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Two OO specification techniques have been developed almost independently. The ‘inheritance paradigm’
emphasizes the analysis of hierarchical structures of super and subtype objects, and reuse by inheritance.
The ‘state-transition paradigm’ emphasizes the analysis of real world events and the state-changes they
trigger in objects. Each paradigm has desirable properties that the other lacks. This paper shows ways
resolve the structure clash between the paradigms. It also suggests that object processes or ‘methods’ are
emergent properties of an object and event-oriented analysis, rather than an object-oriented analysis
alone. The background of the main author is in database systems, but Section 10 shows the paper is

relevant to other kinds of software engineering such as real-time process control systems.
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1. INTRODUCTION

Booch (1994) probably speaks for most computer
scientists when he says ‘mapping an object-oriented
view of the world onto a relational one is conceptually
straightforward, although in practice it involves a lot of
tedious details’. We cannot deny the ‘tedious details’,
which means that even trivial examples of database
systems take up a lot of space, but this paper offers a
challenge to the ‘conceptually straightforward’. It shows
there are clashes between widely-accepted object-
oriented concepts. Beside providing some resolutions of
our own, we hope to stimulate further interest and
research.

This paper is more discursive and less mathematical
than most contributions to The Computer Journal, so we
preface the paper with some remarks for those of a
mathematical bent.

On notations and formality. We illustrate object class
specification in Sections 2, 4 and 6 using informal
pictures, rather than a specific programming language
like C++ whose syntax is cryptic to the uninitiated. We
have avoided mathematical symbols and expressions.
We use the word ‘process’ rather than ‘algorithm’ or
‘procedure that terminates’. But three of our notations,
based on a standard promoted by the UK government
(CCTA, 1990), are relatively formal. We use a regular
expression to model the events and state transitions (and
methods) of an object class. We use a formal syntax to
model the one-to-one or one-to-many cardinality of an
association between object classes. We use a formal
syntax to model the one-to-one or one-to-many
correspondence between a ‘method’ in one object class
and the method it invokes in another class. The first and
last of these notations evolved out of Jackson (1975) and
they are described in Section 10.

Only the regular expression notation is vital to the
main thrust of the paper. We prefer the graphical form of
the Jackson structure notation. This widely-used
standard notation can be mechanically translated and
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condensed into a more conventional mathematigil
notation. For some work on comparing ‘fom?a]
methods’ with Jackson’s program design technique, @e
Latham (1990).

On unsupported claims. In a few places, notably thc%e
marked as such, we make statements that are uns
ported by example or reasoning. Sometimes this is due‘éo
lack of space, since we have no room for richer examplgs
or extracts from the references given. But occasiona@,
and this is where we would ask the reader to forgive us,
we make an assertion merely to interest or challenge the
reader. Like the mathematics lecturer who says ‘and sait
is obvious that’ to mask a gap in a proof, we believe %ﬁc
can support all claims made, given more time and sp&e
to do so.

We conclude in Section 9 with some heuristics @r
choosing between different approaches.
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2. ENCAPSULATION

Stefik and Bobrow (1986) say an object is ‘an entity tl;at
combines the properties of processes and data’, Sit
‘performs computations and saves local state’. Perhaps
the primary object-oriented idea is encapsulatlon
Encapsulated with an object are both its data vanab@s
and its processes.

Many use encapsulation to mean information hiding
of attributes, meaning that the local variables of an
object are private to that object. You can only access a
variable by invoking a process of the object.

Some use encapsulation to mean information hiding of
processes as well, meaning that some processes of an
object (its ‘implementation details’ or ‘method bodies’)
are private to that object. This is a major idea in writing
production software and OO books, but a very minor
idea in specifying a database system, where we expect
every method body to be so simple it can be specified
graphically on the object class and event class specifica-
tion diagrams.
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Precondition:
Vehicle State := ‘on the road’
Implementation:
Mileage := Mileage (input)
Vehicle State := 'on the road'

FIGURE 1.

Some use encapsulation at specification time to mean
that when defining an object class, you must specify its
variables and processes together. You specify the
processes that define an object as a flat list of ‘methods’
in Smalitalk (Goldberg, 1981) or ‘virtual member
functions’ in C+4- (Stroustrup, 1986). We use method
to mean a process property of an object, invoked by one
or more of the events that affect that object. We reserve
operation to mean a primitive executable statement,
executed within a method. We use attribute to mean a
data variable property of an object. Figure 1 is a picture
to illustrate the terms.

Some use encapsulation to mean there are no free-
floating methods, each belongs to an object and you
can only invoke it via that object. You might use a
format such as Object: Method (Parameter), e.g. Vehicle:
Mileage Increment (Mileage).

2.1. Earlier incarnations of encapsulation

Encapsulation and information hiding were recognised
in developments predating OO programming. Consider a
‘called’ routine in COBOL. This is like an object. You
declare the parameters it receives and the results it
returns. You declare its private variables in ‘working
storage’. You could declare its methods as ‘performed’
routines arranged under a case statement.

COBOL implementations did not emphasize encapsu-
lation, but it was emphasized in methodologies devel-
oped contemporaneously. Information hiding was much
discussed as a principle of modular programming,
‘Structured design’ (after Constantine and Myers and
others) introduced notions of cohesion and coupling into
modular design Jackson (1975) introduced a kind of QO
programming methodology, later called JSP,

Of direct relevance to this paper, JSP described how to
resolve structure clashes in a system by decomposing it
into co-operating finite-state machines. In resolving an

‘interleaving clash’, the main process has:

e An input data structure representing the behaviour of
an object.

e A ‘state vector’ to hold the private variables of each
object instance.

e A ‘state variable’ to record the current position in an
object instance’s life.

Jackson promoted the idea that a database is nothing
more or less than a place to hold the state-vectors of
concurrent objects.

3. LIMITATIONS OF ENCAPSULATION

This Section expands on two themes. One is that there
are clashing views of how to encapsulate, or aggregate,
properties to form an object. A software architecture
that reconciles these views should separate them by
handling each view in a separate module.

The other theme is that the one-object-at-a-time view
of system specification has its limitations. ‘No object
stands alone; every object collaborates with other objects
to achieve some behaviour’ (Booch, 1994). You need to
think about the way that objects are related by the events
that affect them. You need event-oriented analysis and
specification techniques to help you specify the right or
best set of methods and to design the message routing
between objects.

3.1. Defining the centre around which to encapsulate

Although the individual data items of system specifi-
cation are very important, we are more troubled in
database systems by how to specify the rules and
constraints governing larger objects, higher-level aggre-
gates of data items.

There are different ways to group data items into
objects, leading to different data models, that is different
structures specified over the top of the data items. We
need to understand the different possible approaches and
their implications.
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3.1.1. The relational data model: object

Given you must design a system that consumes data and
produces information, you may uncover the objects of
interest by relational data analysis of the data items in
already-specified system files and documents. An early
step in relational data analysis is to spot the object
identifiers or keys. Given an object instance, the value of
each of its attributes is uniquely determined by the value
of its key. In what is called a ‘third normal form’ relation,
the value of each attribute is determined by first the key,
second the whole key, and third nothing but the key.

Figure 2 shows the result, a relational data model.
Each box is a relation, its key is underlined, its attributes
are listed, and its associations to other relations are
shown as lines connecting the boxes. The meaning of the
different styles of line does not matter here.

There is little freedom of choice about what the
relations are, given that you know the end-users’
information requirements and you follow the idea that
object instances are uniquely identifiable from each other
by a key. But this is not the only logical view.

= relation

3.1.2. The object data model: object = finite-state
machine

Another common logical view, after Jackson and others,
is that an object is something that progresses through a
defined series of states, from a beginning to an end. In
this state-transition view, an object is a finite-state
machine, governed by a state-variable (SV).

People who design systems with little or no persistent
data, typically embedded or process control systems,
often view objects as finite-state machines. They discover
the objects by analysing states that objects pass through
and the events that trigger state-<changes. You can use
similar techniques for database systems. You can
transform a relational data model via object event

modelling techniques into a specification of evept
processes to maintain the data. These event processeg
specify all the required business rules in the form of
‘preconditions’.

People often assume you can draw one state-transition
diagram or behaviour model for each relation. However,
you need to draw separate behaviour models for the
parallel aspects of a relation. Figure 3 shows that if yoy
draw an object data model to back up the object event
model (with one box per behaviour model) then this wilj
differ from the relational view since you must divide the
parallel aspects of a relation.

There is little freedom of choice about what the finite-
state objects are, given that you know the business rulgs
and constraints and follow the idea that each object iga
finite-state machine controlled by one state variab%,
(The necessary behavioural analysis is not shown hefg,
but an indication of it appears in Figs. 7 & 8.)
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3.1.3. Inheritance view: object = type

e

There is one more logical view. The inheritance-orientgd
view is that an entity is something uniquely identiﬁali
by a type or subtype. In our example, a Vehicle may &
either a Car or a Truck. Should we show the subtypes.%s
distinct objects in the data model? We are going 80
consider inheritance further in later sections.

3.1.4. The internal data model: object = database table

Given a system that maintains persistent data, you mmt
design the record types or tables into which the databa?se
will be divided. The physical database designer’s vxewgs
that an object is a record type or database table, that
is the unit of input/output accessed by programs. Therqo;‘is
enormous freedom of choice here. Designers may roll up
several logical objects into one table, or split one loglﬁl
object between tables.
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3.1.5. The structure clash between aggregate objects

By concentrating on simple examples, authors have so
far been able to gloss over the possible structure clashes
between these views. In a simple simple system, there is
no structure clash, the different definitions lead to the
same set of objects. You will draw the same data model
whichever definition you pick. You can specify many of
the business rules in this data model. You can use an
application generator to build a workable system from
this data model.

For more complex systems, we can no longer pretend
that the different definitions give the same answer. The
more complicated the system, the more the logical views
diverge from each other. You may reasonably design the
physical database tables to match either the relations or
the finite-state machines, but you cannot match both.
The pictures you draw will depend on the definition you
pick and the design decisions you make.

In non-trivial database systems, rather than select one
or other logical view as the basis of encapsulation, we
want to have it all ways. Current OO ideas are not
enough; we need a richer theory of system specification.
We need a software architecture that results in separates
modules handling each logical view, and separate
modules addressing the physical concern of designing
efficient database tables. We have outlined a software
architecture rich enough for this purpose (Robinson and
Berrisford, 1994).

Whichever basis you choose for encapsulation, there
are further questions about method specification.

3.2. The difficulty of specifying methods (unsupported
claim!)

It is usually easy to list the data attributes of an object,

especially where a business already maintains some
persistent data that you can inspect. It is also easy to
list the primitive operations that can operate on these
attributes. You might think it will be just as easy to
recognise and list the ‘methods’, but this is not so.

You do not want to clutter up your system with
methods that are irrelevant, which fall into state of neglect
and disrepair. You do want to specify methods that are
meaningful and useful. To be meaningful and useful, a
method must be invoked by at least one event. To be
reusable, a method must be invoked by one than one event.

We address the question of where the methods come
from by taking an event-oriented approach to require-
ments capture and knowledge acquisition. We name
methods after the events that invoke them. To specify all
the effects of events on one object, we use an object
behaviour model. To specify one commit unit’s worth of
processing, we string all the effects of one event together
in an event diagram. See Section 10 for details.

One event effect is close to the OO idea of a ‘method’,
but each effect is unique to the event which invokes it.
Small reuse occurs where two or more events invoke the
same effect on one object type (see Section 10). Larger
reuse occurs where two or more events can share a set of
effects on several objects; we can show this set of effects
in an event diagram for the ‘superevent’ which is invoked
by the external events. This approach gives a significant
advance in that it helps us to define useful and reusable
methods via a rational analysis and design process (see
Robinson and Berrisford, 1994).

3.3. Discovering and specifying the message routing
between objects

‘Our understanding of message routing tends toward the
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Vehicle
:- | Attributes Attributes
i1 RegNum >
Mileage >
Vehicle State Foreign Trips
| Methods Mothods
‘1 Vehicle Registration >
Scrap Vehicle >
Mileage Increment >
Removal from the Road — Foreign Trip
L eplacement on the Road j

FIGURE 4.

magical. Somehow messages are directed towards the
appropriate receivers. We end up relying on miracles.
Message routing problems are resolved, often in a
haphazard way, at coding time.” (Palmer, 1993)

The inheritance paradigm does not help you define
the message routing between associated objects that is
needed when an event hits the system. Section 10 shows a
natural way to specify the message routing between
objects is to supplement the inheritance paradigm by
drawing a diagram for each event.

4. INHERITANCE

The idea of inheritance has come to predominate in
discussions of object-orientation. This is probably
because most OO books are written by production
software engineers who find OO programming languages
like Smalltalk and C++ very helpful.

Inheritance predates OO programming, but it
was given little emphasis in earlier technologies and
methodologies.

OO programming languages get their power from the
facility to define each object as being of a type in a
hierarchical structure of types (or several overlapping
hierarchical structures in systems that allow multiple
inheritance). An object can inherit methods from any
object higher up the class hierarchy or inheritance tree.

We introduce below a reduced and modified version of
the example used in Section 3 to illustrate different views
of objects in data models.

Suppose you must keep track of Cars and Trucks.
Figure 4. shows the supertype Vehicle can hold the
common properties, leaving only one extra attribute and
method to be defined for the subtype. (We will come
back to the question marks shortly.)

We want to record the Mileage covered by both Cars
and Trucks, but we only want to count the Foreign Trips
made by Trucks. A Truck has some common properties
shared with Car (the Mileage Increment method updates
the Mileage attribute), and some unique properties
(the Foreign Trip method increments the counter called

épapeowmog

Foreign Trips). The subtype Truck can inherit
Mileage attribute and the Mileage Increment method. 3

A subtype object defined at a low level in ag
inheritance tree can use methods defined in several
different higher level types. It might inherit a methoﬁ
from the supertype at the top of the inheritance tree, cg
from an object at an in-between level. A subtype object
may override an inherited method with its own vanang
and it can have additional methods of its own, not at a&!
relevant to any of its supertypes. Multiple mherttanqe
means simply that an object type can belong to more t.haa
one classification of super and subtypes, and can therefo§
inherit from supertypes in different inheritance trees.

i
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4.1. Benefits of inheritance

The inheritance paradigm provides a powerful and eas@
extensible programming system, at least for production
software if not for information systems. The aim is to do
only as much work as is absolutely necessary to defing
new object types. The inheritance mechanism encourages
reuse of methods defined in supertype objects (althoué
there are other kinds of reuse it does not encourage). §

A further benefit is that programmers do not have to
define the type of an object to be processed. Tlm
programmers’ code does not test types; the run- tmR
environmert does this behind the scenes. The programs
mer sends an object a message, identifying the objeé‘ﬁ
instance and naming the method. The run-time environ-
ment works out what kind of thing the object is and
invokes the required variant of the method.

5. LIMITATIONS OF INHERITANCE

Inheritance between object types can be very useful, but
it is not always very relevant to the problem at hand and
there are many other routes to reuse.

5.1. The limited applicability of inheritance in database
structures

Inheritance is a relatively minor concern in database
design. In practice, most objects in database systems are
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connected by associative or composition relationships
rather than inheritance relationships, so the possibilities
for reuse by inheritance between object types are limited.

Why? There are relatively few real-world inheritance
trees stable enough to be built into a fixed database
structure. For example, you cannot expect that every
Vehicle in the world is either a Truck or a Car. Even-
tually you are bound to come across a Vehicle that
exhibits the characteristics of both Truck and Car. Few
class hierarchies are so certain that they can specified in
object data and behaviour models.

In short, if reuse is the aim, database designers should
not expect too much of inheritance between object types
and should learn other techniques for increasing reuse.

5.2. Potential for other kinds of reuse

You can design inheritance between event types as well
as between object types. Inheritance trees of event types
are probably more useful than inheritance trees of object
types. Later we will extend object modelling with the
notion of superevents and show how reuse of methods
can be spotted in a control-structured state-transition
diagram or object behaviour model.

In the external design, entirely independent of the
object event model, there are many further opportunities
for achieving reuse.

5.3. Potential clash between types and database objects

It is not at all clear that a ‘type’ in an inheritance tree
maps well onto a ‘relation’ in a relational data model or a
‘table’ in a physical database. An indication of this
mismatch was given in Section 3.

5.4. Potential clash between types and object state
management

The view taken by some QO theorists to date is that you
can draw a state-transition diagram for each object in an
inheritance tree and this will resolve ali your state
management problems. It does not turn out to be quite
that simple, as we shall see.

6. STATE MANAGEMENT IN THE
INHERITANCE PARADIGM

The earlier sections have suggested you need to place OO
ideas within an analysis methodology that helps you with
problems such as: designing the mapping of logical
objects onto persistent data, discovering and specifying
the ‘right’ set of methods, discovering and specifying the
message routing between objects and discovering, and
specifying object state management.

The rest of this paper is concerned with the last of
these problems. The inheritance paradigm works best
where the methods are independent of each other,
independent of the context in which they are called,
independent of any control structure. It becomes less
attractive when the types in an inheritance tree need to

maintain and test some kind of state variable. It does
not help you to discover or show that methods are
constrained by an object’s state in ways like these:

e ‘Replacement on Road’ can only follow ‘Removal
from Road’.

e ‘Removal from Road’ can precede only ‘Replacement
on Road’.

e ‘Mileage Increment’ cannot happen while a Vehicle is
off the road.

e ‘Foreign Trip’ cannot happen while a Truck is off the
road.

6.1. State management

A well-established principle of program design (perhaps
the oldest idea of encapsulation) is that a state variable is
private property. It is private to the finite-state machine
which manages it. How does this apply to super and
subtype processes?

When the Foreign Trip event fires the Foreign Trip
method in a Truck, how does the Truck check whether it
is on or off the road? There are at least three possibilities,
which we illustrate in Figure 5 and discuss below.

6.2. Meaning of private and protected

By ‘private’ we mean not directly inspectable by a
method of any other object class. By ‘protected’ we
mean ‘inheritable and inspectable by subtypes’. We use
‘protected’ in the C++ sense. We don’t mean ‘public’,
that the state variable can be directly inspectable by any
of its clients (objects connected by associative relation-
ships rather than subtype relationships). This would
clearly break the principle of encapsulation and be
against the spirit of OO design.

6.3. Private state variables in both super and subtype

You might maintain a Vehicle state variable and a Truck
state variable, and declare variants of the Removal from
Road and Replacement on Road methods in Vehicle and
Truck to maintain these two state variables separately.
OO programmers don’t like this approach. The dupli-
cation of maintaining and testing two state variables that
do the same job is wasteful. It will lead to difficulties in
maintenance.

Note in Figure 5 that the Vehicle Registration event
invokes a method in both super and subtype objects. In
Vehicle it creates an instance of the class. In Truck it
initializes both the Truck State and the Foreign Trips
attnibutes.

6.4. Private state variable in supertype, inspectable via
enquiry method

You could design the Foreign Trip event to fire an
enquiry method in Vehicle (to test whether it is on the
road) and an update method in Truck (to increment
the Foreign Trips counter) as illustrated below. OO
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programmers do not like this approach either. ‘We run
the risk of having to rewrite Vehicle if Truck needs an
unforeseen manipulation of the state variable.” They
would rather choose the third option below.

6.5 Protected state variable in supertype, visible to
subtype

Most OO programmers would design the method called
Foreign Trip in Truck to directly test the Vehicle State
inherited from Vehicle. They argue this does not break
the principle of encapsulation. Encapsulation (they say)
means enclosing the attributes and methods of an object
instance rather than an object type. They assure us it is
OK for the Vehicle State to be ‘hidden from clients, but
visible to derived classes’.

However, something funny is going on here, not quite
in the spirit of OO design. How we avoid the problem of
‘having to rewrite Vehicle if Truck needs an unforeseen
manipulation of the state variable’? Several if not all of
the methods of Truck must inspect the Vehicle state
variable as a precondition. In other examples, might they
also have to update it? The super and subtype objects
seem hopelessly entangled.

Using the inheritance paradigm, as in current OO
programming environments, it is not obvious how best
to do state testing and updating. But it is not just a
question of designing the optimum solution. It is hard
to visualize state management problems in terms of
inheritance structures alone. Whichever way you look
at it, the inheritance paradigm makes it awkward to
discover, specify and maintain object state management.

Also, there is important information missing from the
diagrams above, not only the detail of the preconditions
and operations, but also the names of the events that
invoke the methods. Events and methods are not always
in one-to-one correspondence. We need the event-
oriented view to define message routing.

7. THE STATE-TRANSITION PARADIGM

Tsvi Bar-David (1994) says an object is ‘an entity that is
born, lives and dies. Over its lifetime, the object has a state
that varies’. Actually, some objects do not get to change
their state before they are destroyed, but this is minot
quibble with a useful time-oriented definition of objects.

For some objects, notably persistent objects of the
kind stored in a database, ‘the event- and time-ordering
of operations is so pervasive that we can best characterize
the behaviour of such objects in terms of an equivalent
finite-state machine’ (Booch, 1994).

Several graphical notations have been proposed
for modelling object behaviour. Unstructured state-
transition diagrams (see Section 10) are simple and there
is a lot to be said for using the simplest theory that will
work. The trouble is, they are not a theory, they are just a
descriptive tool. Analysts need more than diagrams, they
need techniques to make the process of systems analysis
hang together, to guide the analyst in building the

diagrams. A limitation of unstructured state-transition
diagrams is that they do not:

e Play an active role in helping you to discover the rules.

e Formally link analysis with design and process
specification.

e Encourage stereotypical representation.

However, Section 10 shows a state-transition approach
that does these things, developed from JSP. The JSP idea
that each finite-state machine represents the behaviour of
an object has been refined over a period of almost 20
years. From Infotech Systems Technology (Robinson,
1977, 1979) to SSADM (CCTA, 1994), you visualize the
process that models an object as a single control-
structured state-transition diagram, entity life history
or ‘object behaviour model’. Ignoring inheritance for the
moment, Figure 6 models the process that is a Truck.

Our experience is that you can best visualize and
recognise a finite-state pattern of events by representing
the control structure graphicaily in an object behaviour
model. An object behaviour model shows all the events
affecting one object. It gives a dynamic view of the object
in terms of the events that update its attributes and
relationships, and the sequential constraints on these
events.

A control-structured state-transition diagram ‘encap-
sulates’ all the object’s behaviour. Methods appear as the
leaves of the structure, as the ‘effects’ of ‘events’. These
methods are invoked from outside the object by the
events.

The value of the state variable after each method
appears in the bottom-right-hand corner of the event
effect box (1 = on the road, 2 = off the road). We
‘optimize’ the states as shown in Robinson and
Berrisford (1994). The valid prior states or precondi-
tions before each method are not shown on the diagram,
since both prior and successor states are deducible from
the structure of the diagram. Given a control-structured
diagram like this, at least two current CASE tools can
automatically generate the necessary state variable
setting and testing.

7.1. Benefits of the state-transition paradigm

A control-structured state-transition diagram provides
at least two important benefits. First, it graphically
shows the pattern of invocations that an object will
respond to (not just the individual invocations). It shows
which invocations are valid and when (in which object
state) they are valid. Because of this, it is easier to design
the processes that maintain the object. You can design a
program according to the simplest possible view of its
task, then transform this program into a callable package
of routines. The transformation is done via ‘program
inversion’ in JSP and via event diagrams in our method.

Second, the approach separates events from the
‘methods’ they trigger in objects. If you name methods
in different objects after the events that invoke them,
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then it is relatively easy to extract an event-oriented view
of the system. It becomes natural to define the message
routing between objects, a mysterious process in OO
programming, by drawing a diagram for each event as
shown in Section 10.

7.2. Limitations of the state-transition paradigm

The control-structured state-transition paradigm above
has its own set of limitations.

7.2.1. Backtracking

A process hits a ‘recognition problem’ when, in
consuming an input data structure one-record-or-event-
at-a-time, the process has insufficient data to test a
condition on entry to a selection or iteration in the
formal grammar defining the input data structure. It
cannot recognise what path to take. It cannot parse the
grammar of its input data structure as it goes along.
Jackson defined a ‘backtracking’ technique to resolve
this kind of problem.

A theoretical limitation that troubles us is that the
backtracking constructs of ‘posit’, ‘admit’ and ‘quit’ are

not universally accepted. We cannot quote a mathe-
matical treatise that accommodates them within the
theory of formal grammars.

A practical limitation to successful teaching has been
ignorance of when and how the backtracking technique
must be applied to control-structured diagrams. We
overcome this obstacle by teaching stereotype control
structures, easily recognisable standard models for
defining the business rules and constraints associated
with state-changes (unsupported claim!).

7.2.2. Independent aspects of an object

If you regard the whole of a normalized relation or a
database table as being one object, a minor complication
of the state-transition paradigm is that one object may
have several independent aspects, or parallel object
behaviour models, as shown in Section 10. It turns out
this idea is helpful for specifying inheritance (see Section
8 below).

7.2.3. Reuse of methods by events
An apparent limitation is that each method is defined as
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being specific not only to the object but also to the event
that calls it. However, we can easily extend the theory (at
least it looks easy in retrospect) so that two or more
different events can reuse the same method in one object
(see Section 8 below),

7.2.4. Inheritance of methods between objects

Some OO authors dismiss state-machine oriented
approaches as being merely ‘object-based’, meaning
that one object type cannot share the methods of
another. However, you can get the benefits of inheri-
tance. The next section shows how to reconcile the
paradigms outlined in this paper, the type-oriented and
state-oriented views of objects.

8. INHERITANCE IN THE
STATE-TRANSITION PARADIGM

We do not find inheritance between object types to be a
very significant part of database design, but we must
know how to specify inheritance when it does occur.
Your first thought might be to draw three object
behaviour models: Vehicle, Car and Truck. But to
represent inheritance of methods you need only two
behaviour models, both for the supertype Vehicle,
one called Vehicle-generalization and the other called
Vehicle-specialization.

Figure 7 shows how to specify the subtyping of Vehicle
by a high-level selection in the Vehicle-specialization
diagram. By the way, the value of the state variable
above can be used to indicate the subtype.

Figure 7 shows how to specify the methods inherited
by both subtypes in the Vehicle-generalization life.

Figure 8 shows that several events can reuse one
method. The Car Registration and Truck Registration

events invoke one method called Vehicle Registration.
The method here is not a ‘leaf” of the structure; it emerges
above a low-level selection of events with the same
operations.

Note also, one event may invoke several methods. The
Foreign Trip event fires an update method in Vehicle-
specialization (to update the Foreign Trips attribute) and
an enquiry-only method in Vehicle-generalization (to
check the Vehicle is on the road). (We have dropped an
operation shown on the previous Truck diagram, just to
illustrate an enquiry-only method.)

8.1. The possibility of distinct subtype behaviour
models (unsupported claim!)

The more complex the situation, the greater the number
of parallel behaviour models. If Car and Truck have
independent aspects you will have to draw distinct
behaviour models for them, anchored to the Vehicle-
specialization life by their birth and death events.

8.2. Multiple inheritance (unsupported claim!)

So far the example shows only single inheritance.
Suppose we develop a multiple-inheritance structure.
Say Truck inherits from the two supertypes Vehicle and
Taxable Asset. You would then show Truck as an option
in the specialization lives of both its supertypes. And if
Truck has properties that are independent of both its
supertypes, you would have to draw a further parallel
object behaviour model for Truck on its own.

9. CONCLUSIONS AND REMARKS

9.1. Polymorphism
Scrap Vehicle (see Figs. 7 & 20) is a polymorphic event.

Vehicle
specialisation

Car
Registration

FIGURE 7.
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The input message on the event is apparently careless of
the sub-type (Car or Truck) it affects. It carries a Vehicle
object’s identity but not its type.

Some of the type-independence you can achieve in
a process control system that sends messages directly
to real-world objects is lost in a database system that
has to retrieve stored information about real-world
objects.

Given that the sub-types of a class draw their keys
from the same range of identifiers, you don’t need to
know the type of an object when you send it a message or
read its database record, but you do need to know the type
before you can interpret the data in the record you have
retrieved.

The approach in this paper leads us to construct a
single-machine that relates all the sub-types of a class.
The benefit is that we don’t later have to add any extra
code to work out the type affected by a polymorphic
event. The different effects are already recorded in the
state machines and are automatically generated as
mutually exclusive options of one ‘method’ into the
event diagram.

9.2. Different approaches for different applications

The diagram notations of the two paradigms have
similar semantics, but you can see from the books that
an OO designer like Booch typically draws diagrams
with a different shape or pattern from those of a database
analyst. This difference stems not from the methodolo-
gies but from the characteristics of problem domains
being studied.

Real-time systems
(CASE, CAD, telecommunications & process control

mostly transient objects

mainly one-to-one associations

many class hierarchy relationships
few objects undergo state-transitions
few events hit several object instances
single-user

little historic data maintenance

Database systems
(inventory, billing and record keeping systems)

mostly persistent objects

mainly one-to-many associations

few class hierarchy relationships

most objects undergo state-transitions
many events hit several object instances
multi-user (hence locking of data et al.)
much historic data maintenance.

¥Z20Z YOJBIN 0Z UO 158nB Aq 11 | 9€/888/01/LE/Bl0Ne/|UlT00/ W00 dno"olWepe.//:sd)y Woly papeojumoq

The combined effect of these differences is profound!
Objects persist longer in database systems. Almost every
object is affected by three state-change events (birth,
death and deletion). This means that the state-machine
view of an object class (which, curiously, is often
presented by academics as a feature of real-time
systems) is usually more complicated and therefore
more important in database systems.

The rules controlling the interaction between objects
on these state-change events can be quite complex. The
longer objects persist, the more complex the rules and the
interactions tend to become, and the more you need
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event-oriented analysis techniques and notations of the
kind in this paper.

9.3. Five proposals

The arguments in this paper, and our experience with
modelling finite-state machines in database systems, lead
us to conclude as follows.

9.2.1 Relational data analysis

For database systems, RDA is a useful way for database
system analysts to reach a first-cut identification of
object classes (though only a partial definition of course).

9.2.2. Method body specification on diagrams

For database systems, the method bodies of methods are
so simple they can be fully documented and displayed on
the graphical specification of:

(a) the state-machines for the classes
(b) the object/interaction diagrams for the events

Event diagrams show not only the principal message
routing between objects, but the method bodies
themselves. Our long-term aims are to generate (b)
from (a), and generate working code from (b). Our
CASE tool can do some limited generation at the
moment.

9.2.3. Specification of mutual exclusion between state-
machines

The above aim means that we have to specify the mutual
exclusion between the state-machines of sub-types in a
class hierarchy. The easiest way is to join these state-
machines together as options of a selection.

Those OO authors who distinguish ‘object-based’
from object-oriented methods realise it is not a trivial
task to reconcile finite-state machine theory with OO
theory. But it turns out that a grand unified theory is
conceivable, we have shown in Section 8 that the state-
transition paradigm does provide the tools we need for
designing inheritance into a system.

9.2.4. Class to state-machine correspondence

For database systems, it is convenient (at least) for some
purposes (at least) to equate the notion of ‘class’ with
‘state-machine’.

What is an object? In our example there are three
object types (Vehicle, Car and Truck) but only two object
state machines (Vehicle-generalisation and Vehicle-
specialisation). There is a structure clash between the
notion of an object as a type in an inheritance tree (with a
flat list of methods) and the notion of an object as a
finite-state machine (with a control structure sitting over
the methods).

3

Initial

cooking period
Generate L1: Tumon
Set Timer for 1 minute
Generate P1: Energise

Buttdn Push

Door Opeging

oor Closure

( Moore state machine for the ONE-MINUTE MICROWAVER (after Shlaer) 1

Butt Push

tube

Do¢r Opening

2 5

idle with Cooking

door closed interrupted
enerate L2: Tum off light Generate P2:

84tton) Pus

6

Extended
cooking period
Add 1 minute to Timer

Timer\Time Out

Timer Time Out

FIGURE 9.
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9.2.5. State-machine representation

For database systems, there are good reasons (not listed
here) to represent a state-machine using a regular
expression rather than a statechart. And we propose
that the Jackson notation (together with the concept of
resolving structure clashes by parallel aspects related via
event diagrams) is a significant advance on the notations
of Moore, Harel and others. Section 10 says more about
separating parallel aspects of an object to resolve
structure clashes.

The only drawback, not revealed by the example, is
that need for Posit, Admit and Quit constructs in some
object behaviour models, but we have recently made
improvements in the theory and teaching of the
backtracking technique.

9.4. How is message routing specified?

The message routing issue is discussed in Section 10.
Each arrow in an event diagram represents one-to-
correspondence rather than a message. But loosely, the
arrows indicate where the identifier comes from to read
an object, so in most cases a message naturally follows the
arrow. The messages necessary to implement an event
usually travel along the arrows in the direction of the read
access path, but sometimes they flow in both directions.

The message routing in event diagrams was discussed
by Robinson and Berrisford (1994) and more recently

1e/|ulwoo/woo dno-olwapeoe//:sdyy Wol) papeojuMo(]

Hall (1994). Simply, there are two strategies. You mag
delegate the message routing task to each of the objects
affected by an event (usual in OO programmin
Alternatively, you may give the message routing task
to a distinct, though transient, event manager object. 2
In a typical database system, each transaction E
written as a process. You may regard the transactio
process as being an event manager, with methods frof
various objects embedded within it. So, the old:
fashioned transaction process is a kind of aggregate s%t
of OO methods, optimized in that they can communicate
via the working storage of the process rather tha%
sending messages to each other!

tel)

¥20¢ Yo

10. MORE ABOUT OBJECT AND EVENT
MODELLING

This final section, to be published in ROAD magazine,
Jan-Feb 1994, gives a more complete view of :

o modelling object behaviour as regular expressions
e separating the parallel aspects of an object
o specifying the interactions between objects.

This section may be viewed as an appendix, but many
readers will find it necessary to follow some of the
arguments in earlier sections, or to satisfy themselves
that state-transition diagrams and object behaviour
models are semantically equivalent. (Grady Booch tell
us that he thinks this can be mathematically proven).
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FIGURE 11.

Since the case study is a real-time process control
system, we can avoid a lot of the ‘tedious detail’ Grady
Booch complains of in database systems. In terms of
what we know as the 3-schema architecture, we can
concentrate on the conceptual model, assuming that the
external design and internal design will be trivial.

10.1, Event-oriented specification of object behaviour

Shlaer (1994) discusses Turing machines and their
representation using the notations of Mealy, Moore
and Harel. Figure 9 is our version of the diagram

she draws to represent an oven, given a specified
requirement.

Figure 9 shows six states, four event types and eight
operation types. But how many object types are there?
Sally goes on to model the Light and the Power Tube as
separate and relatively trivial state machines. We are not
sure from the article why the Timer and the Beeper are
not selected for modeling, and for completeness we
model all object aspects below.

Figure 10 shows the same finite-state machine as a
formal grammar or regular expression. Sequence is left to
right, * marks an iterated component and an open circle
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marks a selected option. Primitive operations are listed
and allocated under the event effects. Events with
different effects at different states are qualified with an
effect name in brackets.

The numbered states are an incidental by-product of
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the event-oriented analysis. We number the states
entirely mechanically. Curiously, our CASE to%l
generates only five states rather than six. Readers cdn
resolve this puzzle by spotting two equivalent states
Shlaer’s diagram.
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FIGURE 18.

We have our own syntax for operations, but here we
have simply copied Sally’s operations without altering
their syntax. By the way, compare the alternation of
operations 1 and 2 across the sequence in Figure 10 with
Figure 14.

10.2. Parallel aspects of an object

Shlaer goes on to draw two alternative Harel statecharts.
Each suppresses detail from one level of abstraction to
another, by arranging the state transitions into super and
substates, As she says, there seems no objective way to
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choose between them. There is a structure clash between
different cycles in the Oven behaviour, the Idle-Cooking
cycle and the Door Open—Door Closed cycle

My late and much-missed colleague Keith Robinson
used to say that given an arbitrary choice between design
options, either both are needed or a third way is better.
We suggest what is really going on here is that the Oven is
an aggregate object owning three parallel aspects and
related to them by one-to-one associations. Figure 3
illustrates this in the form of something akin to a
relational data model.
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D
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(start cooking)
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FIGURE 16.
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Vehicle
generalisation
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Car Registration

FIGURE 19.

This is such a simple system you might implement
Figure 3 by rolling up all data into a single working-
storage table and discarding the foreign keys. Or you
might implement each object class as a table in relational
database, using the foreign keys to locate the distributed
objects when passing messages. This choice is a concern
of the internal design you can hide in data management
routines we call the process/data interface. The code
specified in this article is that which implements the
conceptual model.

The behaviour model for the aggregate object Oven is
now as shown in Figure 11, but without the operations
on it. The Oven will implement the rules, constraints or
preconditions by testing and setting its state variable.
The Oven will receive each event and pass it on to
the relevant parallel aspect(s). This master-to-detail
message-passing protocol is common but not always
applicable.

Vehicle
specialisation

’ﬁ‘ A
(invokes ‘Foreign Trip' B
update method) X
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Figure 12 is the subset of Figure 11 that models thes
behaviour of the Timer. The Beep aspect is so trivial it i
easily controlled by the same finite-state machine. Thi$
behaviour needs no state variable, since it is a subset of
the Oven behaviour that test and sets the only state~
variable in this example.

Figure 13 is the subset of Figure 10 that turns the
Power Tube on and off. It features a common effect (or
superevent) invoked (or reused) by more than one
external event. We make a fuss about superevents in
our book, not because they greatly simplify analysis or
greatly increase reuse, but because they are a significant
advance in reconciling an algorithmic theory of event
effects with an object-oriented theory of ‘methods’.

Figure 14 is the subset of Figure 10 that turns the
Light on and off. Again, this behaviour needs no state
variable. And since all the preconditions (fail-unless-
valid-state tests) are tested by the Oven, you can reduce
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g Event: Scrap Vehicle

FIGURE 20.

the Oven-Light parallel aspect to a simple off-on cycle.
The structure clash between this cycle and the idle-
cooking cycle is resolved by the event diagrams that
follow.

10.3. Event-oriented specification of message routing

Inter-object communication is naturally specified on an
event-by-event basis. We generated the following event
diagrams mechanically from the behaviour models
shown above. Strictly, each arrow represents one-to-
correspondence rather than a message. But loosely, the
arrows indicate where the identifier comes from to read
an object, so in most cases a message naturally follows
the arrow.

Figure 15 shows the aggregate object receives the
Timer Time Out event and passes it to all parallel
aspects. Notice that where more than one event triggers
the same ‘method’, the object invokes a common
subroutine.

Figure 16 shows the Button Push event has two
different sets of effects depending on the state of the
oven. The aggregate object receives the event and passes
it on only to the relevant parallel aspect(s). We have
suppressed the detail of operations this time,

To be complete, the Button Push event diagram needs
a third option. Shlaer did not model the case of the futile
‘no effect’ button push that may occur while the oven
door is open. I am not saying she necessarily should
have, but she could have. Such an ‘enquiry effect’ of an
event must appear in the code that implements the event,
and might be included in the object’s behaviour model (it
would appear twice, iterated, in Figure 10 and this
duplication probably indicates some further parallelism
too trivial to resolve) but I want to keep the illustration
small and directly comparable with Shlaer’s.

We have not fully described here what the event
diagrams mean and we have ignored many important
matters. The example does not include any events or
methods that create or destroy object instances; this issue
is addressed in our book, which is aimed at people
building client—server database systems.

The example does not reveal another kind of structure
clash between the parallel aspect (or finite-state machine)

view of object classes and the subtype (or inheritance
view) of object classes. This issue is clarified in the main
body of the paper, where the case study includes an
inheritance tree. Does the inheritance tree appear in an
event diagram? We have to return the case study in the
main body of the paper.

10.4. An inheritance structure in an event diagram

To define the message routing between objects, we start
by drawing an event diagram for each event, showing
one-to-one correspondences between the effects of an
event. In the Vehicle Registration case study used in the
main body of the paper, the Removal from Road,
Replacement on Road and Mileage Increment events all
invoke a method only in one object. Figure 17 illustrates
the last of these.

Several of the other events invoke methods in both
aspects of Vehicle. The event diagrams are almost as
simple as the one above, simply showing both aspects of
Vehicle in one-to-one correspondence. Figure 18 speci-
fies the Foreign Trip event.

Using the object data model as our guide, we show the
inheritance tree (Vehicle-specialization) as one object,
one box, in these event diagrams. Event processes will
create, read, write and delete instances of Vehicle-
specialization making no distinction between the various
subtypes. Figure 19 specifies two more example events.

So does the inheritance tree ever make itself evident an
event diagram? In the case study, only the polymorphic
Scrap Vehicle event reveals the inheritance tree. Fig. 20
shows Scrap Vehicle makes two appearances in the
behaviour model of Vehicle specialization, invoking
different methods for Car and Truck. Any event that
has different effects on different subtypes will lead to a
selection in the event diagram. We show two optional
effects on one object type using the open circle notation.

If the inhentance tree is later implemented in the
internal data model by delegation (separate tables for
super and subtype objects) extra code must be written in
the internal schema to stitch super and subtype tables
together to satisfy a read operation. There is a strong
analogy here with the way inheritance works in OO
programming.
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