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Different query languages have been implemented and others proposed for object-
oriented database systems. Evaluating and comparing these languages has been
difficult due to the lack of a frame of reference. This paper establishes such a
framework using four dimensions: support of object-orientation, expressive power,
support of collections, and usability. Each dimension is defined in terms of a number
of criteria. The criteria are, in turn, explained using example queries written in a
concise, expressive, and clear query notation: object comprehensions. These same
examples also demonstrate the process of evaluating a query language by showing
how the criteria can be assessed. An evaluation based on the proposed framework
reveals that many well-known query languages do not meet all the criteria. The
evaluation framework can also be used constructively in improving existing query
languages and directing new query language design.
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Evaluating Object-Oriented Query Languages

1. INTRODUCTION

Relational completeness was proposed in [24] and since
then it has served as the yardstick for evaluating the
expressive power of relational query languages. Later
studies of the generalisation of the relational model
extended the relational algebra with extra operations.
For instance, replace, set-collapse, and powerset, were
introduced in [1] to characterise the expressive power
of query languages for nested-relational and complex-
object models, such as —INF [58], NF? [56], an
VERSO [59]. With the advent of newer data models
supporting richer constructs, new definitions of com-
pleteness are constantly sought for.

So far, no definition of completeness has been pro-
posed for object-oriented data models like those found
in Iris [46], PROBE [48], GemStone [60], ORION [41],
ONTOS [51], ENCORE (72], and O3 {8]). Worse still,
the situation is unlikely to change for some time. At-
tempts have been made to tackle the problem by using
different notions of completeness which are data model
independent (2], but interpreting them in terms of query
language operations is not at all straight forward. Not
having a formal definition of completeness makes it diffi-
cult to evaluate and compare object-oriented query lan-
guages objectively.

Many opinions have been expressed about the central
and fundamental issues of object-oriented query lan-
guages [7, 40, 42, 11]. Relevant inputs can also be found
from sources taking a slightly different standpoint. For
example, an evaluation framework for query algebras is
proposed in [70] and many of the criteria are applicable
to high-level query languages. Language facilities for
multimedia data are studied in [47]. Almost all the re-
quirements identified there are equally valid for object-
oriented query languages in general. It is encouraging
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that there is a consensus of opinions from these sour(?&

However, this pool of ideas has several hmltatloils
Firstly, collection operations like operations on sets:or
lists are not sufficiently characterised nor is the usaﬁll-
ity aspect of high-level query languages. Secondly, Qle
requirements are stated in rather esoteric terms heﬁce
are open to misunderstanding. Thirdly, some of &
requirements cannot be evaluated objectively.

The aim of introducing a new set of criteria isSto
provide a direct and easily measurable frameworkghs
well as to make up for overlooked issues. The guideline
adopted is to include only features that can be expreﬁj:jed
at the language level. In other words all the criteria ¢an
be, and indeed will be, explained using query exampﬁ
The virtue of using examples is two-fold. Not only d@&
it depict the evaluation framework, but it also provig%
a vivid account of evaluating a query language by shocw-
ing how the criteria of the framework can be asswse?i

The examples are expressed in a high-level query lan—
guage because it is believed that such a language is mJare
comprehensible than for example a formal query l&n—
guage similar to the relational calculus. It is also Be—
lieved that a new query notation will give a better in-
sight into the needs of object-oriented query languages
and avoid the confusion caused by redefining existing
query languages. This belief, together with the inad-
equacies of existing languages, motivates the introduc-
tion of a new query notation. As a result, object com-
prehensions are introduced in this paper and used for
the example queries.

The structure of the paper is as follows. Section 2
defines an example database that will be used to de-
scribe the evaluation framework. Section 3 introduces
object comprehensions. Section 4 describes the eval
uation framework. Section 5 discusses related issues
that are not included in the framework. Section 6 il-
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FIGURE 1. Simplified Schema Diagram.

lustrates how a query language can be evaluated using
a set of example queries expressed in object compre-
hensions. Section 7 summarises the evaluation of four
well-known object-oriented query languages using the
proposed framework. Section 8 concludes.

2. THE RUNNING EXAMPLE
2.1. Reference Data Model

A reference data model whose formal specification can
be found in [22] is used to define the example database
which will be used throughout the paper. The model
fulfills the requirements for object-oriented data models
as stated in [6, 7, 28] and therefore is similar to many
existing data models [71]. Some features are however
worth mentioning: (1) tuples are not supported; (2)
class extents are not supported; and (3) three collec-
tion classes are supported. One of the reasons of this
choice of features is to establish an evaluation frame-
work that can be meaningfully applied to any object-
oriented query language. The similarities between ex-
isting data models are therefore captured and their dif-
ferences excluded. Support of tuples and class extents
significantly simplifies querying; however, they are not
supported in some data models. Assuming their exis-
tence will limit the applicability of the evaluation frame-
work. On the other hand, it is felt that features not
yet well studied should be included to widen the scope
of the evaluation framework. Support of multiple col-
lection classes complicates, instead of simplifies, query-
ing. Its inclusion therefore widens, instead of limits,
the applicability of the framework. In other words,

even though a reference model is used here to define
the example database the generality is not lost, so the
framework is equally applicable to many other models.

2.2. Example Database

The example database is a simplified university admin-
istration system that records information about stu-
dents and staff members of a university, its academic
departments and courses. The relationships between
classes defined in the schema are shown in Fig. 1.

The class Person has two subclasses: Student and
Staff. VisitingStaff is a subclass of Staff. Tutor inher-
its from both Student and Staff to represent students
doing part-time teaching. Every person is given an ad-
dress which is an object of class Address. A student can
have a principal supervisor, a second supervisor, and
so forth. This relationship is modelled by the method
supervisedBy as a list of staff members. Every staff
member and student is associated to an academic de-
partment of class Department via department and major
respectively. Courses given by each staff member and
taken by each student are also recorded. They are rep-
resented by set-valued methods, teaches and takes. A
course may have a set of prerequisite courses (prereg-
uisites) and is administered by one or more academic
departments (runBy). A course is an instance of the
class Course.

The schema definition is given in Fig. 2. In order to
keep it simple, only the relevant method signatures are
given, attributes and method implementations are omit-
ted. The reference data model supports a root class,
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Entity, which is a direct or indirect superclass of all = _

other classes. The calculation of the salary of a tutor
is different from that of a staff member. This variation
is captured by giving an overloaded method salary to
Tutor. Also recorded is the number of credits (credits)
each course is worth and the percentage weights of as-
sessments given in each course. The latter is represented
as a bag of integers using the method assessments. It is
assumed that the database contains six set collections:
Persons, Departments, and Courses, containing all in-
stances of their corresponding classes that are members
of the university; and StaffMembers, Students, and Tu-
tors, containing instances of the corresponding classes
that are members in the Science Faculty.

3. OBJECT COMPREHENSIONS

Object comprehensions are developed from list com-
prehensions, which are constructs based on_the stan-
dard mathematical notation for sets. List comprehen-
sions are widely available in functional programming
languages, e.g. [66, 67, 36] and have been found very
useful in manipulating collections of data. A full de-
scription can be found in [55]. They have also been ap-
plied to imperative languages such as an experimental
version of PS-algol [65]. Recent research on functional
databases [63, 57, 62] uses comprehensions as a query
facility and research on semantic data models [54, 32]
uses comprehensions to support query processing.

It has been argued convincingly in [64] that compre-
hensions are a good query notation, being concise, ex-
pressive, clear, optimisable, and well integrated with
programming languages. A study of bulk types in [69]
shows that comprehensions can provide a uniform query
notation over many suitably defined collections. An ex-
tension to incorporate local definitions in comprehen-
sions is recommended in [33]. Side-effecting qualifiers
that permit data to be manipulated by side-effects in
addition to being queried are proposed in [31]. More
importantly side-effecting qualifiers also allow “local”
optimisation.

Comprehensions are very similar to SQL, on which
many object-oriented query languages are based. In
fact, the idea that comprehensions are a formal and
clean notation for SQL was first floated in [10].

The object comprehensions presented in this paper
are an extension to support querying object-oriented
databases. More details, including syntax, semantics,
optimisation, translation from other query languages,
and algebraic support, can be found in [23, 17].

Using the running example, a query returning the
course code of courses having more than two credits
can be expressed as follows,

Q0. Return the course codes of courses having more
than 2 credits.

Set| ¢ «— Courses; c.credits > 2| c.code |

Class Person isa Entity
methods

name: — String,
address: — Address.

Class Staff isa Person
methods

department: — Department,
teaches: — Set of Course,
salary: — Integer.

Class Student isa Person
methods

major: — Department,
supervisedBy: — List of Staff,
takes: — Set of Course.

Class Tutor isa Staff, Student
methods
salary: — Integer.

Class VistingStaff isa Staff.

Class Department isa FEntity
methods
name: — String.

Class Course isa FEntity
methods

code: — String,

runBy: — Set of Department,
prerequisites: — Set of Course,
assessments: — Bag of Integer,
credits: — Integer.

Class Address isa FEntity
methods

street: — String,

area: — String,

city: — String.

Database is

Persons: Set of Person,
Departments: Set of Department,
Courses: Set of Course,
StaffMembers: Set of Staff,
Students: Set of Student,
Tutors: Set of Tutor.

FIGURE 2. Simplified Schema Definition.
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The result of evaluating the above comprehension
query is a new collection, precisely a set, computed from
the existing collection Courses of class Set of Course.
The elements of the new collection are determined by
repeatedly evaluating c.code, as controlled by the qual-
ifier c.credits > 2. Since the result of ¢.code is of class
String the elements in the resultant set are therefore of
class String. Comprehension syntax can be sketched as
follows: a comprehension starts with a collection class,
e.g. set, followed by ‘[’ and a sequence of qualifiers.

A qualifier is either a filter, generator, or local defi-
nition. A filter is just a boolean-valued expression im-
posing a condition that must be satisfied for an element
to be included in the result. An example of a filter was
c.credits > 2 above, ensuing that only courses having
more than two credits are used in computing the result.
A generator of the form V « FE, where E is a collection-
valued expression, makes the variable V range over the
elements of the collection. An example of a generator
was ¢ «— Courses above, making ¢ range over the ele-
ments of the set Courses. A local definition of the form
N as E, introduces a symbolic name N for the value of
the expression E. An example of the use of this con-
struct can be found in query Q29 in Section 6.

4. THE EVALUATION FRAMEWORK

The evaluation framework uses four dimensions, namely
support of object-orientation, expressive power, support
of collections, and usability. Each dimension is defined
in terms of a number of criteria.

Support of object-orientation measures the support
given to the intrinsic properties of object-oriented data
models. There is an almost unanimous agreement in the
publication about features under this category. They
include

e Object Identity
¢ Method Calling
e Complex Objects
¢ Class Hierarchy
¢ Dynamic Binding

In the object-oriented paradigm, an object is identi-
fied by an unique and immutable object identifier which
is independent of the “contents” of the object. To sup-
port objects, a query language needs to operate on ob-
ject identifiers, for example, the equality over object
identifiers.

Objects are encapsulated meaning that their “con-
tents” cannot be accessed directly and all accesses must
be done via methods defined for the objects. The asso-
ciation of specific methods to objects is a fundamental
tenet of the paradigm, the use of methods in a query
should therefore be supported.

In contrast to the simple attributes of a tuple in the
relational model, an object can be perceived as a com-

plex entity. Applying a method on such a complex ob-
ject can result in the return of a base value, an object,
or a collection. A query language supporting method
calling should therefore also accommodate results of dif-
ferent types.

The class hierarchy defines a classification scheme
based on specialisation over classes. This naturally
leads to the adoption of the substitutional semantics
which conceals the differences of objects originated from
different classes along the same specialisation chain. On
the other hand, the class hierarchy contains useful in-
formation regarding the classification of objects which
may form the basis of a query. A query language should
therefore provide a mechanism with which the classifi-
cation information can be exploited.

The class hierarchy also introduces the notion of in-
heritance where methods defined in a superclass are in-
herited by all its subclasses. Moreover, method over-
loading allows different methods to be given the same
name. Given the substitutional semantics and the pos-
sibility of method overloading, the selection of a method
can only be determined dynamically. A query language
should therefore support dynamic binding of methods
or behave as if methods were dynamically bound.

Ezpressive power examines the ability to explore and
synthesize complex objects and collections. Attention is
mainly drawn to the manipulation of individual objects.
There is quite a reasonable consensus in the literature
regarding features in this category which are listed be-
low,

e Multiple Generators

e Dependent Generators

e Returning New Objects

o Nested Queries

e Quantifiers

¢ Relational Completeness

¢ Nested Relational Extension
o Recursion

A query often involves one or more collections. The
ability to specify more than one domain collection - us-
ing multiple generators - in a query is as natural and im-
portant as in earlier data models. Not supporting mul-
tiple generators will result in a more procedural query
language relying heavily on query nesting and query
functions, if they are supported. Consequently queries
are more difficult to express. One language taking this
approach is LIFOO [14].

A collection can be returned as the result of a method
call. To query such a “nested” collection, a query lan-
guage should be able to express dependency between
generators. Generally speaking, in the absence of de-
pendent generators, the fact that an object is an ele-
ment of a nested collection has to be “re-established”
resulting in more verbose queries, see OSQL [45] for
example.
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So far, there has been no convincing argument from
the modelling perspective about restricting a query lan-
guage to return only existing objects. Here a query lan-
guage is required to allow new objects to be created in a
query. It is not required that the corresponding classes
are created along with the objects. In other words, clo-
sure at the instance level should be respected while clo-
sure at the class level is not required. To be more pre-
cise, no operations for the creation of new classes or the
manipulation of the class hierarchy are required. This
decision is heavily influenced by the fact that dynamic
class creation is still an outstanding problem with no
satisfactory solution. Detailed discussion of this con-
troversial issue is given in [20] where the support of
views is discussed.

Nested queries are crucial in the construction of new
objects especially complex objects. It has been shown
that many nested queries in SQL which appear only in
the where clause (the filter) can be eliminated {39, 30].
In an object-oriented query language supporting free
nesting of queries, it it not obvious how nested queries
can be eliminated without other language constructs
such as query functions. Query nesting can also be con-
sidered as an issue of generality.

Quantifiers can simplify queries and provide opti-
misation opportunities. Quantifiers can be simulated
in many query languages; however, their optimisation
always involves matching of large patterns as in [43].
Quantifiers can significantly simplify the manipulation
of different kinds of collections.

Object-oriented data models subsume the relational
model, an object-oriented query language should sim-
ilarly subsume relational completeness. One possible
definition of this requirement is that if the data are
relations, a query language should be able to express
all queries that can be expressed in the relational alge-
bra. However, a more general definition would be more
appropriate for comparing query languages for object-
oriented databases. Basically, the concept of a relation
being a set of tuples can be replaced by a collection
of objects. A query language should therefore be able
to express whatever can be expressed in the relational
algebra for collections and objects. Inevitably, the rela-
tional algebra operations will be more restrictive if tu-
ples are not supported. They should also behave slightly
differently for different collection kinds.

Studies of the generalisation of the relational model
result in the introduction of three extra operations: re-
place, set-collapse and powerset. It has been shown that
powerset incurs superexponential complexity [37] which
justifies its omission from the requirement list. The
other two operations should be supported and their def-
initions can be similarly generalised as the relational
algebra operations.

In the object-oriented paradigm, cyclic relationships
can be defined by one or more methods. Some form
of recursion, for instance, transitive closure, should be

. supported to enable cyclic relationships to be exploreq,

Support of collections looks into the features that are
required for queries involving multiple collection classes,
The quest is to find a set of good generic operations
that behave consistently for different collection classes,
Equally important is the mixing of and conversion be.
tween different collection classes. Support of collections
looks into the following features

o Collection Literals

¢ Collection Equality

o Aggregate Functions

o Positioning & Ordering
¢ Occurrences & Counting
o Converting Collections

¢ Combining Collections

¢ Mixing Collections

14 WOJ) papeojumoq

In some data models including the reference d&m
model, collections are represented as objects hence th@
comparison is based on object identifiers. However, c@-
lections are very often characterised by their conteris
and behave like base values. This suggests that collee-
tions should be allowed to have dual behaviour. Oge
aspect of this duality is to allow collection literals to Be
expressed. Collection literals can be simulated in some
query languages; however, providing direct support s@-
plifies queries as has been shown in SQL [27]. Usimg
the same argument, it should be possible to compage
two collections based on their elements instead of théy
identifiers. Aggregate functions return a value from=
collection and have been shown very useful in earlig
data models. When ordered collections are suppo
a query language should be able to express queries r&
lated to a position in the order and the ordering t@-
tween two elements. When collections are allowed %o
have duplicates, a query language should be able to %
turn objects with a particular number of occurrendes
and to count the number of occurrences of an object. 3t
is also important to allow collections to be combm@
converted, and mixed within a query.

2oz 1ud

Usability focuses on the ease of use of a query no
tation which is essential to the success of a high-level
query language. The criteria in this category are

o Local Definitions
o Query Functions

Long path expressions are not uncommon in object-
oriented query expressions. To avoid repeating long
path expressions, “shorthands” can be introduced us
ing local definitions. Complicated queries are easier t0
express in an incremental fashion. Query functions ak
low a complicated query to be broken down into smaller
and more comprehensible subqueries.

THE COMPUTER JOURNAL,

VYor. 37, No. 10, 1994




EVALUATING OBJECT-ORIENTED QUERY LANGUAGES 863

5. RELATED ISSUES

The previous discussion focuses on query language fea-
tures without addressing the impact of data model on
query languages. There has been much discussion about
the advantages and disadvantages of supporting class
extents [40, 3]. Class extents create security problem
as all instances of a class can be accessed via the class
extent and access control on individual objects is diffi-
cult and prohibitively expensive. Application modelling
often does not require the use of class extents. The
provision of class extents has a great impact on what
a8 query language can retrieve. Querying a database
becomes easier as every class extent provides an entry
point to the database and every object is guaranteed
to be directly accessible from at least one class extent.
The result is a simpler query language and more optimi-
sation opportunities. Some object-oriented data mod-
els, including the reference data model, do not support
class extents. To have a set of criteria that are gen-
erally applicable, the existence of class extents cannot
be assumed. The criteria given in the previous section
are derived with no assumption of class extents. For
data models supporting class extents, some of the re-
quirements will become superfiuous. For example, using
multiple generators together with the membership test
on collections, dependent generators can be simulated
and the class hierarchy can be supported.

Different kinds of equality have been introduced for
testing the equivalence of objects based on their con-
tents so that optimisation can be done with more flex-
ibility. The deep-sensitive equivalence rules described
in [61, 50} are very complicated and significantly in-
crease the search space of the optimiser. The essence
is that these different kinds of equality may be useful
in query algebras but their necessity in high-level query
languages is questionable.

Many other features of object-oriented query lan-
guages have been suggested [26, 13, 7, 70, 47, 68] and
are enumerated below. They are useful guidelines for
the design of query languages. However, using them
as requirémepts for evaluating query languages is less
effective and their assessment can be difficult.

o Simple o Consistent
¢ Elegant ¢ General
¢ Closed e Adequate

¢ Application Independent ¢ Orthogonal
¢ Well Integrated ¢ Strongly Typed

¢ Formal Semantics o Efficient
¢ Optimisable e Null Values
¢ Extended Facilities e Versions

e Schema Evolution
¢ Rules & Triggers

® Data Administration
¢ Integrity Constraints
¢ Computationally Complete

A consistent notation encourages similar concepts or
problems to be expressed in similar ways. A query lan-
guage is general if it allows free composition of con-

structs and does not impose arbitrary restrictions. Clo-
sure refers to the fact that the result of a query can
be similarly manipulated by the query language. In a
mono-type model, like the relational model, it is a nec-
essary and sufficient requirement. When multiple types
are supported, as in object-oriented data models, clo-
sure becomes a necessary but not sufficient requirement.
Adequacy provides the sufficiency by requiring a query
language to operate on all types supported in the data
model. Orthogonality is usually used in discussing per-
sistence meaning that a query language can work on
both persistent as well as transient data.

6. EVALUATING QUERY LANGUAGES

The four dimensions used in the evaluation framework
are illustrated in the next four subsections. The crite-
ria of each dimension are demonstrated using example
queries. The point being illustrated by each query is
underlined. An explanation is given after each query.
Queries involving students, staff members, and tutors
should be read as students, staff members, and tutors
of the Science Faculty, unless stated otherwise.

6.1. Support of Object-Orientation
6.1.1. Method Calling

Q1. Return staff members named Steve Johnson.

Set[ s «— StaffMembers;

s.name = “Steve Johnson” | s |

Encapsulation protects attributes of an object from
being accessed directly. Such an access must be made
via a method. In Q1, s.name represents the calling of
method name on a staff member object s drawn from
the collection StaffMembers.

6.1.2. Dynamic Binding

Q2. Return staff members earning more than £2000
per month.

Set| s — StaffMembers; s.salary > 2000 | s |

Recall that a tutor is a staff member whose salary
is calculated differently using an overloaded method.
Since StaffMembers may contain tutor objects, the call-
ing of method salary on an object drawn from it may
result in different methods being dynamically bound at
run-time.

6.1.8. Complex Objects

Q3. Return tutors living in Glasgow.

Set| t «— Tutors; t.address.city = “Glasgow” | t]
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Support of complex objects implies that a method
call may return an object. The returned object can, in
turn, receive another method call. This can go on for
several method calls until, for instance, a base value is
returned. In Q3, t.address.city represents the calling of
method city on the result returned by calling address
on a tutor object t.

6.1.4. Object Identity

Q4. Return tutors working and studying in the same
department.

Set| t « Tutors; t.department = t.major | t ]

In object-oriented data models, objects are repre-
sented by object identifiers which are essential for object
sharing and representing cyclic relationships. Equality
between objects becomes equality between object iden-
tifiers. In Q4, the equality operator, “=", is overloaded
to compare two department objects using their object
identifiers.

6.1.5. Class Hierarchy

Q5. Return all visiting staff in the university.

Set| p — Persons; p hasClass VisitingStaff | p |

There is no collection in the database containing only
objects of class VisitingStaff. StaffMembers contains
only members in the Science Faculty. The only collec-
tion that contains all visiting staff members is Persons.
It is the reason why the Persons collection is used in
this query. Since a collection can contain heterogeneous
elements belonging to different classes, elements of Per-
sons can be of class Person or its subclasses. One way
of selecting elements from such a collection is to spec-
ify the class of interest. In Q5, hasClass returns true
if person object p is indeed of class VisitingStaff. This
operation is essential for data models not supporting
class extents.

Q6. Return all visiting staff members in the univer-
sity who earn more than £2000 per month.

1 Set[ p — Persons;
p hasClass VisitingStaff with p.salary > 2000

| p)

The method salary is defined for visiting staff mem-
bers but not persons in general. Therefore calling salary
on a person object may result in an error. To allow se-
lection that is applicable only to objects of a particular
class, the hasClass & with construct can be used. The
role of with is similar to that of conjunction. The sec-
ond condition (e.g. p.salary > 2000) is evaluated only
if the first condition (e.g. p hasClass VisitingStaff)

is true. It the first condition is false the whole con.
struct returns false. However, the conditions aroung
with cannot be swapped. In other words, with is a non-
symmetric conjunction. This construct is essential for
supporting static type checking in the absence of sup.
port for class extents.

6.2. Expressive Power

6.2.1. Multiple Generators

Q7. Return students studying in the same depart-
ment as Steve Johnson.

Set| z — Students; y « Students; S
z.name = “Steve Johnson”; i_s
z.major = y.major | y | 8

o
Multiple generators allow relationships that are fot

g

explicitly defined in the database schema to be
established”. In Q7, z is ranged over Students and § g is
ranged over the same set but independently. The m@s—
ing relationship is established using the major depgta
ments of z and y. By and large, not supporting multg)le
generators results in a language having a stronger pro-
cedural favour and is often more difficult to use. LIFG0
[14, 15], which for the most part, does not support 2

tiple generators, is a good example [18]. More impor-
tantly, multiple generators are essential for constructgng
new objects from existing ones.

6.2.2. Dependent Generators

Q8. Return courses taken by the students.

Set] s — Students; ¢ «— s.takes | ¢ ]

A 9L LOE/8S8/PL/LE/RPIME/|

The result of a method call can be a collection object
containing many elements. To facilitate querying cg/er
the elements in such a “nested” collection - which ade-
pends on the current binding in the first collection™ a
dependent generator can be used. In Q8, ¢ ranges gver
the collection returned by calling takes on the current
student object s (i.e. the element in Students thaB is
currently bound to s).

6.2.3. Returning New QObjects

Q9. Return students and the courses taken by them. .
The result is obtained by creating new objects using
the student objects and the sets of courses.

Set[ s +— Students | AClass.new( s, s.takes ) |

So far, only queries returning existing objects have
been examined. To return “new” information, the cor-
responding class has to be defined beforehand and the
query will create objects of this class as the result. In
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Q9, the method new, which takes two parameters: s
and s.takes, is called on the class AClass.

Many systems, e.g. IRIS, would use tuples to return
the result of Q9. The drawbacks with this approach are
(1) tuples are values and duplicates are always elimi-
pated and (2) new objects have to be generated using
perhaps a programmatic interface. This is unsatisfac-
tory in terms of semantics and functionality. Another
approach that solves a subset of the general problem
involves creating new classes and factorising existing
classes [49, 34, 4]. Detailed discussion on this issue can
be found in {35, 68, 20].

6.2.4. Nested Queries

Q10. Return students and the courses taken by them
that have more than one credit. The result is ob-
tained by creating new objects using the student ob-
jects and the sets of courses.

Set| s +— Students | AClass.new( s,
Set| ¢ «— s.takes; c.credits > 1| c] )]

Nested queries enable richer data structures to be re-
turned as well as complex selection conditions to be
expressed. In Q10, the inner query returns a set of
courses and is used as a parameter to the method call
in the result expression of the outer query.

6.2.5. Quantifiers

In order to provide a coherent notation for querying
over different collection classes, object comprehensions
rely on quantifiers to express many collection opera-
tions. The quantifiers introduced here concerns the oc-
currences of collection elements and they have the same
semantics for sets, bags, and lists.

Q11. Return students taking a course given by Steve
Johnson.

Set| | — StaffMembers;
L.name = “Steve Johnson”; s «— Students;
some s.takes = some lteaches| s

The quantifiers in object comprehensions can be seen
as operator modifiers providing a family of new opera-
tors. In Q11, the last filter succeeds if there is a common
course element between the sets: s.takes and lteaches
(i.e. an non-empty intersection)*.

Q12. Return students taking only courses given by
Steve Johnson.

Set| | — StaffMembers;
lL.name = “Steve Johnson”; s «— Students;
every s.takes = some lteaches | s |

*Semantics: Az3y e z € s.takes A y € l.teaches A z=y.

In Q12, the last filter is true if all the course elements
in s.takes are also in the set l.teaches’. Q12 expresses
the subset relation.

6.2.6. Relational Completeness

Object-oriented data models provide rich data con-
structs that can subsume those found in the rela-
tional model. Operators that make a language rela-
tionally complete are equally useful and important in
the object-oriented setting. The five primitive opera-
tions: selection, projection, cross product, union, and
dif ference, which make a language relationally com-
plete can be expressed in their equivalent forms in ob-
ject comprehensions. Selettion has been demonstrated
in many queries, e.g. Q1, so only the other four opera-
tions are given below,

Q13. Return the names of students.
Set| s «— Students | s.name |

Q14. Return all the possible combinations between
departments and courses.

Set| d — Departments; ¢ — Courses
| AClass.new( d, c )]

Q15. Return staff members and students in the
Computing Science Department.

Set| s +— StaffMembers;

s.department.name = “Computing” | s |
unit
Set] s «— Students;

s.major.name = “Computing” | s ]

Q16. Return areas where students, but no staff, live.
Set| s +— Students | s.address.area |

differ
Set] s «— StaffMembers | s.address.area |

Projection is demonstrated in Q13 where s.name
“projects” the name of a student object. Cross prod-
uct between Departments and Courses is expressed in
Q14 using two generators and by returning new objects.
With object comprehensions projection is limited to sin-
gle objects. Otherwise, new objects have to be con-
structed using the projected objects as in Q14. A new
collection is constructed from two collections in Q15 us-
ing unton. The difference between two collections can
be expressed using differ as in Q16. For union and dif-
fer the elements of the resultant collection will be of the
most specific unique common superclass of the element
classes in the operand collections.

tSemantics: Vz3y ez € s.takes A y € l.teaches A z=1y.
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6.2.7. Nested Relational Extension

Studies of the generalisation of the relational model re-
sult in the introduction of three extra operations: re-
place, set-collapse and powerset. It has been observed
that powerset is only used in constructing domains for
the proofs and is not required in the actually manipu-
lation of data. It is therefore chosen not to make it a
required feature. Set-collapse, which turns a set of sets
into a set containing all elements in the original set el-
ements, has been shown in Q8. Replace, which applies
a function to every element of the input collection, is
demonstrated below,

Q17. Return income tax of staff as 40% of their
salaries.

let tax( w : Integer ) be
wx 0.4
in Set] s — StaffMembers | taz( s.salary ) |

Strictly speaking it is not necessary to express the
query in this way. The use of a query function is to
emphasise the point that a function is being applied to
the salary of the staff members.

6.2.8. Recursion

Q18. Return all direct and indirect prerequisite
courses for the “DB4” course.

let f( cs : Set of Course ) be
s
union
Set| z — cs; y — f( z.prerequisites ) | y |
in Set| ¢ — Courses; c.code = “DB4”;
p — f( c.prerequisites ) | p |

In object-oriented data models, it is possible to find
cyclic relationships between one or more classes. This
suggests that recursive queries should be supported.
With object comprehensions, recursive queries can be
expressed using query functions. In Q18, the result
of the query is generated by retrieving elements, p,
from a collection returned by a recursive function, f(
c.prerequisites ). Function f takes a set of courses and
returns a set of courses. For each element z drawn from
the input collection cs, f is applied recursively on the
prerequisite courses of z, z.prerequisites, and the result
is then used as part of the input. The recursion stops
when the input collection to f, cs, is an empty set.

.- 8.3.

Support of Collections
6.3.1. Collection Literals

Q19. Return students living in the following areas: |
Hillhead, Kelvinside and Dowanhill.

Set| s — Students; s.address.area = some
Set{ “Hillhead”, “Kelvinside”, “Dowanhill” }
| s]

Collection literals can simplify queries by making
them more concise and arguably clearer. In Q19, a
set literal of strings is specified by listing the elements
within curly brackets. A collection literal can be
as a shorthand for the union of a number of constdt
object comprehensions.

6.8.2. Collection Equality

Q20. Return courses with no prerequisite courses.

Set| ¢ «— Courses; c.prerequisites == Set{} | c]

spleoe//:sdyy fuol) pspeoju

In many occasions it is necessary to compare two col-
lections based on the elements, their occurrences, aiZid
their order. Two bags are equal if for each elemént
drawn from either collection there is equal numbergof
occurrences in both bags. For hsts, the number of &c-
currences and the positions must be the same. In Q§0
the filter returns true if c.prerequisites is an empty set.
Note that object comprehensions do not support eqt%l
ity on objects that are not collections.

6.5.8. Aggregate Functions

§9€/898/0L/1

Q21. Return courses with less than two assessmen

Set| ¢ — Courses; (size c.assessments) < 2| c]

The aggregate function size returns the number’of
elements in a collection. It is defined for all collection
classes. For bags and lists duplicate elements are
cluded in the counting. Some aggregate functions &re
however defined only for some collection classes.

L:go&)s anb Aq o¢

¥20¢

6.8.4. Positioning and Ordering

A list allows duplicate elements and keeps track of the
order of the elements. Naturally queries involving lists
may question on the order or positions of elements.

Q22. Return the first and second supervisors of
Steve Johnson.

Set| s «— Students; s.name = “Steve Johnson”;
i — List{ 1.2} | s.supervisedBy.[ 1] |

In Q22, the first two elements of a list are returned
using a collection literal as a generator.
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Q23. Return students having Steve Johnson before
Bob Campbell in their supervisor lists.

Set| s — Students;
i — List{ 1..(size s.supervisedBy) };
s.supervisedBy. [il name = “Steve Johnson”;
j « List{ 1..(size s.supervisedBy) };
s.supervisedBy. [j.name = “Bob Campbell”;
i<ils)

In Q23, a list literal is generated using the size of
the list returned by s.supervisedBy. Two generators are
ranged over it to match the given names. The relative
order is determined using the range variable 1 and j.

6.3.5. Qccurrences and Counting

Bags and lists allow duplicate of elements. Q24 and
Q25 show how the occurrences of elements can be used
and retrieved using object comprehensions.

Q24. Return courses with 4 assessments of the same
percentage weight.

Set| ¢ — Courses;
1 — c.assessments;
just { c.assessments = i| c |

In Q24, the selection is based on the number of oc-
currences (i.e. 4) of an element (i.e. 1) in the collection
c.assessments. The use of numerical quantifiers simpli-
fies retrieval based on occurrences.

Q25. Return the number of assessments worth 25%
in the course DB4.

Set{ ¢ — Courses; c.code = “DB4”;
i« List{ 1..(size c.assessments) };
just i c.assessments = 25 | i]

In Q25, the number of occurrences (i.e. i) of a
given element (i.e. 25) in the collection c.assessments
is returned. The possible number of occurrences are
generated using a literal generator ranging from 1 to
(size c.assessments).

6.8.6. Converting Collections

.Q26. Return the salary of tutors and keep the pos-
sible duplicate values.

Bagl t — Tutors | t.salary |

This query is based on a set of tutor objects and
therefore the result is naturally a set of integers con-
taining no duplicate values. If duplicates are to be kept
the result can be specified to be a bag. Explicitly speci-
fying the resultant collection kind provides a high-level
mechanism to manage duplicates. Otherwise, implicit

conversion rules have to be imposed or explicit conver-
sion of all generators to the resultant collection kind will
be required. Converting a collection into a set results in
the elimination of duplicates and the loss of the order
between elements. Converting a collection into a bag
keeps the number of elements unchanged - duplicates
are not lost and no new elements are introduced - but
the order between the elements is lost. Converting a
collection into a list keeps the number of elements and
an arbitrary order is assigned to the elements.

6.8.7. Combining Collections

Q27. Return the students supervised by Steve John-
son. The result should include only those with Steve
Johnson as either the first or second supervisor. The
ones having him as the first supervisor should be
listed before the ones having him as the second su-
pervisor.

List] | — StaffMembers; Lname = “Steve Johnson”;
8 «— Students; s.supervisedBy.[1] = 1] 3]

union

List| | — StaffMembers; Lname = “Steve Johnson”;
8 — Students; s.supervisedBy.[2] = 1] 5]

It has been shown that union can be used to combine
two sets to return a set containing all the elements of
the original sets. Here union is used to combine two
lists. It appends the second list to the first one.

6.3.8. Mizing Collections

Q28. Return courses taught by the supervisors of
Steve Johnson.

Set[ 3 — Students; s.name = “Steve Johnson”;
sup «— 3.supervisedBy; c «— sup.teaches | c ]

If an object-oriented data model supports more than
one collection kind, the corresponding query notation
should support not only different collection kinds but
also the mixing of them in the same query. In Q28, the
first generator is drawn from the set Students, the sec-
ond generator from the list s.supervisedBy, and the last
generator from the set sup.teaches. Knowing the resul-
tant collection kind, object comprehensions can auto-
matically convert all generators into the resultant col-
lection kind.

6.4. Usability
6.4.1. Local Definitions

Q29.. Return students whose major departments are
in either Hillhead Street or University Avenue.
Set] s +— Students; a as s.major.address.street;

a = “Hillhead Street” or

a = “University Avenue” | s

Vor. 37, No. 10, 1994
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Local definitions simplify queries by providing sym-
bolic names to expressions. They are particularly use-
ful when an expression is used in more than one place.
In Q29, s.major.address. street would have been written
twice if local definitions were not supported. The use of
the symbolic name a for the expression saves repeating
the long expression twice.

6.4.2. Query Functions

Q30. Return students taking some course run by
their departments.

let cs( d : Department ) be
Set] ¢ — Courses; some c.runBy = d | ¢
in Set] s — Students;
some s.lakes = some cs( s.major ) | 3|

Query functions are crucial for expressing recursive
queries as shown in Q18. They also help in organising
a query; the resultant query is often more comprehensi-
ble. In Q30, a nested query is separated into two simple
queries and one of them is expressed as a query func-
tion.

7. AN EVALUATION

In this section a summary of an evaluation of four
well-known query languages using the proposed frame-
work is presented. The languages evaluated are the
ONTOS(51, 53, 52|, Iris[29, 46, 9], ORION[41], and
O,(5, 8] query languages. This paper is not a commen-
tary on these particular languages and interested read-
ers are referred to the sources listed above. These query
languages are chosen as representative languages mainly
because they are well-reported and the most referenced
in the literature. Readers are very likely to know one of
these languages and the evaluation would therefore be
more meaningful than using less well-known languages.
The result of the evaluation is summarised in the fol-
lowing tables.

TABLE 1. Support of Object-Orientation.
ONTOS IRIS ORION O
Method Calling Vv Vv Vv v
Dynamic Binding Vv v Vv V4
Complex Objects 4 4 v V4
Object Identity Vv v Vv Vv
Class Hierarchy v 4 v

Method calling is supported by all the four query lan-
guages. OSQL, ORION and O2SQL also support direct
access to attributes. OSQL supports the class hierar-
chy via class extents and membership test. ORION
provides four constructs to support the class hierarchy:
(1) class extents and the membership test operation is-
in; (2) the operations * (meaning including instances

- of all subclasses), union, and difference over class ey.

tents to form class extent expressions; (3) specifying
the class of the object returned by a method call yg
ing class, this specification can be sandwiched betweep
method calls within the same path expression; and (4)
specifying the class of objects used and returned in 4
recursive query using is-a. The ONTOS and O; datg
models support class extents only as an option. ONTQS
SQL does not support the class hierarchy properly in its
current form. In other words, support given to the clags
hierarchy partly depends on how the schema is defined.
It is however possible to extend ONTOS SQL to sup-
port the class hierarchy using the available interfaces
for collection classes and the database.

S

3

TABLE 2. Expressive Power. §

[¢]

ONTOS IRIS ORION Oj--

Multiple Generators Vv v Vv V3
Dependent Generators v vz
Returning New Objects S
Nested Queries v V=
Quantifier 4 N4 §
Selection Vv V4 v Vg
Projection v v V3
Cartesian Product Vv v v
Union vSs
Difference Vv 8
Set-collapse v v V3
Replace v AS
Recursion V3
§

%_".

o

IRIS supports class extents and hence as explained
previously the support of dependent generators in

OSQL is not strictly necessary. On the other hand, tlg%
expressive power of ONTOS SQL suffers badly because
class extents are optional and dependent generators afé
not supported. None of the query languages supporfs
the return of new objects. It is a result of the limitatign
of current technology since creating new objects is su@
an expensive operation that can significantly slow do@
query processing. ONTOS SQL can only return either-a
string or a list of strings, while OSQL and O3SQL often
use tuples to return new “objects”. ORION does net
seem to offer a solution in this aspect. Nested queries
can only appear in filters of an OSQL query. Gener-
ally speaking a nested query in a generator can always
be eliminated and hence a nested query is most useful
when it is used in filters or the result expression.

Quantifiers can be simulated provided that nested
queries are supported in addition to the membership
test and the cardinality operations of collections. ON-
TOS SQL does not support nested queries and hence
cannot simulate quantifiers. OSQL can simulate the use
of quantifiers in filters. If quantifiers are used elsewhere
“foreign” functions - implemented in & programming
language - can be employed.

ONTOS SQL does not support union and differ.
ORION does not seem to support projection and the

THE COMPUTER JOURNAL, VoL. 37, No. 10, 1994




EVALUATING OBJECT-ORIENTED QUERY LANGUAGES 869

proposal [41] did not make it clear. It cannot return new
objects or tuples (tuples are not supported by its data
model) and therefore cannot express cartesian product.
02SQL provides differ for sets but not lists. ONTOS
SQL does not support set-collapse. For the other lan-
guages, set-collapse can be performed in various ways
including implicit flattening.

The four query languages all support some form
of replace. Functions can be used in ONTOS SQL,
0SQL, and O,SQL while methods can be used in all
of them. ORION supports traversal recursion that in-
volves traversal of a cyclic relationship; however, it does
not support computational recursion where computa-
tion is done along the traversal of a cyclic relationship.

TABLE 3. Support of Collections.

ONTOS IRIS ORION O
Collection Literals v v
Collection Equality Vv v
Aggregate Functions
Positioning Vv
Ordering
Occurrences
Counting
Converting Collections
Combining Collections
Mixing Collections v

LKL

<

[ T T T B B |
L T T TR R T |

v

ONTOS SQL supports only set literals that can ap-
pear only in generators. OSQL does not support lists
and ORION supports only sets, therefore some entries
in the table are not applicable to them. They are
marked by a dash (-) in the table. Aggregate func-
tions can be supported using foreign functions in the
case of OSQL. O,SQL can decide whether one element
precedes another element in a list with the help of a set
literal containing all the positions of the list. It is pos-
sible for OSQL and O3SQL to return objects given the
number of occurrence in a collection though in a rather
distorted way. Nevertheless, it is simpler for them to
return the number of occurrence of a given object. ON-
TOS SQL does not support conversion between collec-
tion classes. The result of a query is either a string or
& list of strings. With OSQL the result of a query is
always a bag but duplicates in a bag can be eliminated.
For O2SQL, if all the generators are drawn from the
same collection kind the result will be of the same kind;
otherwise the result is a bag. The function magic can
turn a set into a list while the function listoset and the
keyword distinct and unique turn a list into a set.

TABLE 4.  Usability.

ONTOS IRIS ORION O

Local Definitions
Query Functions Vv v

ONTOS SQL does not support local definitions or

query functions. OSQL supports query functions that
can appear only in generators and local definitions are
not supported. ORION does not support query func-
tions while O2SQL does not support local definitions.

Example queries of the four query languages evalu-
ated can be found in [18, 19]. Results of the evalua-
tion of other query languages, e.g. EXCESS (EXODUS
[16]), CQL++ (ODE [25])), OQL[X] (Zeitgeist [12]), and
XSQL (38], can be found in [21]. The new SQL3 pro-
posal [44] also includes many of the features discussed
in this framework. .

8. CONCLUSION

The objective of this paper is to present an evaluation
framework that can be used to assess object-oriented
query languages impartially. The evaluation framework
uses four dimensions: support of object-orientation, ex-
pressive power, support of collections, and usability.
Object-orientation examines the support given to the
intrinsic properties of object-oriented data models. Ex-
pressive power looks into the capacity to explore and
synthesise complex objects and collections. Support of
collections concerns the support of multiple kinds of
collections and the interaction between them. Usability
focuses on the ease of use of a query notation. Each di-
mension is defined in terms of a number of criteria. The
placement of criteria should not be seen as definitive as
some of them can belong to more than one dimension.

In order to provide a better understanding of the cri-
teria, the framework was presented using query exam-
ples expressed in object comprehensions. This query
notation extends list comprehensions to support multi-
ple collection classes, quantifiers, collection literals, lo-
cal definitions, and various sorts of predicates. In other
words, object comprehensions have been shown to sat-
isfy all the criteria in the framework. Indeed, [17] shows
that object comprehensions are at least as powerful as
the four query languages evaluated with respect to the
reference data model.

Four well-known query languages were evaluated us-
ing the proposed framework. None of the query lan-
guages satisfies all the criteria. It is rather disappoint-
ing that the criteria in the object-orientation dimen-
sion are not met by all the query languages. Expres-
sive power is poor except for O;SQL. Perhaps query
languages will become more expressive and powerful
as better query processing techniques are discovered.
Not all of the data models support multiple collection
classes. The support of multiple collection classes and
their interaction is not yet well understood. At the mo-
ment the query languages provide reasonable support
for them even though not necessarily in a consistent
way. Usability seems to receive a low priority and is
not well supported.

Existing object-oriented query languages can be im-
proved along the directions suggested by the evaluation
framework. It is hoped that new query language de-
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sign can benefit from this framework where the criteria
provide a set of comprehensive design requirements.

REFERENCES

1]

[2]

3]

(4]

(5]
(6]

(7

(8]

(9]

f10]

[11]

(12)

(13]

(14)

S. Abiteboul and C. Beeri. On the Power of Languages
for the Manipulation of Complex Objects. Technical
report, INRIA, France, January 1993.

S. Abiteboul, C. Beeri, M. Gyssens, and D. van Gucht.
An Introduction to the Completeness of Languages for
Complex Objects and Nested Relations. In S. Abite-
boul, P.C. Fischer, and H.-J. Schek, editors, Nested Re-
lations and Complez Objects in Databases, volume 361
of Lecture Notes in Computer Science, pages 117-138.
Springer-Verlag, 1989.

S. Abiteboul, P. Buneman, C. Delobel, R. Hull,
P. Kanellakis, and V. Vianu. New Hope on Data Mod-
els and Types: Report of an NSF-INRIA Workshop.
ACM SIGMOD Record, 19(4):4148, December 1990.
R. Agrawal and L.G. DeMichiel. Type Derivation Us-
ing the Projection Operation. Information Systems,
19(1):55-68, 1994.

Altair, France. The O3 Query Language User’s Man-
ual, December 1989.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and S. Zdonik. The Object-Oriented
Database System Manifesto. In Proceedings of the
International Conference on Deductive and Object-
Oriented Databases, pages 40-57. Elsevier, 1989.

F. Bancilhon. Query Languages for Object-Oriented
Database Systems: Analysis and a Proposal. In Pro-
ceedings of the GI Conference on Database Systems for
Office, Engineering, and Scientific Applications, pages
1-18. Springer-Verlag, 1989.

F. Bancilhon, C. Delobel, and P. Kanellakis, editors.
Building An Object-Oriented Database System - The
Story of O2. Morgan Kaufmann, 1992.

D. Beech. A Foundation for Evolution from Rela-
tional to Object Databases. In Proceedings of the In-
ternational Conference on Extending Database Technol-
ogy, volume 303 of Lecture Notes in Computer Science,
pages 251-270. Springer-Verlag, 1988.

C. Beeri. New Data Models and Languages - the Chal-
lenge. In Proceedings of the Principles of Database Sys-
tems, pages 1-15. ACM Press, 1992.

E. Bertino, M. Nagri, G. Pelagatti, and L. Sbattella.
Object-Oriented Query Languages: The Notion and the
Issues. IEEE Transactions on Knowledge and Data En-
gineering, 4(3):223-237, June 1992.

J.A. Blakeley, C.W. Thompson, and A.M. Alashqur.
OQL[X]: Extending a Programming Language X with
a Query Capability. Technical Report 90-07-01, Texas
Instruments Incorporated, U.S.A., November 1990.

T. Bloom and S.B. Zdonik. Issues in the Design
of Object-Oriented Database Programming Languages.
In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 441-451. ACM Press, October 1987.

O. Boucelma and J.L. Maitre. Querying Complex-
Object Databases: the LIFOO Functional Language.
Technical report, Université de Provence, France, 1989.

- [15)

[16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

(24]

[25)

[26]
[27]

(28]

[29)

O. Boucelma and J.L. Maitre. An Extensible
Functional Query Language for an Object-Orienteq
Database System. In Proceedings of the Interng.
tional Conference on Deductive and Object-Oriented
Databases, volume 566 of Lecture Notes in Computer
Science, pages 567-581. Springer-Verlag, 1991.

M.J. Carey, D.J. DeWitt, and S.L. Vandenberg. A Datg
Model and Query Language for EXODUS. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, pages 413—422. ACM Press, 1988,
D.K.C. Chan. Object-Oriented Query Language Design
and Processing. PhD thesis, University of Glasgow,
U.K., 1994.

D.K.C. Chan, D.J. Harper, and P.W. Trinder. Object-
Oriented Query Languages: Data Model Issues, Surveyp
Comparison, and Analysis. Technical Report DB-92-15
University of Glasgow, U.K., November 1992. ]
D.K.C. Chan, D.J. Harper, and P.W. Trinder. A Casg
Study of Object-Oriented Query Languages. In Proz
ceedings of the International Conference on Informas
tion Systems and Management of Data, pages 63—86?—-:
Indian National Scientific Documentation Centre (INSP
DOC), 1993.
D.K.C. Chan and D.A. Kerr. Improving One’s Views ¢f
Object-Oriented Databases. In Proceedings of the Cok.
loquium on Object-Orientation in Databases and Softa
ware Engineering. Elsevier, 1994.

D.K.C. Chan and P.W. Trinder. An Evaluation Fka.mg
work for Object-Oriented Query Languages. Technical
Report DB-93-3, University of Glasgow, U.K,, Aprﬁ
1993.

D.K.C. Chan and P.W. Trinder. An ObJect-Orlenteg
Data Model Supporting Multi-methods, Multiple In%
heritance, and Static Type Checking: A Speciﬁcatioi‘
in Z. In Proceedings of the 8th Z User Meeting, Workﬁ
shops in Computing Series, pages 297-315. Sprmgeno
Verlag, 1994.
D.K.C. Chan and P.W. Trinder. Object Compre_n‘
hensions: A Query Notation for Object-Orien
Databases. In Proceedings of the British National Com
ference on Databases, volume 826 of Lecture Notes @
Computer Science, pages 55-72. Springer-Verlag, 1994%
E.F. Codd. Relational Completeness of Database Sub:
languages. In Data Base Systems. Prentice-Hall, 1972>
S. Dar, N.H. Gehani, and H.V. Jagadish. CQL+-|=‘r
A SQL for the ODE Object-Oriented DBMS. In Prg
ceedings of the International Conference on Extend:
ing Database Technology, volume 580 of Lecture Notes
in Computer Science, pages 201-216. Springer-Verlag,
1992.

C.J. Date. Some Principles of Good Language Design.
ACM SIGMOD Record, pages 1-7, January 1984.

C.J. Date. A Guide to INGRES. Addison-Wesley,
1987.

K.R. Dittrich. Object-Oriented Database Systems:
The Notion and the Issues. In On Object-Oriented
Database Systems, pages 3—-10. Springer-Verlag, 1991.
D.H. Fishman, J. Annevelink, E. Chow, T. Connors,
J.W. Davis, W. Hasan, C.G. Hoch, W.Kent, S. Leich-
ner, P. Lyngbaek, B. Mahbod, M.A. Neimat, T. risch,
M.C. Shan, and W.K. Wilkinson. Overview of the

2oe//!

19¢/

THE COMPUTER JOURNAL,

VoL.

37, No. 10, 1994




EvVALUATING OBJECT-ORIENTED QUERY LANGUAGES 871

Iris DBMS. In W. Kim and F.H. Lochovsky, edi-
tors, Object-Oriented Concepts, Databases, and Appli-

. cations, pages 219-250. ACM Press, 1989.

[30] R.A. Ganski and HK.T. Wong. Optimization of
Nested SQL Queries Revisited. Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 23-33, 1987.

[31] G. Ghelli, R. Orsini, A. Pereira Paz, and P.W. Trinder.
Design of an Integrated Query and Manipulation No-
tation for Database Languages. Technical Report
FIDE/92/41, University of Glasgow, U.K., 1992.

{32] P.M.D. Gray, K.G. Kulkarni, and N.W. Paton. Object-
Oriented Databases - A Semantic Data Model Ap-
proach. Prentice-Hall, 1992.

[33] K. Hammond. Definitional List Comprehensions.
Technical Report 90/R3, University of Glasgow, UK.,
January 1990.

[34] A. Heuer and P. Sander. Classifying Object-Oriented
Query Results in a Class/Type Lattice. In Proceedings
of the 8rd Symposium on Mathematical Fundamentals
of Database and Knowledge Base Systems, volume 495
of Lecture Notes in Computer Science, pages 14-28.
Springer-Verlag, 1991.

[35] A. Heuer and M.N. Scholl. Principles of Object-
Oriented Query Languages. In Proceedings of the
GI Conference on Database Systems for Office, En-
gineering, and Scientific Applications, pages 178-197.
Springer-Verlag, 1991,

{36] P. Hudak and P. Wadler. Report on the Functional Pro-
gramming Language Haskell. Technical Report 89/R5,
University of Glasgow, U.K., February 1990.

[37) R. Hull and J. Su. On the Expressive Power of
Database Queries with Intermediate Types. Proceed-
ings of the Principles of Database Systems, pages 39—
51, 1988.

[38] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-
Oriented Databases. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 393—402. ACM Press, 1992.

{39] W. Kim. On Optimizing an SQL-like Nested Query.
ACM Transactions on Database Systems, 7(3):443-469,
1982.

{40] W. Kim. Object-Oriented Databases: Definition and
Research Directions,. IEEE Transacltions on Knowl-
edge and Data Engineering, 4(3):327-341, September

1989.
[41] W. Kim. Introduction to Object-Oriented Databases.
MIT Press, 1990. ‘

[42] W. Kim. On Unifying Relational and Object-Oriented
Database Systems. In European Conference on Object-
Oriented Programming, volume 615 of Lecture Notes in
Computer Science, pages 1-18. Springer-Verlag, 1992.

[43] A. Klug. Equivalence of Relational Algebra and Re-
lational Calculus Query Languages Having Aggregate
Functions. Journal of the Association of Computing
Machinery, 29(3):699-717, 1982.

[44] K.G. Kulkarni. Object-Orientation and the SQL-
Standard. Computer Standards & Interfaces, 15:287—
300, 1993.

{45] P. Lyngbaek. OSQL: A Language for Object
Databases. Technical Report HPL-DTD-91-4, Hewlett-
Packard Company, U.S.A., January 1991.

[46] P. Lyngbaek and W. Kent. A Data Modelling Method-
ology for the Design and Implementation of Informa-
tion Systems. In Proceedings of the International Work-
shop on Object-Oriented Database Systems, pages 6-17.
IEEE Press, 1986.

[47] F. Manola. Object Data Language Facilities for Multi-
media Data Types. Technical Report TR-0169-12-91-
165, GTE Laboratories Incorporated, U.S.A., Decem-
ber 1991.

{48] F. Manola and U. Dayal. PDM: An Object-Oriented
Data Model. In Proceedings of the International Work-
shop on Object-Oriented Database Systems, pages 18~
25. IEEE Press, 1986.

{49] M. Missikoff and M. Scholl. An Algorithm for Inser-
tion into a Lattice: Application to Type Classification.
In Proceedings of the Srd International Conference on
Foundations of Data Organisation and Algorithms, vol-
ume 367 of Lecture Notes in Computer Science, pages
64-82. Springer-Verlag, 1989.

[50] G. Mitchell. Extensible Query Processing in an Object-
Oriented Database. PhD thesis, Brown University,
U.S.A., May 1993.

[51] Ontologic Inc., U.S.A. ONTOS Developer’s Guide,
1991.

[52] Ontologic Inc., U.S.A. ONTOS Reference Manual,
1991.

(53] Ontologic Inc., U.S.A. ONTOS SQL Guide, 1991,

[54] N'W. Paton and PM.D. Gray. Optimising and Exe-
cuting DAPLEX Queries using Prolog. The Computer
Journal, 33(6):547-555, 1990.

[55] S. Peyton-Jones. The Implementation of Functional
Programming Languages, chapter 7, pages 127-138.
Prentice-Hall, 1987.

{56] P. Pistor and P. Dadam. The Advanced Information
Management Prototype. In S. Abiteboul, P.C. Fischer,
and H.-J. Schek, editors, Nested Relations and Complex
Objects in Databases, volume 361 of Lecture Notes in
Computer Science, pages 3-26. Springer-Verlag, 1989.

{57] A. Poulovassilis. The Design and Implementation of
FDL, a Functional Database Language. PhD thesis,
Birkbeck College, University of London, 1989.

{58] M. Roth, H. Korth, and D. Batory. SQL/NF: A Query
Language for -NF Relational Databases. Information
Systems, 12(1):99-114, 1987.

[59] M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit,
S. Gamerman, D. Plateau, P. Richard, and A. Ver-
oust. VERSO: A Database Machine Based on Nested
Relations. In S. Abiteboul, P.C. Fischer, and H.-J.
Schek, editors, Nested Relations and Compler Objects
in Databases, volume 361 of Lecture Notes in Computer
Science, pages 27-49. Springer-Verlag, 1989.

{60] Servio Logic Development Corporation, U.S.A. Pro-
gramming in OPAL, Version 1.3, 1987.

(61) G.M. Shaw and 5.B. Zdonik. Object-Oriented Queries:
Equivalence and Optimization. In Proceedings of the
International Conference on Deductive and Object-
Oriented Databases, pages 264-278. Elsevier, 1989,

[62] C. Small and A. Poulovassilis. An Overview of PFL. In
Proceedings of the International Workshop on Database
Programming Languages, pages 89-103. Morgan Kauf-
mann, 1991.

THE COMPUTER JOURNAL,

Vor. 37, No. 10, 1994

20z Iidy 0} uo 3senb Aq 9g | 1.9€/8G8/0 L/LE/RI0NE/|UlWOo/ W00 dno"olWSpEsE)/:SAYY WO) PAPEO|UMOQ



872 DaNIEL K.C. CHAN AND PHILIP W. TRINDER AND RAYMOND C. WELLAND

[63] P.W. Trinder. A Functional Database. D.Phil thesis,
Oxford University, December 1989.

[64] P.W. Trinder. Comprehensions: a Query Notation for
DBPLs. In Proceedings of the Srd International Work-
shop on Database Programming Languages, pages 55—
70. Morgan Kaufmann, 1991.

[65] P.W. Trinder, D.K.C. Chan, and D.J. Harper. Improv-
ing Comprehension Queries in PS-algol. In Proceedings
of the 1990 Glasgow Database Workshop, pages 103—
119, U.K., 1990. University of Glasgow.

[66] D.A. Turner. Recursion'Equations as a Programming
Language. In Darlington, Henderson, and Turner,
editors, Functional Programming and its Application.
Cambridge University Press, 1981.

[67) D.A. Turner. Miranda: a Non-strict Functional
Language with Polymorphic Types. In Proceedings
of the 2nd Conference on Functional Programming
Languages and Computer Architectures, volume 201 of

Lecture Notes in Computer Science, pages 1-16.
Springer-Verlag, 1985.

(68] R. Unland and G. Schlageter.  Object-Orienteq
Database Systems: State of the Art and Research Proh.
lems. In K. Jeffery, editor, Ezpert Database Systems
chapter 5, pages 117-222. Academic Press, 1992.

[69] D. Watt and P.W. Trinder. Towards a Theory of Bulk
Types. Technical Report FIDE/91/26, University of
Glasgow, U.K., July 1991.

[70] L. Yu and S.L. Osborn. An Evaluation Framework for
Algebraic Object-Oriented Data Models. In Proceed-
ings of the IEEE Data Engineering Conference, pages
670—677. IEEE Press, 1991.

[71] S.B. Zdonik and D. Maier, editors. Readings in Object-
Oriented Database Systems. Morgan Kaufmann, 1

[72] S.B. Zdonik and G. Mitchell. ENCORE: An Object
Oriented Database Systems. IEEE Data Engineering
Bulletin, 14(2):53-57, June 1991.

20z Iudy 01 uo 3sanb Aq 9¢ 1 19€/858/01/L€/31011E/|ulod/Ww oo dnoolwapede//:sdiy Woly pape

THE COMPUTER JOURNAL,

Vor. 37, No. 10, 1994




