arbit-
rary line segment, the primitive whichSide(p, g,r)=
(px_qx)'(qy—ry)_(py_qy).(qx—rx) Suf.ﬁces' The pOly-
nomial whichSide(p, g, r) is positive if g lies to the right
of the directed line from p to r, is negative if g lies to
the left of this line and is zero if g lies on the line. In
contrast to Edelsbrunner and Miicke (1990) which
employs a separate pre-processing phase to detect the
case where t lies on P’s boundary, we merge the two
phases thereby enhancing the algorithm’s efficiency. We
must distinguish three cases (Figures 8-10).

AN

elt
u

FIGURE 8. The edge (u, v) crosses from right to left.
w,:=w, + 1< (whichSide(u, t, v) <0) A (u, <t, <v,)
u
el / >

FIGURE 9. The edge (u, v) crosses from left to right.

wn:=wn — 1 <(whichSide(u, t, v) > 0) A (v, < t, <u,)

FIGURE 10. The ray emanates on an edge.

onBoundary<>(whichSide(u, t,v) =0) A ((u,=v,) A
(e<te<v) v (0SS w) v ((w#0y) A
(y <ty <)) v (v, <1, <))

THE COMPUTER JOURNAL,

Vor.37, No.1l, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

40 P. SCHORN

5.2. The integer arithmetic case

Tying the above three cases together, we obtain the following program.

procedure windingNumber(

}
}

}
}

P array of point; { Vertices of the polygon
n . integer; { Number of vertices
{ Precondition: (Vi1 <i<n P, #P;) A(PL#P,)}
t . point; { We seek the winding number around ¢t. }
var on boolean; { ‘true’'<tis on P's boundary
var wn integer); { The winding number
begin

wn:=0; u:=P[1]; P[n + 1]:=u; {Sentinel} on:=false;
fori:=2ton+1 do

v:=P[i];

case sign(whichSide(u, t, v)) of

-1 ifu,...t,<v,then wn:=wn+1 end

{D} 10: om=on v ((Uy=Vy) A (b St V) V (Ve S <))
v ((uy #vy) A ((uy <ty <vy) v (Vg <ty <1y)))
|+ 1. ifv,...t,<u, then wn:=wn-—1 end
end;
u=v
end
end:

Examining the formula whichSide(p, ¢, r) = (px — q,)(q, — ;) — (p, — q,)(q — r,), we see that we can compute an exact
result using double precision integer arithmetic if the vertices of polygon P have single precision integer coordinates.

5.3. An accurate floating point implementation

Now we consider the case of floating point arithmetic.
The idea is to implement ‘whichSide’ in floating point
arithmetic such that the design is either correct, i.e. as
obtained with infinite precision arithmetic, or the com-
puted value is zero and there exists a small perturbation
that causes the three points to be collinear. We call the
latter case a nearly degenerate case and find in the
following analysis that nearly degenerate cases can be
treated as exact degenerate cases. This works well in this
example because this treatment does not really change
the course of the algorithm. In fact one could deliver
the result ‘on boundary’ as soon as a near or exact
degeneracy has been encountered.

For the implementation we use floating point arith-
metic which either rounds upwards or downwards in
order to simulate some kind of interval arithmetic. The
following error analysis uses the fact that

(aoplb)=(aopb)(1—e),

(downward-rounding arithmetic) and

O<e<2eps

(aop1bh)=(aopb)(1+e), O<e<2eps
(upward-rounding arithmetic)
with op € {4+, —, *} where eps is the machine epsilon.

An implementation of an arithmetic expression E in
downward-rounding floating point arithmetic is denoted
by ‘downRound(E)’ and an implementation in upward
rounding floating point arithmetic is denoted by
‘upRound(E)’. The following theorem describes a robust
floating point implementation for the winding number

problem and gives a bound on the perturbation neces-
sary in degenerate cases.

Note that the algorithm, unlike algorithms built on
e-predicates in Epsilon geometry (Salesin et al., 1989),
explicitly detects the nearly degenerate cases where the
answer of the algorithm is only correct if a small
perturbation is applied. In cases where no near degener-
ate case is encountered, we obtain the same result as if
we had used infinite precision arithmetic:

THEOREM (accurate floating point implementation of the
winding number). Let ‘windingNumberFloat’ be the
procedure obtained from ‘windingNumber’ by replacing
the line

case sign(whichSide(u, t, v)) of
by
case SignWhichSideFloat(u, t, v) of
where

function SignWhichSideFloat(u, t, v: point): {—1, 0, +1};
begin
swaps:=0;
if [t;| > u,| then (u, t):=(t, u); swaps:=swaps + 1 end,;
if |t,| > v,| then (v, 1):=(t, v); swaps:=swaps + | end;
{It,| <min(|uy[, |v,]), use for the error analysis.}
if downRound((u, — tx) * (t, — vy))
>upRound((u, —t,)* (t, — vy))
SignWhichSideFloat:=(—1)"a*
upRound((uy, — ty) * (t, — vy))
< downRound((u, —t,)* (t, — v))

then
elsif

THE COMPUTER JOURNAL,

then SignWhichSideFloat:=(—1)s"s*!
else SignWhichSideFloat:=0
VoL. 37, No.1l, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

DEGENERACY IN GEOMETRIC COMPUTATION 41

end
end,;

If after execution of the procedure ‘winding
NumberFloat’ the variable on is ‘false’ then wn is the
correct winding number of the polygon P around the
point t, where the floating point numbers representing
the coordinates of P’s vertices and t are assumed to be
exact. If on is ‘true’ then there is a perturbation bounded
by 12 eps for two vertices v; and v, of P and the point
t such that the perturbed point ¢* lies on the perturbed
edge e* determined by vf and v3. |

Proof. From the previous discussion and the con-
struction of ‘SignWhichSideFloat’ it is clear that the
results of —1 or +1 are correct in the sense that these
variables would have been obtained using even infinite
precision arithmetic. For the analysis we consider three
cases.

1. The statement {D} is never executed. Then on =‘false’
and the claim is correct according to the previous
discussion.

2. The statement {D} is executed, but on = ‘false’ after
completion of the program. In this case it is conceiv-
able that wn should have been incremented or decre-
mented. In the case u,=wv, the variable wn should
not change because neither u, <v, nor v,<u, is
satisfied. In the case u,# v, we conclude that
(u, <ty <vy) A T1(v, <t, <uy) (on remains ‘false’)
which in turn prohibits changing the variable wn.

3. The statement {D} is executed and on = = true. We
consider the execution that changed the value of
on from ‘false’ to ‘true’. We can assume that
[ty ... min(]u,l|, |v,|) according to the definition of
‘SignWhichSideFloat’. We use the following abbrevi-
ations:

a= (1, — 1)ty — v,)
al = upRound(a),
b=(u, —t,)(t,—v,),
b7 =upRound(b), b| = downRound(b)

From ‘SignWhichSideFloat” we obtain a| <bl A
bl <afl. If we assume a|<b| we get alb| <afl.
Otherwise we have b | < a, resultinginb| <a| <bT.
Since the cases al<b| and b|<a|l<bl are
symmetric, we assume a| < b| <a?. Numerical ana-
lysis, omitting second order error terms and using the
facts about upwards and downwards rounding float-
ing point arithmetic shows that a| =a (1 —¢,),al =
a(l+¢&) and b|=b(1+¢;) with 0<|¢| <6 eps.
Since a| < b| < af there exists ¢, |¢| < 6 eps such that
a(1+ &)= b(1+ ;). The case where u,=0 or v,=0
is trivial, since then ¢,=0 and the sign of
(uy —t,)(—v,) or the sign of u, (t, —v,) can be com-
puted exactly which means no perturbation is neces-
sary. Assuming (u, #0) A (v, #0) we rewrite a(1 +¢) =

al = downRound(a)

b(1+¢;3) as
(ux_tx)'(ty_vy).(1+8)

=(uy_ty).(tx_vx)'(1+83)

{2
v)‘
t,
:(uy-<1+£3-<1_J_>>_ty>.(tx_vx)
u)’

From |e|<6epsAales|<bepsan|l—t,/v,|<2A]l
—t,/u,| <2 we conclude the existence of the 12 eps
perturbation making the equation exact. |

6. HOW SHOULD ONE HANDLE
DEGENERACIES?

We have seen in the previous discussion that algorithms
adhering to the principle of perturbation work well as
long as only algorithm-dependent degeneracies are
removed. Perturbation is a viable tool for removing
these degeneracies. On the other hand, one should not
rely on perturbation when dealing with problem inherent
degeneracies. Although a post-processing stage which
deals with the result delivered by an algorithm based on
perturbation is sometimes feasible (e.g. the winding
number example) there are cases where post-processing
appears to be at least as difficult as solving the problem
in the first place (e.g. the line intersection problem). In
both situations, however, perturbation will yield an
algorithm that is inferior both in speed and simplicity
to an algorithm that incorporates the special cases right
from the beginning.
Therefore, we propose the following approach.

1. At the beginning there must be a thorough problem
analysis and a precise specification of the algorithms
input and output, in particular in degenerate cases.
Note that often there are many possibilities for speci-
fying the output for degenerate configurations. As an
example consider the problem of finding all intersec-
tions among line segments [, ..., [,. We may be inter-
ested in the set of intersection points or in the set of
all pairs (i, j) such that [; and [; intersect. Both
specifications are essentially the same as long as there
are no degeneracies. The extreme case of all segments
having a common intersection point makes the differ-
ence between the two output specifications clear:
there is one intersection but n(n — 1) intersecting pairs.

Special consideration must also be given to the
specification of the input data. In theory geometric
algorithms often assume sets as input. In practice this
implies eliminating possible duplicates or allowing
mutisets as input. The input specification gets even
more difficult when more complicated objects such
as convex polygons are part of the input. A rigorous
specification what constitutes a convex polygon, and

THE COMPUTER JOURNAL,

VoL.37, No.l1l, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

42 P. SCHORN

recognizing it, is not a trivial task when all degenerate
cases are considered (Schorn and Fisher, 1994).

2. Construct the algorithm with exact (integer) arith-
metic and the input-output specification in mind.
This means that degenerate cases are taken care of
right from the beginning and not as an afterthought.
This usually leads to short and efficient programs.
Perturbation can conceptually be used to get rid of
algorithm-dependent degeneracies.

3. If floating point arithmetic is to be used, the situation
becomes much more difficult since only few geometric
algorithms are known which behave provably correct
when implemented in floating point arithmetic
(Mileukovic, 1988, 1989; Fortune, 1992; Schorn,
1994). So far only tedious analysis has yielded
usable results.

As a case study adhering to the above guideline we have
presented two algorithms for the winding number prob-
lem, one with double precision integer arithmetic, the
other with floating point arithmetic which can handle
all degeneracies adequately.

ACKNOWLEDGEMENTS

I am grateful to Jurg Nievergelt and Klaus Hinrichs for
stylistic improvements to this paper.

REFERENCES

Emiris, I. and Canny, J. (1992) An efficient approach to
removing geometric degeneracies. In Proc. Eighth Annual
Symp. on Computational Geometry, pp. 74—82. ACM Press.

Edelsbrunner, H. and Miicke, E. (1990) Simulation of simpli-
city: a technique to cope with degenerate cases in geometric
algorithms. ACM Trans. Graphics, 9, 66—104.

Fortune, S. (1992) Numerical stability of algorithms for 2D
delaunay triangulations. In Proc. Eighth Annual Symp. on
Computational Geometry, pp. 83-92. ACM Press.

Mehlhorn, K. (1993) Degeneracy in geometric computations:
curse of blessing. Presentation given at the ALCOM
Workshop * ALGORITHMS: Implementation, Libraries, and
Uset, IBFI, Dagstuhl.

Milenkovic, V. (1988) Verifiable Implementations of Geometric
Algorithms using Finite Precision Arithmetic. CMU Report
CMU-CS-88-168, Carnegie Mellon, 1988.

Milenkovic, V. (1989) Double precision geometry: a general
technique for calculating line and segment intersections
using rounded arithmetic. In Proc. 30th IEEE Symp. on
Foundations of Computer Science, pp. 500-505.

Schorn, P. (1993) An axiomatic approach to robust geometric
programs. J. Symbolic Comput., 16, 155-165.

Schorn, P. and Fisher, F. (1994) How to detect a convex
polygon. In Heckbert, P. (ed.), Graphics Gems IV. Academic
Press, New York.

Salesin, D., Stolfi, J. and Guibas, L. (1989) Epsilon geometry:
building robust algorithms from imprecise calculations. In
Proc. Fifth Annual Symp. on Computational Geometry,
pp. 208-217. ACM Press.

Yap, C. (1990) Symbolic treatment of geometric degeneracies.
J. Symbolic Comput., 10, 349-370.

THE COMPUTER JOURNAL,

VoL. 37, No.1l, 1994

20z Iudy 60 U0 1sonB Aq | #GI6E/SE/L/LE/SI0NE/UIWOD/ W00 dNo"olWapese)/:SdRy WO} POPEOJUMOQ

