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This paper examines J. F. Allen’s interval-based theory of action and time and the corresponding
revisions suggested by A. P. Galton which have been proposed to accommodate the representation of
facts concerning continnous change. Agreeing with Galton’s argument that Allen’s system needs revisions
by means of diversifying the temporal ontology to include points, we show that Galton’s determination to
define time points in terms of the ‘meeting places’ of time intervals does not, as it stands, axiomatize
points on the same footing as intervals, and hence that some problems still remain in these revisions. It is
shown that it is necessary to revise the fundamental axioms about time itself so as to extend the abstract
concept of time elements to include both intervals and points, and to extend the temporal relations
between intervals to address points as well. We provide here a further revised theory which overcomes the
problems in Allen’s and Galton’s systems. The revised system atilizes a new axiomatization of time, given
previously by the authors, as the underlying temporal basis. A diversification of the range of properties/
occurrences over intervals and points is also proposed which may replace both Allen’s and Galton’s
results. ’
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1. INTRODUCTION

The theory of temporal logic is an integral concern of
philosophical inquiry reasoning with statements which
have some temporal aspect, and has been recognized be
of relevance to several distinct areas in computer science
since the early 70s. In particular, researchers have found
that understanding and treatment of time plays an
increasingly important role in the domain of artificial
intelligence. An early attempt at mechanizing part of the
understanding of time within an artificial intelligence
context is Bruce’s Chronos model (6), for the analysis of
tenses, time relations, and other references to time in
natural language. Kahn and Gorry continued the work
of Bruce in the development of their time specialist (12),
endowed with the capacity to order temporal facts in
three major ways: (i) relating events to dates; (ii) relating
events to special reference events; (iii) relating events
together into before—after chains. The time specialist can
answer different types of questions such as: Did event X
happen at time T? When did event X happen? What
happened at time T. Gabbay (8) has presented an
executable temporal logic called US logic which is
comprised of first-order classical logic with the addition
of the modal operators since and until, together with a
fixed-point operator. The logic is based on the natural
numbers as the flow of time and can be used for
specification and the control of process behaviour in
time. It is shown that US logic is fully expressive for a
historical data model, in the same sense that first-order
logic is for a non-temporal data model.

However, the most influential work as regards the
application of temporal logics to artificial intelligence is
that of McDermott and Dean (7,16), and of Allen and

Hayes (2,3,4). McDermott’s point-based first order
temporal logic is proposed to provide a versatile
‘common-sense’ theory for temporal reasoning: reason-
ing about causality, reasoning about continuous change,
and planning actions. In order to deal with incomplete
relative temporal information such as ‘Event A is before
or after event B’, Allen introduces his temporal system as
a framework for the naive treatment of two major
subareas of artificial intelligence: natural language pro-
cessing and problem solving. Instead of adopting time
points, Allen takes intervals as the primitive temporal
quantity, as being the natural means of human reference
to time. Based on Bruce’s 7 relationships [see (6)]
between intervals, Allen introduced 9 (mutually exclu-
sive) basic binary relations between any two intervals (1),
extended later to 13 (2): EQUAL, BEFORE, MEETS,
OVERLAPS, STARTS, STARTED-BY, DURING,
CONTAINS, FINISHES, FINISHED-BY, OVER-
LAPPED-BY, MET-BY, AFTER. However, whereas
Bruce’s time intervals are constructed out of points, and
hence, the relations over intervals are derived from the
order between their greatest lower bounding point and
least upper bounding point, Allen takes intervals as
primitive objects and defines the temporal relations
between intervals as primitive predicates as well.
However, as shown in (4,5), all Allen’s 13 temporal
relations may be indeed formally defined in terms of a
single primitive relation: ‘MEETS".

The main objective of Allen’s approach that takes time
intervals as primitive rather than as any structure based
on points is to bypass the problems posed by modelling
intervals in terms of their ending-points. These are
embraced by the question of whether these ending-points
are in the interval or not. If intervals are all closed then
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adjacent intervals have ending-points in common.
Hence, if adjacent intervals correspond to states of
truth and falsehood of some property, there is a point at
which the property is both true and false. Similarly, if
intervals are all open, there will be points at which the
truth or falsity of a property will be undefined. The
solution in which intervals are all taken as semi-open
(e.g. as in Maiocchi’s TSOS where all intervals are closed
at their left ending-points, and open at their right ending-
points), so that they sit conveniently next to one another,
seems arbitrary and unsatisfactory (2, 13). Firstly, this
approach insists that every interval contains only a single
ending-point, leaving the choice of which end of intervals
should be open being arbitrary. Hence, any imposed
rules such as left~closed & right-open would seem
unjustifiable and artificial to some extent. This problem
has been discussed by Allen repeatedly (1,2,3) and is
cited as one of the prime motivations for adopting
intervals as primitive time elements in his temporal logic.
Secondly, the approach that takes all intervals as semi-
open may offer a solution to some practical applications,
but not to others. For instance, in the example modelling
the process of a ball thrown vertically into the air,
described in a previous paper (14), a single type (e.g. left-
closed & right-open) is not adequate for the modelling
purpose. In fact, for general treatment, four types of
intervals, i.e., closed, open, left-closed & right-open, and
left-open & right-closed, may need to be addressed (11).

However, as Galton shows in his critical examination
of Allen’s interval logic, Allen’s theory of time is not
adequate, as it stands, for reasoning about continuous
change (10). Galton identifies the source of the problem
in Allen’s determination to base his theory on time
intervals only, either excluding time points entirely, or
relegating them to a subsidiary status within the theory.
Galton suggests that the solution is to treat time points
and time intervals on an equal footing. In addition, in
order to accommodate the representation of facts
concerning continuous change, Galton makes a signifi-
cant distinction between two kinds of property, called
states of position and states of motion, with respect to the
logic of their temporal incidence, and diversifies the
range of predicates specifying temporal location. This
series of revisions is in fact a suggestive extension of
Allen’s theory .of action and time that satisfies many
temporal reasoning tasks in the domain of artificial
intelligence. However, in Galton’s revised theory, time
points, and the corresponding relations between points
and intervals, are, in fact, defined in terms of the ‘meeting
places’ of time intervals (10). That is, time points are still
relegated to a subsidiary status, and are not axiomatized
on the same footing as intervals. We shall show that
some problems still remain in Galton’s revised theory,
which may be avoided by adopting revised axioms about
time itself so as to extend the abstract concept of time
elements to include both intervals and points, and to
extend the temporal relations between intervals to
address points as well.

- The objective of this paper is to provide a revised
theory of properties and occurrences based on a new
axiomatization of time, given previously by the authors,
In this new time axiomatization, as Galton suggests,
both points and intervals are characterized as primitive
time elements on the same footing (14). In section 2, 3
brief presentation of the time theory assumed in Allen’s
logic is given. Section 3 illuminates some problems with
Allen’s approach to properties. We review Galton's
revised theory related to properties in section 4, and
point out its limitation and some remaining problems in
section 5. Diversifications of the range of properties and
occurrences over intervals and points are presented in
section 6 and section 7, respectively, which may repl@e
both Allen’s and Galton’s results. In section 8, by mem
of some critical examples, we illuminate the expressgve
power of the new system. Finally, section 9 concludes the
paper.

2. TIME THEORY ASSUMED IN ALLEN’S
LOGIC

eoe//:sdyy wolj p

Allen’s temporal logic is specified as a frameworkoto
characterize properties and occurrences (3). InsteadBOf
adopting time points (or states which are associated wgth
time points), Allen takes intervals as the primilfive
temporal quantity, as being the natural means 30[
human reference to time.

In order to express temporal order over time mtervéls
Allen defines as primitive a set of 13 (mutually exclusive)
basic binary relations between any two intervals (2):
EQUAL, BEFORE, MEETS, OVERLAPS, STARTS,
STARTED-BY, DURING, CONTAINS, FINISHES
FINISHED-BY, OVERLAPPED-BY, MET- %’
AFTER. However, these relationships were leiher
formally defined in terms of the single primitive relatubn
‘MEETS’, which is axiomatized by means of a senesmf
axioms that characterize the following assumpnc@s
respectively (5):

o The ‘place’ where two intervals meet is unique a;nd
closely associated with the intervals;

e The meeting places are totally ordered, 1mplymgﬂxe
linearity of the time system.

e Every interval has at least one neighbouring mtel‘ﬁal
preceding it, and another succeeding.

e The time interval between any two meeting places is
unique.

e If two meeting places are separated by a sequence of
intervals, then there is an interval which connects
these two meeting places.

1sen

The definition of the 13 temporal relations in terms of
meets can be given by means of the following represen-
tation (4,5):

EQUAL(ll,lz) (=4 i] = iz,

BEFORE(i,.i,) & J(MEETS(i1,i) A MEETS(i.i),
OVERLAPS(i,ip) & 3i,i'i"Gy =i +iAip=i + i),
STARTS(ir,iy) < iz = iy + i),
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DURING(i,ip) & 3,i"(, =i + i) +1i),
FINISHES(i},i) < (i, =1 + iy),

AFTER(iyi;) € BEFORE(iy,iy),
OVERLAPPED-BY(i;,iz) © OVERLAPS(i,,i),
STARTED-BY(i;,i;) & STARTS(is,1),
CONTAINS(i, iz) & DURING(iaiy),
FINISHED-BY (iy i) <> FINISHES(iziy),
MET-BY(i,,i;) @ MEETS(is,i}),

where ‘i; = i’ means that i; and i, represent the same
time interval; and ‘i; + iy’ represents the ordered union
of two adjacent intervals, i and j, which will always imply
that MEETS(i,, ip).

Allen bases his logic on time intervals rather than time
points, advancing the argument that the only actions that
humans can identify are those with temporal extent (3).
According to this, nothing can be true at a point since a
point is not an entity at which things happen or are true
(2). However, as Galton shows in his examination of
Allen’s interval logic (10), Allen’s temporal logic is not
adequate, as it stands, for reasoning correctly about
continuous change. Galton attributes the source of this
failing to Allen’s determination either to exclude time
points entirely, or to relegate them to a subsidiary status
within the theory. In their later paper (5), Allen and
Hayes define a point as the ‘meeting place’ of intervals
and propose the concept of ‘moments’, i.e. very short
intervals to characterize the times that some ‘instant-like’
events occupy. The constraint imposed on time moments
is that, while intervals may be decomposable, moments
are definitely atomic, although they have a ‘temporal
extent’. Additionally, moments are not allowed to meet
other moments, that is, between any two time moments,
there must be an interval.

An analytical review of Allen and Hayes’ formal time
theory of intervals, which may be decomposable or non-
decomposable, has been given by the authors in (14). A
series of revisions is also proposed there to overcome the
problems posed by the corresponding limitation and
inadequacy of the theory.

3. PROPERTIES IN ALLEN’S THEORY OF
TIME AND ACTION

As Allen points out (3), one of the most important
predicates in his typed first order logic is HOLDS, which
asserts that a property holds (i.e. is true) during a time
interval. For convenience of expression, Allen introduces
the derived temporal relation, ‘IN’, which summarises
the relationships in which one interval, i, is a proper
subinterval of another interval, ij:

IN(i,,i;) & DURING(i,,iz) V STARTS(i),iz)
vV FINISHES(i, i2)

The crucial characteristic of the HOLDS predicate is
then defined in terms of the following axiom

(H.1) HOLDS(pro,i) & Vi [IN(i,,i) = HOLDS(pro,i,)]

which states that a property holds over an interval iff it
holds over all its proper subintervals.

Allen additionally follows this axiom with the
following slightly different one:

(H.2) HOLDS(pro,i) & Vi){IN(i},i) = Ji,{IN(izi,)
A HOLDS(pro,i))]}

and shows that, under an additional assumption which
states that for every interval i’, there exists an interval i”,
such that ING",i'), axiom (H.1) can be derived from
(H.2). )

Allen’s attitude to time points changed somewhat over
the years. Originally, he argues for abolishing time points
altogether since, first, they do not appear to be necessary;
second, instantaneous time points will present difficulties
with the semantics of the temporal logic (2, 3). However,
in the later paper (5), Allen and Hayes introduce the idea
of very short intervals, termed moments, to be the times
that some ‘instant-like’ events occupy.

One limitation to the definition of properties by means
of axioms H.l, H.2 is that they do not treat time
moments satisfactorily, for any property, pro, can be
shown to hold over any time moment unconditionally
from ecither axiom, since there is not any proper
subinterval within any given time moment.

On the other hand, if all time elements are taken as
infinitely decomposable intervals, Galton has shown in
(10) that this will lead to the inadequacies for reasoning
about continuous change.

Another limitation of Allen’s predicate, HOLDS,
axiomatized by (H.1)/(H.2), is that it characterizes only
one way of ascribing properties to times, namely to assert
that a property holds throughout an interval, which
seems too restrictive, and represents only one category in
the taxonomy of properties introduced by Shoham
(17,18), which is based on a point-based interval logic.
Additionally, it is interesting to note that, as shown by
Galton in terms of his two different formulations, there
are some problems with Allen’s property-negation which
is characterized by the following axiom

(H.4) HOLDS[not( pro),i] & ¥i, {IN(y,i)
= not[HOLDS( pro,i;)]}

4. GALTON’S REVISED THEORY RELATED
TO PROPERTIES

In order to overcome the inadequacy of Allen’s theory of
action and time, Galton proposes a series of revisions
which address time points in the theory as well as time
intervals, and diversify the range of predicates assigning
temporal locations to properties and occurrences.
Galton’s theory of points and intervals is built up by
means of adding two extra relationships between points
and intervals, as the extension to Allen’s temporal
relations between intervals. Rejecting the question
whether or not a given point is part of, or a member of
a given interval, while retaining the idea of there being a
point at the meeting place where two intervals meet,
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Galton introduces two additional temporal relations to
Allen’s time theory: First, the point where two intervals
meet each other is said to fall ‘WITHIN’ the ordered
union of these two intervals, and second, the same point
is said to ‘LIMIT’ both of these two intervals, the former
atits end, the latter at its beginning. Galton uses notions,
WITHIN(p,1) and LIMITS(p,i), to represent that a point
p falls ‘within’, and ‘limits’ an interval i, respectively.

Additionally, to develop his revised logic, Galton
imposes some required rules (10) which may be
represented as below:

(1) Vi € I3p € P[WITHIN(p,i)],

(1.2) WITHIN(p,i) A ING,i;) = WITHIN(p.i,),

(1.3) WITHIN(p,i,) A WITHIN(p,i,) = Ji; € I[IN(is,i,)
A INQ3,12)],

(1.4) WITHIN(p,i;) A LIMITS(p,is) = 3i; € I[IN(is,i))
A IN(i3,15)],

where the predicate, IN, is as same as that defined in
section 3, and / and P represent the set of time intervals,
and time points, respectively.

Intuitively, it is easy to infer that the two relations,
WITHIN and LIMITS, are exclusive to each other, from
their definitions.

Whereas Allen recognises only one way of ascribing
properties to times, namely to assert that a property
holds throughout an interval, Galton introduces the
following three forms:

HOLDS-ON(pro, i),
HOLDS-IN(pro, i),
HOLDS-AT(pro, p), wherei€ Tand p € P,

for three types of statement: a property pro holds
throughout an interval i, holds during i (i.e. at some
time during an interval, not necessary throughout all of
it), holds at a point p, respectively.

Commenting that the problems with Allen’ system can
all be traced to the assumption that all properties should
receive a uniform treatment with respect to the logic of
their temporal incidence, Galton proposes one of his
revisions by distinguishing sharply between two kinds of
properties, namely states of position and states of motion,
which have different temporal logics: States of position
can hold at isolated points; and if a state of position
holds throughout an interval, then it must hold at the
limits of that interval, e.g. a body’s being in particular
position, or moving at a particular speed or in a
particular direction. States of motion cannot hold at
isolated points; if a state of motion holds at a point
then it must hold throughout some interval within which
that point falls, e.g. a body being at rest or in motion. In
terms of the above classes of properties, Galton
characterizes the formal constraints imposed on states
of position (SP) and states of motion (SM) by the
following axioms:

(SP) Vi e I[WITHIN(p,i) = HOLDS-IN( pro,i)]
= HOLDS-AT(pro,p),

_ (SM) HOLDS-AT(pro,p) = Ji € I[WITHIN(p,i)

A HOLDS-ON( pro,i)],

respectively (10).

Additionally, Galton lists a series of theorems which
can be derived from the above axiomatization, some of
them, ie. (T1)-(T.10) hold for general properties,
regardless of whether they are states of position or
states of motion, others, i.e. (T.11P)-(T.15P) and
(T.11M)—(T.15.M) hold so long as pro is a state of
position, and a state of motion, respectively (10).

5. PROBLEMS WITH GALTON’S REVISED
THEORY

The objective of Galton’s revised theory issto
accommodate the representation of facts concerning
continuous change by means of addressing time pomt&as
well as time intervals in the system. However, as in Aﬁen
and Hayes’s approach (4, 5), Galton defines time points
as the meeting places of time intervals. Hence, from the
view of the abstract axiomatization about time itself,
time points are still relegated to a subsidiary status, ilot
really treated on the same footing as time mterv%ls
Additionally, to develop his revised logic, Galion
imposes a very strict rule, that is, (I.1) (see sectlono4)
which states that for any time interval, there e)usﬁ a
point which falls within this interval. It is easy to see fé)m
Galton’s definition of time points, rule (I.1) implies tBat,
for any time interval i, it can be decomposed to ‘&
proper subintervals i, and i, such that: MEETS( 5i,).
Further, it is straightforward to infer that any time
interval is required to be infinitely decomposable. Henge,
Galton’s revised axiomatization definitely excludes ghe
special time intervals that are non-decomposagle,
namely moments, in Allen and Hayes’ theory (435).
This limitation is perhaps not too serious, since Allen
and Hayes’ conception of time moments are in Eéct
introduced to characterized the times that some ‘instant-
like’ events occupy (although time moments still have
positive duration). We may simply utilize time pomt& to
play the role of moments. 3

However, it is the following problems with Galton s
revisions which we shall show require revisions to %he
fundamental axioms about time itself so as to extendghe
abstract concept of time elements to include both
intervals and points, and the temporal relations between
intervals to address points as well.

Let state; and state; be two opposite states [i.e.
state; & not(state;)], that hold throughout intervals i,
and i, respectively, where MEETS(i,,i,). If we use p to
denote the point at which i, meets i, from the definition
of ‘LIMITS’ we get:

LIMITS(p,i;) A LIMITS(p,iz).

According to Galton’s classification of states, there are
four possible cases:

(a) both state; and state, are states of motion,
(b) both state, and state; are states of position,
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(c) state, is a state of position and state; is a state of
motion,

(d) state; is a state of motion and state; is a state of
position.

In case (a), if we assume that staze; holds at point p, then
it must hold throughout some interval i’ such that
WITHIN(p,i). Hence, together with MEETS(,,i,),
LIMITS(p,i;) and LIMITS(p,i;), we can infer that
OVERLAPS(',i;). Hence, both stats, state, and state,,
which are opposite to each other, will hold throughout
an interval which is a common subinterval of both i’ and
ip. This is obviously an unsatisfactory result.

Similarly, if state; holds at point p, then it must hold
throughout some interval i’ such that WITHIN(p,i").
Hence, together with MEETS(i,,i;), LIMITS(p,i;) and
LIMITS(p,i;), we can infer that OVERLAPS(i,,i'").
Again, both state; and state; will hold throughout the
common subinterval of i, and i”.

Hence, the above proof shows that neither szate; nor
state; will hold at the point p. This is obviously an
unacceptable result to the logic.

Similarly, for case (b), if we again use p to denote the
point at which i) meets i, then by Galton’s definition of a
state of position, state; must hold at point p, which is one
of i,’s limits, since state; holds throughout interval i;;
similarly, since state; holds throughout interval i,, it
must holds at p as well, which is also one of iy’s limits.
Hence both state; and state; hold at point p. Obviously,
this is absurd.

For the remaining two cases, (¢) and (d), the choice
between which of them applies seems to be arbitrary and
unresolved. For example, consider the following two
states

state,,, : the car belongs to John,
state,,: the car does not belong to John,

which apply before and after John sells a car. Which
should be considered as a state of position, and which
should be addressed as a state of motion?

In fact, it is interesting to note that, in Galton’s paper,
it is not'explicitly expressed whether states of position
and states of motion are all the possible kinds of
properties or not. However, it is not obvious what
other kinds of property will be needed to avoid the
problem outlined above.

A further problem arises in connection with assign-
ment of properties to time intervals. Noticing that it is
necessary to extend Allen’s single way of ascribing
properties to times, namely to assert that a property
holds throughout an interval, Galton introduces three
different. ways. For the initial, general treatment, he
takes the locution HOLDS-AT (relating to time
points) as primitive, and defines the other two, HOLDS-
IN and HOLDS-ON, in terms of HOLDS-AT as
below:

(D.1) HOLDS-IN( pro, i) < 3p € P[WITHIN(p,i)
A HOLDS-AT( pro, p)),

(D.2) HOLDS-ON(pro, i) < Vp € P[WITHIN(p,i)
= HOLDS-AT(pro, p)].

Later in his paper (10), Galton shows that, for states of
position, HOLDS-IN may be taken as primitive instead
of HOLDS-AT by means of the following theorems for
states of position:

(T.14P) HOLDS-AT(pro, p) < Vi € I[WITHIN(p,i)
= HOLDS-IN( pro, i)]

(T.15P) HOLDS-ON(pro, i) & Vi’ € ITIN(,i)
= HOLDS-IN(pro, i')]

and, for states of motion, HOLDS-ON may be taken as
primitive instead of HOLDS-AT, or HOLD-IN, by
means of:

(T.14M) HOLDS-AT(pro, p) & 3i € I[WITHIN(p,i)
A HOLDS-ON( pro, 1))

(T.15M) HOLDS-IN(pro, i) & 3i' € I[IN@,i)
= HOLDS-ON( pro, i')]

However, consider the example of a moving arrow: let
pro; represent the property that the arrow does not
change position, and pro, represent the property that the
arrow changes position, then

Vp € P[HOLDS-AT(pro;, p))
hence, by (D.2), we get that for any time interval,
HOLDS-ON( pro,;, 1)

That is, the property, not change position, will hold
throughout any time interval. This seems contrary to both
human intuition and the corresponding axiomatization.
On the other hand, for interval i, as well as any
subinterval of i, we intuitively have that the property
that the arrow changes position holds during interval i,
that is:

HOLD-IN(proy, i)

However, by (D.1) we will get that there exists a point p
within the interval i, such that

HOLDS-AT(pro;, p)

that is, at this point the arrow changes position, which is
again contrary to our assumptions.

The source of the above problems is indeed in the
determination to define time points in terms of the
meeting places of time intervals, and define the
corresponding types of predicates ascribing properties
to times, either according points conceptual priority over
intervals, or regarding intervals as conceptually prior to
points.

6. A REVISED THEORY BASED ON
INTERVALS AND POINTS

In the light of those discussions given in the above, we
propose in this section a further revised theory which
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utilizes a new axiomatization of time, given previously by
the authors (14), which treats intervals and points on an
equal conceptual basis. However, whereas Allen’s
interval-based logic and Galton’s revised theory are set
up as frameworks on which to hang assertions about the
instantiation in time of properties, and occurrences,
which are subdivided by Allen into processes and
events, in this paper we shall concentrate on issues
relating to properties. Occurrences, processes and events
will be briefly discussed in the next section.

Based on the general time axiomatization given by the
authors in the previous paper (14), the time model
employed here addresses points and intervals on an equal
footing by taking both intervals and points as time-
elements, rather than defining points in terms of
intervals, or constructing intervals out of points.
Excepting the assumption that the duration of an
interval is positive while the duration of a point is zero,
the differentiating property between intervals and points
which is proposed here is that although intervals may
meet/(be met-by) points or other intervals, points are not
allowed to meet/(be met-by) other points, although they
must meet/(be met-by) other intervals. This character-
istic is based on the intuition that between any two time-
points, there is a time interval. In what follows, we give a
brief outline of the main features of the general time
axiomatization.

We use T to denote a nonempty set of time-elements,
and dur to denote a duration assignment function from T
to Ry, the set of non-negative real numbers. A time-
element, t, is called a (time) interval if dur(t) > 0,
otherwise, t is called a (time) point. According to this
classification, the set of time-elements, 7, may be
expressed as T = I U P, where I is the set of intervals,
and P is the set of points (see above section).

The primitive order over general time elements is a
temporal predicate termed ‘meets’, which is axiomatized
by the following axioms:

(Al) Vit ta,ty € T[MEETS(t;,tz) A MEETS(tl,t;;)
A MEETS(ty,t;) = MEETS(tg,t3)]
(A2) Vt € T3t ,t" € TIMEETS(t',t) A MEETS(t,t")]
(A3) Vt,t; € T{3t',t" € TIMEETS(t',t;)
AMEETS(t,,t")
A MEETS(Y,t,)
A MEETS(t5,t")] = t; = t3}
(A4) vt,t; € T{MEETS(t,,t;) =
3t e TVt ,t" € TIMEETS(t',t))
A MEETS(t,,t")
= MEETS(t,t) A MEETS(t,t")]}
<A5) Yti,to € TIMEETS(t,t) =t € IVt € 1]
(A6) Vi,t, € TIMEETS(1,,t,)
= dur(t, ® ty) = dur(ty) + dur(ty)]

where t; & t; denotes the ordered union interval from t,
and t,, such that MEETS(t,,t5).

It has been proved that, in terms of the primitive
relation ‘meets’, there are totally 30 possible temporal
relations over time elements, which can be classified into

_ the following four groups (14):

Point—Point:
{EQUAL, BEFORE, AFTER}
which relate points to other points;
Interval-Interval:
{EQUAL, BEFORE, MEETS, OVERLAPS
STARTS, DURING, FINISHES, FINISHED-BY,
CONTAINS, STARTED-BY, OVERLAPPED-BY,
MET-BY, AFTER}
which relate intervals to intervals;
Point-Interval:

{BEFORE, MEETS, STARTS, DURING,

FINISHES, MET-BY, AFTER}

which relate points to intervals; o
Interval-Point: %

{BEFORE, MEETS, FINISHED-BY, CONTAINS,
STARTED-BY, MET-BY, AFTER}
which relate intervals to points.

woJy pap

In what follows, our revised theory of action and time
shall be based on this new time specification.

Whereas Allen recognizes only one way, and Galtgn
introduces three different ways of ascribing propertiescto
times (see section 3 and section 4), in our revised theo
we shall take the following single form

hold-for(pro, t),t € T

//-sdy

@8

/w0 dno-

as the primitive type of statement, presenting that R)r

time element t, the property pro holds.

N.B. Here, in the form: held-for(pro, t), when t &a
variable, it refers to a general time element which nfay
be either an interval or a point. To determine whethker
the time element refers to an interval or to a poiﬁt,
according to the definition given above, durat&n
knowledge is needed. For instance, if we want sti-:e
exactly that a property, pro;, holds for a point, p, we

may express it as: g
dur(p) = 0, 2
hold-for( pro,, p). 23
o
Similarly, the knowledge that a property, proz, holds

for an interval, i, may be expressed as:

dur(i) > 0,
hold-for( pro,, i).

It is important to note that the predicate hold-for does
not assume homogeneity or any other connection
between a property holding for a time element and its
holding for any substructure of the time element.

For Allen’s system, if we limit the set of time elements,
T, to the set of time intervals I (i.e. for any i in ],
dur(i) > o), we may simply replace Allen’s (H.1) and
(H.2) by means of the following axioms:

HOLDS(pro, i) & Vi’ € I[IN(’,i) = hold-for( pro, i)],
HOLDS(pro,i) < Vi, € T{IN(i,i)
= 3Ji€ I[IN(a,i;) A hold-for(pro,i,)]}

¥20z 1Mdy 6

respectively.
Similarly, let p be a point [i.e. dur(p) = 0], and i an
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interval [i.e. dur(i) > 0}, we may simply define Galton's
form HOLDS-AT(pro, p) as:

HOLDS-AT(pro, p) & hold-for( pro, p),
snd replay his (D.1) and (D.2) by means of:

HOLDS-IN(pro, i) & 3p € P[DURING(p,i)
A hold-for( pro, p)},
HOLDS-ON( pro, i) < Vp € P[DURING(p,)
= hold-for(pro, p)]

respectively.

In fact, we may also give definitions characterizing
that a property holds in a time element, and holds
throughout a time element. However, since time elements
may now be intervals or points, we must make sure these
definitions are well-defined for genera! treatment. First,
for convenience of representation, we need to extend
Allen’s predicates ‘IN’ to include the ‘EQUAL’ relation.
We define:

SUB-ELEMENT(Y,, t;) «& EQUAL(l;,t5)
vV DURING(t;,t;) V STARTS(t;,t2)
vV FINISHES(t,,t)

where t;,t; € T, and EQUAL, DURING, STARTS and
FINISHES belong to the groups of temporal relations
classified above.

The difference between Allen’s predicate ‘IN’ and our
‘SUB-ELEMENT"’ is that, while in Allen’s system,
IN(i,, iz) summarizes the relationship that interval i;
is a proper subinterval of interval i, our notation
SUB-ELEMENT(t,, t,) allows time element t; to be t;
itself.

The following axiom defines what it is for a property to
hold in a time element:

(d.1) hold-in(pro, t) & 3t € T[SUB-ELEMENT({, t)
A hold-for( pro, t)],

that is, a property is said to hold in a time element t, iff
there is at least one sub-element of t for which the
property holds.

Similarly, for a property to hold throughout a time
element is that for any sub-element of the time element,
including the whole element itself, the property holds.

{d.1) hold-on(pro, t) & Vt' € T[SUB-ELEMENT(Y, t)
= hold-for( pro, t)].

N.B. The above definitions overcome the problem with
Allen’s axiom (H.1)/(H.2) for the case in which the
addressed time element is non-decomposable, i.e. a
moment (see section 3), and therefore is well-defined
for both intervals/moments and points. Additionally,
time intervals and points are addressed here on the
same footing, there is no necessary connection
between the a property holding for intervals and its
holding for points, while this connection is definitely
axiomatized in Galton’s theory. ’

Given the above definitions of hold-in and hold-on, by
making use of our classification of temporal relations
over intervals and points, we can straightforwardly

prove the following theorems, which are in fact very
similar to those (T.1-T.5) given by Galton in (10):

(t.1) hold-in(pro, t) A SUB-ELEMENTY(, t')
= hold-in( pro, t')

which says that if a property holds in some time element
t, then it holds in any time element of which t is a sub-
element.

(t.2) hold-on(pro, t) A SUB-ELEMENT(Y, t)
= hold-on( pro, t')

which says that if a property holds timroughout t, then it
holds throughout every sub-element of t.

(t.3) hold-on(pro, t) = hold-in( pro, t)

which says that if a property holds throughout t, then it
holds in t.

(t.4) hold-on(pro, t) = V¢ € T[SUB-ELEMENT(Y, t)
= hold-in( pro, t'))

which says that if a property holds throughout t, then it
holds in every sub-element of t.

(t.5) 3t € T[SUB-ELEMENT(t, t') A hold-on( pro, t)]
= hold-in( pro, t)

which says that if a property holds throughout some sub-

clement of t, then it holds in t.

N.B. Whereas Galton gives more theorems relating to his
HOLDS-AT for points, that is (T.6) and (T.7), in our
revised system, they are the same as (t.5) and (t.2),
respectively, since points are treated now on the same
footing as intervals. Examples relating to these
theorems may be found in Galton’s paper (10).
Similarly, we can define the negation of a property as:

If properties pro; and pro; satisfy:

(d.3) Vt(hold-for(pro;, t) & —hold-for{ pro,, t))

then we say property pro, is the negation of property
pro;, and write it as: proz = not(proy).

From this definition, it is easy to prove the following
theorems:

(t.6) hold-on{not( pro), t] & —hold-in( pro, t),
(t.7) hold-in[not( pro), t] < —hold-on( pro, t),
(t.8) hold-for{not[not(pro)], t} « hold-for(pro, t).

N.B. We omit the proofs of the above theorems in this
paper since they are very straightforward and indeed
will be very similar to the corresponding ones given in
the appendix to Galton's paper (10).

It is interesting to note that, although intervals are
taken in our theory as primitive, that is there are no
definitions about the starting- and finishing-points for
intervals, the time axiomatization allows the expression
of the ‘open’ and ‘closed’ nature of intervals, by means of
the following formal definitions:

interval i is left-open at point p iff
dur(i) > 0 A dur(p) = 0 A MEETS(p, i);
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interval i is right-open at point p iff

dur(i) > 0 A dur(p) = 0 A MEETS(,p);
interval i is left-closed at point p iff

dur(i) > 0 A dur(p)

= 0 A 3i'[dur(i’) > 0 A MEETS(,i) A MEETS({,p)];
interval i is right-closed at point p iff

dur(i) > 0 A dur(p)

= 0 A 3i'[dur(i") > 0 A MEETS(,i') A MEETS(p,i')].

In terms of the open and closed nature of intervals, we
may given a formal and intuitive characterization for
Galton’s distinction between states of position and states
of motion (see section 4), as below:

States of position can hold at isolated points; and if a
state of position holds on an interval, then it must hold
on the closure of that interval.

States of motion cannot hold at isolated points: the
maximal interval on which a state of motion holds must
be open.

7. ABOUT PROCESSES AND EVENTS

In addition to properties, in Allen’s interval based

system, processes and events are addressed as well,

which are generally termed as occurrences. However, as

Galton argues in his corresponding examination (10), by

locating the distinction between broad sense and narrow

sense (9) in processes rather than the time, it is possible to
simplify the ontology by subsuming processes under

properties. That is, it is unnecessary to introduce a

category of processes separate from properties and

events. Hence,. in this section we shall only consider
some issues about events.

Allen introduces his additional predicate OCCUR
with the intended meaning that OCCUR(e,}) is true only
if the event e happens over the interval i, and there is no
proper subinterval of i over which e happens. (In fact, we
may also easily infer that there is no proper superinterval
of 1 over which the event e happens.) Of course, in Allen’s
system, instantaneous events are definitely excluded,
although they do occur in reality [examples are given in
(10).

N.B. In Shoham’s reified interval logic (17,18), a series of
definitions have been given to categorise some entities,
termed temporal propositions, with the intention of
replacing Allen’s trichotomy properties/events/pro-
cesses by a more flexible scheme. However, in this
reified logic, time intervals are defined in terms of pairs
of time points. It is important to note that, to give a
formal specification for the temporal relations between
time intervals in terms of their ending-points, some
careful consideration must be concerned (in particular,
for the case that an interval is ‘immediately after’, that
is ‘met-by’, another interval). Otherwise, some pro-
blems may appear when addressing whether the
ending-points are included in intervals or not [see the
problematic question illuminated by means of the
‘LIGHT-ON/LIGHT-OFF’ for example (3)].

In addition to his three different predicates HOLDS.

AT, HOLDS-IN and HOLDS-ON for properties,

Galton goes on to replace Allen’s OCCUR by meany
of three predicates OCCURS-AT, OCCURS-IN and
OCCURS-ON. The first of these is for locating ap
instantaneous (or termed punctual) event at the point at
which it occurs, the second for locating an event
(punctual or durative) in an interval within which it
occurs, and the third is for locating a durative event
which takes time on an interval over which it occurs (i.e,,
OCCURS-ON corresponds to Allen’s OCCUR).

In our revised theory, we shall define the following
type of statement:

occur{e, t), t € T

O
(o]
as primitive, which locates the event e over the tigae
element t, on which e happens. 8
N.B. Again, knowledge about whether the time elemelitt
refers to an interval or to a point may be added to ﬁme
above statement.
The axiom for the predicate occur is

(0.1) oceur(e,t) = —3t, € TIN(t1,t) A occur(e,t,)),

which, despite that it addresses time points as well5is
very similar to Alilen’s (O.1) (3) or Galton’s (0.2) (103.

In fact, Allen’s (O.1) may be replaced with the
following special form of (0.1) by means of simply
limiting the set of time elements, T, to the set of tigne
intervals 7 (i.e. time element i such that dur(i) > 0):

(0.1Y occur(e,i) = —~3i, € I[IN(iyi) A occur(e,i)].

Similarly, we can also define another predicates occm
in, for locating an event over a time element in whjc@t
occurs.

Formal definition for occur-in is:

(d.4) occur-in(e,t) < 3t, € T[SUB-ELEMENT(t,,t)>
A occur(e,t)]

N.B. In the extreme case where t is a point, since %he
‘SUB-ELEMENT’ relation includes ‘EQUAL’ réla
tion, we get that: occur-in(e,t) < occur(e,t), whgre
dur(t) =
Note that our predicates occur and occur-in add@ss

both instantaneous and durative events: for an instanta-

neous event e, if we let t € P [i.e. dur(p) = 0], Galton's

OCCURS-AT(e, p) can be simply taken as our

occur(e, p); for a durative event ¢; if we let i € I [i.e.

dur(i) > 0], again, Galton’s OCCURS-ON(e, i) can be

simply taken as our occur(e, i); and, for a general event e

(instantaneous or durative), if we let i € I'[i.e. dur(i) > 0],

Galton’s OCCURS-IN(e, i) can be simply taken as our

occur-in(e, 1).

From the definitions of occur and occur-in, we can
straightforwardly prove the following theorems:

(t.9) occur(e,i) A SUB-ELEMENT(,i,) = occur-in{e,i;)
(t.10) occur-in{e,i) A SUB-ELEMENT(,i,)
= occur-in(e,i;)

wepeoe//:sdny
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It is interesting to note that, from (t.9), (t.10) along
with our {(0.1) and (d.4), we can subsume Galton’s
(0.1)~(0.4), (0.5D), (0.5P), (T.16D) and (t.16P) (10).

8. THE EXPRESSIVE POWER OF THE NEW
SYSTEM

In this section, by means of some critical examples, we
will show that, on the one hand, approaches which
address only time intervals, e.g. Allen’s interval temporal
jogic, may be inadequate in reasoning about continuous
change. On the other hand, approaches that relegate time
points to a subsidiary status by means of addressing time
points as the ‘meeting places’ or ‘ending-elements’ of
time interval may lead back to the problem of modelling
the open and closed nature of time intervals. The new
theory proposed here retains many of the appealing
characteristics of the systems of Allen, and of Galton,
but without bearing their corresponding deficiencies as
discussed in this paper. In fact, in a previous paper (14),
we have shown that the general time axiomatization
utilized here allows time structures such as linear time,
non-linear time, dense time, discrete time, and so on. Itis
also proved to be powerful enough to subsume many
existing temporal systems, such as the interval-based
theories of Allen and Hayes, the point-based theories of
Bruce, McDermott, and the interval- and point-based
theories of Vilain, etc.

One important intuition which leads to Allen’s
interval-based logic is that most of human temporal
knowledge, especially in the field of Al, is expressed
without explicit reference to time points. As Allen argues
again and again (1, 2, 3), if one insists on addressing the
ending-points of time intervals, one must consider what
knowledge one has at them about properties which are
naturally associated only with the intervals. Allen’s idea
is therefore to take intervals as primitive, excluding the
concept of points explicitly from the fundamental theory,
and to maintain that only knowledge about properties
associated with intervals is necessary. Hence, for
example, the knowledge of the situation where a light
is switched on can be represented by using an interval i to
denote the time over which the light is off, and another
interval j to denote the time over which the light is on
[where interval j is immediately after interval i, i.e.
MEETS(i, j)}. In Allen’s notation, this may be expressed
as:

HOLDS(Light_Of), i),
HOLDS(Light_On, j),
MEETS(, j).

Knowledge about whether the light is on or off at the
‘switching point’ is not to be represented in this system,
since we do not have any firm knowledge about the state
of the system at this point.

However, as Galton has shown, excluding time points
may lead to inadequacy in reasoning about continuous
change. Also, in (14), we have illuminated the problem

—

involved with reference to time points by means of the
example of a ball thrown vertically into the air, and show
that this situation cannot be satisfactorily expressed in
terms of Allen’s interval-based logic.

In order to overcome this inadequacy, Galton
proposes his series of revisions to Allen’ system to
accommodate the representation of facts concerning
continuous change. In terms of Galton’s terminology,
one can now express the situation of a ball thrown
vertically into the air as:

HOLDS-ON(Ball_Going_Up, 1),
HOLDS-AT(Bail_Stationary, p),
HOLDS-ON(Ball_Going_Down, j),
MEETS(, j),

LIMITS(p, 1),

LIMITS(p, j),

where both Ball_Going Up and Ball_Going_Down are
states of motion, while Ball Stationary is a state of
position.

However, as we have shown in section 6, Galton’s
revisions are achieved by insisting on a point between
any two intervals that meet. Since in this case there
must be a point between any two intervals, the question
will exist as to the value of any property at this
point. This leads back to the very problem that Allen
tries to overcome: viz do properties ascribed to the
intervals apply to the point or not? This question
cannot be avoided. For example, in modelling the
situation that a property pro holds on interval i, and
the opposite property, not(pro), holds on interval j,
where i meets j: if we use p to denote the point which
LIMITS both i and j, then we must address the
question whether pro or not( pro) holds at p. However, as
Allen, and Galton have claimed in their papers, the
answer to this question must be artificial and hence
unsatisfactory (2,10).

Allen’s system avoids this awkward question entirely
by abolishing points. In the system proposed here we do
not insist that there is a point between two intervals, so
that the question does not apply in general. For instance,
the above situation may be simply expressed as:

dur(i) > 0,

dur(j) > 0,

holds-on( pro, 1),
holds-on[not( pro), jl,
MEETS(j, j).

Here we have expressed exactly the knowledge about
the two opposite properties, without being forced into
expressing disputable knowledge about the property at
the meeting point.

In fact, in order to ask a question about a property at a
point, one must specify the point, in particular its
relation to the two intervals in question. In the above
case, the answer to the question becomes straight-
forward. In fact, there are only two cases that can be

specified:
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1. MEETSG, j),
MEETS(, p).
2. MEETS(, ),
MEETS(p, j).

It is easy to see that case 1 specifies the knowledge that
not(pro) holds at point p, and case 2 specifies the
knowledge that pro holds at point p: in fact, in case 1, the
situation may be expressed as:

dur(i) > 0,

dur(p) =0

dur(j) > 0,

holds-on( pro, i),
holds-on[not( pro), jl,
MEETS(, j),
MEETS(, p).

which will straightforwardly imply that:
holds-on[not( pro), p},
and in case 2, the situation may be expressed as:

dur(i) > 0,

dur(p) =

dur(j) > 0,

holds-on( pro, i),
holds-on[(not( pro), j],
MEETS(, j),
MEETS(p, j).

which implies that:
holds-on( pro, p).

Additionally, in the new system, we may also model
cases where there is knowledge of properties which hold
on isolated points, which stand between intervals. For
example, the situation of the ball thrown vertically into
the air may be conveniently expressed by means of:

of J. F. Allen’s interval-based theory, and A. P. Galton’;
corresponding revisions. The revised system utilizes 4
new axiomatization of time, given previously by the
authors, as the underlying temporal basis. The problems
which have arisen in Allen’s theory of time and action
stem from one of the main ideas of the theory; the
avoidance of time points, as being problematic. How.
ever, it has been shown that excluding points may lead
to inadequacy in correct reasoning of continuoug
motion. Galton’s revised theory overcomes this defi-
ciency, but insists on explicit expression of a point
between any two intervals that meet each other. The
new theory proposed here addresses both intervals and
points as primitive time elements of equal standing.
approach retains Allen’s solution to the ending-poist
question by allowing the expression of properties which
are only known to hold over intervals. Hence Lﬁe
question of whether they hold over ending-points dog&
not arise. However, the system proposed here also allows
for reasoning about continuous change, as Galton hgs
suggested, by including points on an equal footing wfﬁx
intervals.

The revisions that have been proposed, while radlcg,
are in fact very much in the spirit of Allen’s and Galtons
systems. In addition to these fundamental revisions,%a
diversification of the range of propemes/occurrenoes
over intervals and points is also proposed in the papa',
which may replace both Allen’s and Galton’s results. O
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