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This paper gives a brief history of diakoptics and provides an insight into its connections with domain

decomposition methods. The aim is to discuss some of the common grounds of the two methods and to

relate these common grounds to parallel computing. Load balancing in an MIMD environment and
implementation issues in an SIMD environment are discussed.
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1. HISTORICAL DIAKOPTICS

In 1963, Kron published a book entitled ‘Diakoptics: The
Piecewise Solution of Large-Scale Systems’, which was a
collection of technical papers concerning the concepts
and applications of diakoptics and was written by
himself and published in the Electrical Journal between
1957 and 1959. The terminology diakoptics was
originated from the Greek words kopto which means to
tear and dia which means systems. Hence diakoptics can
be interpreted as system-tearing (7), and it is sometimes
referred to as the method of tearing. The idea is to solve a
class of system problems, typically of electrical circuits,
that has a very large number of variables which is then
torn into a number of subdivisions, each subdivision can
be analysed and solved separately as if the other
subdivisions were non-existent. Then the partial solu-
tions are interconnected, step by step, until the solution
of the entire system is accomplished.

The original purpose of the method of tearing was not
to save computation, but to facilitate the solution of
complex system problems that cannot be solved in one
piece. The idea was used in the calculation of large and
complicated electrical circuits in early 20th Century
when no digital computers of significant size were
available to handle a given problem in one piece. At
that time, electrical engineers analysed and calculated a
large number of extensive a.c. network problems. These
results were considered as the building blocks for a larger
and more complex network. Thus an electrical engineer
was able to paste these building blocks to a desirable
network as required. Each of these building blocks
involved typically the inversion of a 2x2 or 3x3
matrix. However, the idea that Kron had in his mind, as
discussed in the preface of the book Diakoptics, was not
confined to electrical circuit calculations, but to search
for a ‘Mathematics of large-scale engineering systems’.
Some work was done by Kron along this idea in as early
as 1940s including, numerical solutions of differential
equations (5), compressible and incompressibie fluid flow
fields (4), and elasticity (3). He tried to replace some
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continuous engineering problems by means of an
equivalent electrical circuit which contains ﬁm@
number of unknowns. It is clear that Kron’s aim wag,
in modern terminology, to replace a continuous syste%
by a discretized system, using a unified approach basc?d
on electrical networks. The idea proposed by Kron d@
not get across to other scientific communities, i
particular the numerical analysts at that time. As it 'g
well known, the only discretization method that was
used to replace continuous problems adapted by mo?g‘l
numerical anpalysts and other fluid dynarmsg
until late 1940s was the finite difference methcd
(2,6). Nevertheless, Kron made a significant impagt
to the electrical engineering community and his idéa
formed one of the major techniques in solving large
electrical network problems even in the early days of
computers.

The concept of tearing used in the early days
computer has certainly influenced some of the contems
porary computational scientists, in particular peopfe
involved in parallel computing, in the design of paralEl
algorithms for partial differential equations. It is behev@i
that Kron was a pioneer in the application of, the sp
called, domain decomposition methods to large scale
engineering problems. Other important contributiofis
including, early tensor analysis and applications E;f
matrices in network analysis, and development §f
graph theory for applications in the method of tearing.
Section 2 presents the contemporary interpretation and
understanding of the tearing concept. The concept is
then presented in a capacitance matrix form and a direct
method of solution of the resulting discrete system is
discussed. An alternative method of solutions is to apply
a pre-conditioned conjugate gradient type of methods
which results to the iterative substructuring technique.
Section 3 presents the idea of an iterative method based
on the iterative coupling technique proposed by
Schwarz. A number of variants of the iterative coupling
technique is also included. The connection of the
iterative coupling method and the concept of diakoptics
is discussed. Parallel computational properties of the
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above methods, load balancing and implementation
issuses are considered in due course.

2. DIAKOPTICS IN THE PARALLEL
COMPUTING ERA

It is rather clear from the historical background that the
method of tearing is particularly suitable for present days
parallel computer applications. The amount of memory
in computers of early days was limited, and hence cannot
be used to handle large number of discrete unknowns.
The situation is similar to the present days parallel
computers that every processing element has a finite
amount of local memory. It is also similar to the present
days distributed computing systems where each of the
loosely coupled computers has a limited amount of local
memory. Although some MIMD nodes, such as
transputers, can offer up to 4MBytes of local memory
(22), it is the ever increasing demand in computational
power and memory requirement for large scale
numerical simulations such as solidification processes,
oceanography, and unsteady aerodynamics using com-
putational fluid dynamics techniques (19,29) that
diakoptics is brought back as a parallel algorithm. It
was used in a sequential fashion during [940s, while it is
used in a concurrent fashion at present since each of the
subdivisions described above can be computed concur-
rently. For simplicity, if the number of subdivisions is the
same as the number of processing elements in a coarse-
grained parallel environment, then each subdivision will
follow exactly the same algorithm as if it was solved on a
sequential computer. Investigation on transputers can be
seen in Bowden’s work (20). However, the finite number
of subdivisions can also be run on a SIMD massively
parallel processing environment. In this case, one has to
solve each of the subdivisions on the parallel environ-
ment and a SIMD parallel algorithm is required to solve
this subdivision. Work in this aspect can be found in
Wait (15). The interconnection method, or in modern
terms numerical coupling of subproblems, was not
mentioned in Diakoptics. It is indeed the major issue
that has been left open, and until recently numerical
mathematicians are still developing accelerated coupling
techniques. One reason for such research is because
direct methods are computationally expensive for large
problem size, and hence recent effort has been concen-
trated on the development of iterative techniques. In
fact, the concept of diakoptics as presented in (7)
involves only the tearing and a coupling technique with
a direct method of solutions to the coupling technique.

A philosophical introduction to Kron’s work and its
parallel implication was given by Bowden in a one day
symposium entitled ‘Alternative Models of Computation
and New Routes to Parallelism’, organized by the British
Computer Society Parallel Processing Specialist Group
and the Cybernetic Machine Specialist Group was held
at the University of Greenwich on 12th March, 1994
@n.

2.1. Capacitance matrix representation of tearing

Now instead of working with an electrical network, a
model second order, positive definite, self-adjoint elliptic
Dirichlet problem on a bounded domain R® with
piecewise smooth boundary is considered. A second
order accurate finite volume method is applied to
discretise the continuous problem which leads to the
linear system

Au=f

where 4 is a symmetric and pasitive definite n x n
matnix, u = (uu, - u,,)T are the discretised unknowns,
and f = (f1.f2--- f,,)T. Suppose an artificial interface is
introduced inside the domain, and that the unknowns are
partitioned into two parts, u, and u,, where u, denotes
the nodal function values defined on the nodal points
along the interface and u, denotes the nodal function
values defined on all other nodal points. Then the above
system can be rearranged as,

(& 5)(5)= (%)

where u = (udu.,)T, f= (f¢f7)T . Consequently, by means
of a Gaussian elimination, one obtains the capacitance
system consists of the unknown u,,

Cu,=g

where C=B—-G'A7'G and g =f - GTA7Yf,. The
terminology capacitance was introduced by Hockney
(9) in the context of imbedding an irregular region in a
regular one for electrostatic problems. Such imbedding is
also known as fictitious domain methods (11). The
capacitance matrix method was also investigated by
Buzbee et al. (10) and Dryja (12) in the context of
dividing an irregular domain into a number of non-
overlapped but regular subdomains, The matrix C,
known as the Schur complement of B, is also symmetric
and positive definite. In the context of diakoptics, the
field problem is discretized by means of an electrical
network analog of which the discretized system is the
same as that given above. If the network analog is
partitioned into two portions, then a rearranged system
as the one given above is obtained.

In order to solve the capacitance matrix equation, one
can either construct the matrix C and the vector g or use
a preconditioned conjugate gradient method. The
construction of matrix C is known as Diakoptics and is
expensive on a sequential machine, but was considered
by Wait on a fine-grained SIMD environment (15) and
by Bowden on a coarse-grained message-passing envir-
onment (20) and more recently by Merugu and Fusco
(26) for some electromagnetic field problems. For
simplicity, it is assumed that the interface separates the
domain into two nonoverlapped subregions. Therefore A
is a 2 x 2 block diagonal matrix denoted as

_ Au 0
A‘( 0 An>
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and

_(Ja
f d ( fd‘z )

The most computationally intensive part of solving the
capacitance matrix system is the construction of 4~'f}
which involves the solution of the two subproblems
Apug = fa and Apun = fin, where ug = (uguz)’.

There are two different parallel implementations for
the solution of the two subproblems. First, assuming a
fine-grained SIMD environment, a data parallel techni-
que for the solutions of subproblems is required, and
these subproblems are solved sequentially. Each sub-
problem should be easily mapped onto the fine-grained
environment. Second, solving the two subproblems
concurrently in a 2-processing element message-passing
environment, and a serial subproblem solver is required.
Each subproblem should have similar work load so that
the algorithm suits a coarse- %ralned environment.
Similarly the construction of 47 G, where G contains
as many columns as the number of unknowns along the
interface, requires the same attention on work load. As
the discretised problem size increases, the amount of
work to obtain Al‘,l and A{zl increases. Therefore such
work eventually outweighed the overheads involved in
communication of a message-passing environment, and
hence it becomes a more efficient algorithm. However, as
the number of subdomains increases with the same
problem size, G then contains more columns which
means that A~'G involves more and more subproblem
solves. Therefore it is worth to store a Cholesky
factorization of A so that A™'G can be performed more
effectively. Also, the calculation of A~! involves A7},
Az, A33, ..., etc. which can be performed concurrently in
a message-passing environment. Since the problem size is
fixed, increasing the number of subdomains amounts to
decrease the matrix size of A7}, A%z,..., etc. The
inverses are computationally inexpensive but at the
cost of increasing overheads due to communications.
Such computation becomes expensive for nonlinear
problems where the matrix A is different for every
Newton’s iteration. The other method is to use a
preconditioned conjugate gradient solver for the system
Cu,, = g as discussed in next section.

2.2. Iterative substructuring methods

The first paper which described a network analogy of
elastic structures can be found in Kron’s work (3).
Applications of tearing in the context of elastic structures
were used in a similar way as that in an electrical
network, and the idea is equivalent to the substructuring
idea first mentioned by Przemieniecki in (8). Classical
work includes Dryja (12), Golub and Mayers (13), recent
work by Bjorstad and Widlund (16), all involved in
applying a preconditioned conjugate gradient algorithm
to the capacitance matrix system. Similar research are
considered more recently by many researchers in domain

_ decomposition, linear algebra, and parallel computing

research communities. Work to solve the original system
by means of an iterative method was given by Pasciak,
and Schatz (17). Instead of using the elimination process
as discussed above, preconditioned conjugate gradient
methods were used to solve the original system

A G\(u\ _(fa
G" BJ\u, )~ \fy
which is then written as

Ay 0 Gy Ugy a1
OT A? G23 Un = fﬂ
Gy Gy B u, Sy

for two nonoverlapped subdomains. The equivalence g)f
using preconditioned conjugate gradient methods for the
original system and for the capacitance system is due%o
Eisenstat and was discussed by Keyes and Gropp (18).
Suppose a preconditioned conjugate gradxent methodSis
applied to Cu, = g with initial iterate u.y and preccﬁ
ditioner M, it is equivalent to another precondlton@d
conjugate gradient method applied to the original syst&n
Au = f with the initial iterate

FOpS (A_ Ua - Gu@])
u(y)

and the preconditioner

4 G
M= (GT M+GTA 'G)

Since the method described here is equivalent to tlmt

described in section 2.1, the multi-subdomain lrnpleme:n-

tation exhibit similar properties as that discussed aboie.
o

B|o1Je/|ulwoo/wod dno olWwape

3. THE SCHWARZ ALTERNATING METHOD

N
So far, the discussion has been restricted to discretized
problems. There has been a lot of work involved in @e
subdivision of a physical problem into a number ff
subproblems. For example, viscous—inviscid couplifg,
composite material, fictitious domain methods, two-
phase flow problems etc. In these examples, the comm§n
practice is to subdivide the physical domain intoua
number of subdomains according to the physiEal
properties of the governing equations or the material
properties of the given domain. The decomposition is
said to be done at the level of the continuous problem
instead of the discretized problem. It is believed that the
first attempt to provide an algorithm for continuous
problems posed in an irregular domain was due to
Schwarz (1), and the method is formally known as the
Schwarz alternating method when Picard applied it to
some nonlinear elliptic boundary value problems (24).
Schwarz considered an elliptic boundary value problem
posed on an irregular domain, which was then divided
into two regular subdomains where solutions for each of
these subdomains are available. The underlying algo-
rithmic idea is an iterative coupling technique for the
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FIGURE 1. A flask-shaped region similar to that used by Schwarz

coupling of two subdomains, each of regular shape,
obtained by partitioning the original domain which is of
irregular shape. The following algorithm describes the
Schwarz alternating method for the differential problem
Lu=f defined in Q which is partitioned into two
overlapped subdomains Q; and , (see Figure 1) with
flo, =fi» i=1,2, and the problem is prescribed with
Dirichlet boundary conditions g; and g, along 8%, () 80
and 892, () 92 respectively.

The Schwarz alternating method:
begin {
n:=0; ug |, := initial approximation;
repeat {
ni= n+1;
= { solve Lul =f1in
sub_lect to
e
uyly, ( ) I'n ;
u2 = { solve Lu;’ =f,in
subj ect to
?,. = gz on %, non
Pl b

} until converge } end

Here the superscript (n) denotes the number of Schwarz
iterations. It can be seen that the algorithm is essentially
a block iterative method where each block is a
subdomain. In particular the algorithm is essentially a
subdomain Gauss—Seidel iterative method. Therefore it
is intrinsically sequential without suitable modification.
However, one can apply the algorithm on a massively
parallel computer such as the DAP or the Connection
Machine without making any modification, provided
that a data parallel solve is available. It can be seen that a
data parallel direct solver or a data parallel iterative
solver is required. Intensive research in this topic has
been conducted by various people in late 70s early 80s
which lead to various parallel algorithmic development
for the numerical solutions of partial differential
equations. The subdomain itervative methods were
developments related to SIMD parallel algorithms
during the 80s (14,21). Although many of these parallel
methods were developed independently, it is now
becoming clear that the Schwarz alternating method
provides a unified algorithmic framework.

Before some variants of the algorithm are presented,
the discretized representation of the algorithm is
described. Using the notation introduced in section 2.2,

the Schwarz alternating algorithm can be written as the
matrix representation,

(& %)) - (s -b5u)
(GZ gi)(“‘y—uélrsudl) - (ﬁz)

A block Gauss—Seidel iterative method can be applied to
the above matrix systems. Eliminating u,, and uy, leads
to the same capacitance matrix system as that given in
section 2.1. Hence the Schwarz alternating method is
equivalent to the method of tearing. The difference
between the Schwarz alternating method and Diakoptics
is that the former is a block Gauss—Seidel iterative
method and the latter is a direct method applied to the
capacitance matrix system.

3.1. The subdomain iterative method

In Schwarz’s original work, the maximum principle was
used in the solve part of the algorithm. Computationally,
one can first of all triangulate the region 2 and secondly
replace the solve part by an iterative solve.

The subdomain iterative method:

begin { 0,0
n:=0; |, := initial approximation;
repeat {
n:=n+1;
pi=0;
(""‘) = { iterative solve Lu( n.H) =f1in
subject to
U™ = g, on 80, N80
E F)l ("‘1"‘)|
m ’
ui=0;
ug"’“) := { iterative solve Lug"’“) =f2in{y,
subject to
u?ﬂ Y =gz 0n 392069
n,j.l)l ("nl-‘ l‘)‘z

} until converge; } end

Here the second superscript u denotes the number of
inner iterations. In particular when =1 and the
overlapped region, i.e. ;[\, is of one cell thick,
then the subdomain iterative method is equivalent to
apply the same stationary iterative method to the
re-arranged system in section 2.2. Therefore the
algorithm can be formulated in a capacitance matrix
approach with each subproblem being solved by means
of a stationary iterative method (21). The case when
4 = 1 is particularly important during actual implemen-
tation on multiprocessors in order to keep minimal
changes to the original code. Since the sequential
algorithm is not changed, the load-balancing between
the two subdomains is the major concern in order to
reduce the overall computational work (23,28). In
general, a data parallel direct method on a SIMD
environment is not as efficient as a data parallel iterative
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FIGURE 2. A nonoverlapped decomposition.

method (14). Therefore the subdomain iterative method
was introduced as a variant of the Schwarz alternating
method on a SIMD environment.

Provided that the inner iterative solve is the same as
that being used in the global domain, the subdomain
iterative method has the following general behaviour.
First, the number of Schwarz iterations n decreases as the
overlapped region increases and second, n decreases as
the number of inner iterations g increases. An optimal
algorithm depends on the choice of u and a balanced
work load between subdomains.

3.2. Non-overlapped domain decomposition

It is sometimes problematic, as far as data structure is
concerned, in an overlapped approach. In particular
when the meshes in different subdomains do not match
each other or perhaps one is finer than the other. The
problem can be more easily dealt with by means of a
nonoverlapped approach. Two variants of the Schwarz
alternating method are presented below.

A gradient variant of the
Schwarz alternating method:

begin {
n:=0; A : = initial approximation;
rcpeat {
) 1= {solveLu( =fiin
sub{ect to
u,") =g on 691 ﬂaﬂ
-55—) = /\(" on 7}
= { solve Lu2 =f,in Q,
sub_}ect to

llzn) =gy On mznm

(%)
F =2 ony);

Alr+1) . 5 () + a( (m) _ ulﬂ))|7 %
n:=n+1,
} until converge; } end.

Here « denotes the interface of the two non-overlapped
subdomains as depicted in Figure 2 and n; and n, denote
the outward normals along « with respect to §2; and €2,.
The modified method can be easily implemented on a
fine-grained machine provided an efficient fine-grained
solve is available. It can also be easily implemented on a
coarse-grained machine, because each subproblem is

_ solved independently and a simultaneous update along

the interface is used.

A Neumann-Dirichlet variant of the
Schwarz alternating method:
n %l_no{ u(o ugo) —
repeat {
n:=n+l;
() = {solveLu =f,in Q;
subj ect to

—gt on aﬂlﬂaﬂ

initial approximation;

ﬁ

+of bn- l) (" 1)) on~v};
ug") = {solve Lu{" =f, i m Q,
sub_}ect to
u2") =g 0on 692089

= —814&"-')/8711 on~};
} until converge; } end.

The modified algorithms, like the original Schwgrz
alternating method, can be implemented on a massivgly
parallel computer provided there exists data paraflel
direct solvers or data parallel iterative solvers. The
efficiency of the modified algorithms on a coarse-grained
machine depends on the load-balancing amongst the
processing elements. Furthermore, new boundary
ditions along the interface require data exchange as well
as certain modification of the data. Therefore a slight
overhead is introduced into the modified algorithms.5
The two variants presented above is eqmvalent;to
solve the equation F(w,) = 0. If the differential opera%or
L is linear, it is simply solving F(u,) = Cu, - f, =0
where C is the capacitance matrix as described prewously
which is a coupling matrix to couple the subdomaing

1y WoJj papeojumoq

3.3. The generalized Schwarz alternating method

Kka 62119

In order to allow more flexible treatment on <he
boundary conditions along the interface, the generalized
Schwarz alternating method should be used. There 3re
many different ways of imposing boundary condltlom
along the interface, just as there are many mtegal
equations derived from potential theory.

The generalized Schwarz alternating method
for non-overlapped domain decomposition:

begin{

¥20c If

tIJ[u(o)] Plu, )] = initial approximation;
repeat {
=n+1;
(") := { solve Ly,
sub{'ect to
) =g on oy o0
q,[ (")] _ ‘I’[ (n— )](
a{®lu ] - @[u" "} on v );
=f,inQ

=fyin

ug") := { solve Lu,

subject to
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ug") =g, on 80, (60
O[] = 9" on v };
} until converge; } end.

Numerically, such an exchange of information along
the interface is equivalent to the set up of a capacitance
system. An efficient numerical coupling of adjacent
subdomains is equivalent to the determination of a
suitable o in the above algorithms, and it is realized
through suitable iterative methods, such as precon-
ditioning conjugate gradient methods, and more
recently fixed point iterations and quasi-Newton itera-
tion (25).

3.4. Multi-subdomain

The Schwarz alternating method and its variants for the
case of two-subdomain as discussed above can be
extended to multi-subdomain simply by recursively
substituting the two-subdomain algorithm into each of
the subdomains. Such recursive substitution is also
known as nested dissection (15).

For MIMD implementation with a fixed problem size,
the number of subdomains increases as the subproblem
size decreases. Direct methods to solve the subproblem
becomes less expensive compare with iterative
methods. Similar behaviour as that discussed in
section 2.1 can be observed. For SIMD implementation
with a fixed problem size, it is important to ensure that
each subproblem can be mapped onto the SIMD
environment.

4. CONCLUSIONS

The major concern of diakoptics was the numerical
solution of some large scale scientific computations.
Similarities of diakoptics and discrete representation of
domain decomposition are discussed in terms of parallel
implementations. The following suggestions are made.
First, the above algorithms can be implemented on fine-
grained machines with the provision of an efficient SIMD
parallel solve routine and that the subproblems are
solved in a serial fashion. Second, the above algorithms
can be implemented on coarse-grained machines without
much change to the original serial algorithm. However
the number of subproblems is limited. Ideally, each
processor will handle one subproblem, and hence to
avoid idle time the subproblems should have similar
computational work.
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