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A new method is proposed for converting residue integers into a mixed radix notation. The method is
based upon a modified formulation of the Chinese Remainder Theorem, and permits both conventional
logic and look-up table implementations. Moreover, it represents the first method enabling optimal,
residue-to-weighted system, asymptotic conversion time. To prove this, a constructive VLSI design has
been devised, exhibiting time O(logs), where s is the total number of input bits. If compared with the
existing mixed radix converting techniques, the method proposed considerably enhances the conversion
time. To conclude, it is shown that, at the present state of the technology, practical ECL IC’s
implementations achieve 35-40ns conversion times with RAMs and 60—70ns with logic circuitry for

dynamic ranges up to 300 bits.
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1. INTRODUCTION

Residue Number Systems (RNSs) represent an integer X
by means of a set of independent digits (the residues of X
modulo a set of pairwise prime integers, the moduli of the
system). The modular nature of the residue represen-
tation and the independence of the digits permit fast
addition and multiplication but prevent any knowledge
of the number magnitude. This is the major drawback
of RNSs as the advantages of their natural ability
to support fast and parallel arithmetics are greatly
reduced whenever operations requiring a conversion to
a weighted representation, such as sign determination,
magnitude comparison, base extension or division, are
involved. Therefore, due to the increasing interest in
residue computing for Digital Signal Processing applica-
tions and for high speed arithmetics, a great research
work has been spent to speed up conversion methods.

There are two basic approaches for converting
integers from an RNS. The first one is based upon the
Chinese Remainder Theorem (CRT) and requires, in its
standard formulation, (n — 1) full range additions. An
alternative approach, i.e. the Mixed Radix Conversion
method (MRC) (Szabo and Tanaka, 1967), maintains
the modular nature of the computations but requires
(n — 1) additive/multiplicative sequential steps to obtain
the result.

So far, attention has been devoted towards time saving
implementations of CRT achieving asymptotic conver-
sion times O(logm + lognlogs) (Vu, 1985), O(log?s)
(Alia and Martinelli, 1984) and O(log slogn) (Capocelli
and Giancarlo, 1988), where s is the number of input bits,
and n and m represent the number and the average value
of residue system moduli, respectively.

The Mixed Radix Conversion algorithm has also
been reconsidered with the aim of obtaining, by
means of table look-up techniques, weighted binary

representations of integers through base extension
(Shenoy and Kumaresan, 1988) or, more efficiently, the
mixed radix digits in time t1 + (n — 1){t5 + ¢c) (Huang,
1983) and 1 + (n/2)ts (Chakraborti et al., 1986), where
t7 and ¢ indicate the single digit or twin digit memory
addressing time, respectively, ¢4 is the time required to
perform a logm bits binary addition and (¢ is the time
taken by a comparator/subtractor logic. The solutions
proposed offered modular designs and short execution
times. However, because of the use of table look-up
techniques, their application is strongly dependent on the
state of the art of the technology and the time asymptotic
performances are still far from the theoretical, time
conversion lower bound Q(log s).

This paper starts with the approach pr&scnted in
Huang (1983) and reconsiders the conversion to a mixed
radix representation in order to obtain a method which is
faster than the previous table look-up implementations
and which also matches the time conversion asymptotic
lower bound Q(logs). In addition, the method should be
used for both table look-up and standard logic circuitry
impiementations.

The proposed method will be described in Section 2
and it will be shown that all conversion parameters
have mathematical expressions and, consequently, their
computation can be carried out with conventional logic.
The mixed radix representation of a residue number X
will be first obtained, by means of a fully modular (carry
free), parallel computation in the form of a pair of mixed
radix integers (R, Q) which may represent a sufficient
result for certain applications. Adding R and Q will get
the explicit mixed radix notation of X. In the same
section an implementation of the new method based on
table look-ups will be compared with Huang’s and
Chakraborti’s results. As the proposed implementation
has a conversion time tp + 214 + 3¢c + klogn, where k is
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a constant which depends on the time required to switch
a gate, it will be concluded that the proposed method
considerably speeds up the mixed radix conversion.

In Sections 3 and 4, a VLSI layout for an imple-
mentation of the new method using logic circuitry will
be illustrated achieving an optimal conversion time
tc = O(logs).

Finally, in Section 5 both logic circuitry and look-up
table implementations using current ECL ICs will be
proposed with 35~40 ns conversion time for RAM based
and 60-70ns for full logic based converters with
dynamic ranges up to 312 bits.

2. THE PROPOSED METHOD

Let an RNS be defined by a set of n pairwise prime
moduli {m,m,,...,m,_y,m,} and assume, without loss
of generality, that m; <m; fori<jand i,j=1,...,n
Any integer X in the range [0, M), M = II}_; m; will be
represented as:
X ={x,x...,
Xy = IXIM,1

Xn_1,X,} Where
i=12,...,n (1)

Conversely, starting from the residue representation (1),
the value of X will be reconstructed by means of the CRT
as:

2

where M; = M/m; and |1/M,|,, is the multiplicative
inverse of M;mod m;. As the ith term of expression (2):
Xi=M,|— Ml A3)
has the residue representation:
{0,...,x;...,0}
the same expression (2) can be given the form:
X = {x,0,...,0} +---+{0,...,x;,...,0}
+---4+{0,...,0,x,} mod M (2"

Now, consider the mixed radix number system (MRS)
associated with the given RNS. Any integer ¥ will be
represented as:

Y=3 wMV )
J=1
where:
Y
=||—= 5
and
H__M j i _
M I'Ik_lmkforj—Z,...,nandM( =1
I'I;njm

(6)

. Assuming Y = X, it will be obtained:

n
Xi=ZW1JMU) (4,)
J=1
and, from equalities (3) and (5):
X; x
Hl M, =L| T my
- ilm; = ilmy
iy MO m;
m, my
Xi X
M; |, =i e~ ‘H ey
— ilm; ilm; m; (7)

m; m; -
or, equivalently: %
o)
wiJ =0 forj <i :.;_
Q.
Xi n X R . =
wij = || 7| ez M =’— forj=i d
g M, m; * i MO m ?r
1 x;~ 7’ =
Wi =1~ M. k= MK ( )i
i mimy o
1 X, -3
= —t forj>i g
my|m o
o

!

As shown in Appendlx A, subsututjng for w; ;in (4') an
then for X; in equality (2), the CRT takes the form:

8
3
‘EWf -1 E
SPTEE zMUl‘:
J-1 1 myiM %
with w; o = O
o
Letting §
J-1 &
~ ) e 0) E
Q: M = = qj—lM o
; my_i ; <
o
n J n @
=1 i=1 m o =l S
31
with =3
J1 S
~
Wi .
P < |t
- L mj_l mj_

—_
~3
=
~—

=(-1)-1<m for2<j<n

J
"j = Z wl,j
=1
the above formulation (8) indicates that X is obtained as
the mod M sum of two mixed radix integers, namely:
=|Q+ Rlu (8)

where the mod M operator is trivially applied by
discarding carries coming from the most significant digits-

<my forl<j<n

my
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TiMe OpTIMAL MIXED RADIX CONVERSION 909

As an example, consider the RNS of moduli
my =25 my=27,m=29 m= 31, ms = 32, and let
X ={0,7,21,12,13} be a residue representation to be
converted in the associated mixed radix system.

Computing parameters w; ;(i,j = 1,...,5) from (7,
it is obtained:

XlE{0,0,0,0,0} wm=0 W1v2=0 W13=0
W1,4 =0 Wl,s =0

X2_=— {0,7,0,0,0} Wa1 =0 W2v2=10 WZ,3=5
W2l4 =9 Wzrs =8

X3={0,0,21,0,0} W3,1=0 W3‘2=0 W3,3=28
W3l4 =14 W3'5 =126

Xy = {0,0,0,12,0} W4y =0 W4r2=0 W43 =0
Wea = 23 Was = 23

X55{0,0,0,0,13} W51=0 W5'2=0 W5'3=0
Ws4 = 0 Wss = 5

and mixed radix digits (7”) are derived from summations
Siawipi=1.5

1
Sowy=w,=0-¢=0 rn=0

]

2
2wi3=w|,2+w2'2= 10—>q2=0 r = 10
=1

3
ZW{|3=W1'3+W2’3+W3’3=33—>(I3=1 r3=4
=1

4
Z Wia = Wia+WoatWigt+ Wage
=1

=46 qg4=1 ry4=15

s
Z Wis = Wis+ Was+Was+ Was+ Wss
=

=62—-g5=1 rs=30
ie - |
0 = oMM + oM@ + oM + 1M + 1M®
R=0M® 4+ 10M@ +4M® 4 159 +30M®)

Mixed radix conversion will be completed by adding Q
and R:

X=0+R=0MY+10M? +4M® + 16M@ +31M®

As a comparison with the previous work, let us refer to
the following Figure 1, where an architecture for the
above example of five system moduli is reported. In
Figure 1, the blocks w (i, j = 1,...,5) correspond to
the circuitry which is necessary to obtain the starting
parameters. As, to be fair, a comparison should consider
implementations based on similar circuitry, it will be
assumed here that these blocks are look-up tables
addressed by a single residue digit with an access time ft.

*1

2

Iy

T4

X5

MAC MAC
o | ¢ 7 )
o AC ~£ AC
=L carry logic

3

5 %
[ [of [ C

-

- ﬂ?‘j*‘ e

= —:'L_
SFy=

bt e Pl el | "2 vy e}

FIGURE 1

The MAC (Multioperand Adder/Comparator) blocks
consist of a multioperand adder followed by a
comparator/subtractor. A multioperand adder can be
effectively implemented by means of a carry save adder
tree (Hwang, 1979) and a conventional adder. Thus, the
time required to perform a multiple addition of nitems is:

tosa logn + 1a

where fcsa is the time required to perform a carry save
addition and n is, in the general case, the number of
system moduli. It is noteworthy that tcsa is proportional
to the time required to switch a gate.
The mixed radix digits r,, g; are then obtained by using
a comparator/subtractor (with time #c) for a total MAC
time:
tcsa logn + 1A+ Ic

Once the mixed radix digits of R and Q are computed,
the MR expression of X is derived from (8') at a low
cost by using a carry look ahead approach with time
proportional to the logarithm of the number of the
inputs. The carry logic inputs are generated by an adder/
comparator and the outputs enter a final comparator
yielding the mixed radix digits of X. The total time taken
by these last operators is:

tha +1c +hlogn+ tc

where A is a constant indicating the gate switching time.
It can be concluded that the conversion time is:

Tconv = 1 + 214 + 3tc +klogn

where k = tcga + h is a constant.

A comparison with the existing methods is abstracted
in Table 1 where b =logm is the number of residue
digit bits. It can be concluded that the present
approach considerably enhances the time performances
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910 F. Barsi AND M. C. PiNoTTI

TABLE-: 1
Reference Tables Adders Comp|subtractors Conversion time
Huang (1983) nn+1)/2° n(n+1)/2 n—1 tr+ (n—1)(ta +1¢)
Chakraborti n(n - 2)/4+ (n— 1)t n/2(n/2+1) -3 n-2 t + /2,
et al. (1986)
New method n(n+1)/2* (n=1(n+2)/2+2(n-1) 3n—-1) t1+ 215 + 3tc + klogn

*25 x b bits; 122 x b bits. 1, addition time; tr, single digit addressing time; t}, twin digit addressing time; tc, comparison/subtraction time.

(the number of moduli appears as a logarithm) whereas
the hardware requirements are correspondingly
increased up to (n—1)(n+2)/2+2(n—1) adders
(including CSA units) and 3(n — 1) comparators.

3. AVLSILAYOUT FOR MRC

The proposed VLSI layout derives from the computa-
tional scheme of Figure 1 and consists of n columns of
logic elements performing additions and multiplications:
the jth column is related to modulus, my;, j =1,...,n.

A pipelined scheme of computation will be adopted
according to Brent and Kung’s adder design (Brent and
Kung, 1982), ATz—optimal Mehlhorn—Preparata’s
multiplier (Mehlhorn and Preparata 1983) and their
combinations leading to modular adders and multipliers
(Alia and Martinelli, 1991; Barsi, 1991). We recall here
that in a pipelined scheme of computation input data are
divided into a number of strings which are processed in
sequence.

For any given computational element, let s indicate
the total number of input bits and 7 be the number of
input strings (i.e. the number of segments into which
operands are partitioned). The width of input strings will
be w = pu/7, and adders and multipliers will present the
following time and area performances.

For adders, with the constraint 1 < w < y (Brent and
Kung 1982), it is obtained:

Ta =O0(p/w+ logw)

Ap = O(wlogw) ®

Similarly, for multipliers, with /p <w < p/logu
(Mehlhorn and Preparata, 1983):

Ty = O(p/w)

9)
Ay = 0()

As the elements of each column are requested to
operate in sequence, the same width w of input strings is
to be maintained in each column element in order to
avoid mismatches or undesired delays. In addition,
observing from Figure 1 that residue digits feed several
columns (digit x; is an input for columns j,...,n), the
same width w of input strings is to be maintained
throughout all columns. Assuming, without loss of
generality, that moduli are of the same order, i.e.

i={1,...,n}

w will be requested to satisfy both conditions | K w < p

logm; = f(logm) = 6(p),

and /p < w < pflogp, ie.

Vi Sw<p/logp (10)

and, observing from (9) and (9') that addition and
multiplication times decrease for increasing w, it is
concluded that:

w=p/logp (11)

guarantees the shortest execution time.
Now, let us see how the computational scheme of
Figure 1 can be implemented.

0l} papeojumoq

3.1. Computing w; ;

eoe//:sdpy w

Figure 2 shows how each term w;; is calculated from§&
equations (7') by means of two modular multipliersZ
performing multiplications by constants. It is easy to2
verify that area and time figures coincide with those of ag
multiplier.

[wooyw

3.2. Computing MR digits of Q and R

Mixed radix digits q; and r; are computed (see equations
7") from summations }_/_, w; ;. These summations arecs
obtained, as reported in Figure 3, by means of aZ
pipelined tree of carry save adders (Wallace, 1964;S
Hwang, 1979) and the result has a total length of:
(s +1logj) bits. As the input string length tends to>
increase in the tree, some modifications are to bed

Lg/81one/|u

introduced to the basic scheme (see Appendix B forg
detail). &
.E. ......... O (@) ~-==-===--- :. %
. . o
P o i 0@ g
: L | x; N
N : —— . N
: u | —1—
P 0(g) IMG)/m. - mod m,
. . 0 (o)
: ¢ | multiptier
0@ ; ; Tw,m =0 (£)
E Y (—OE) ) | -iil-|-j modmj
rdeesreeens 0 ()
multiplier M
T =0(5)
we =] fL| X I
LS =

FIGURE 2
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Twr =0 (logj )

Ha=u+log] 0 (log ®)
p+log) =
Taor=0 (log 0 + o ): i
 E Vi)
)
XN
FIGURE 3

Starting from summations E{=1 w; ;, Figure 4 shows a
layout for computing both r; and g; digits. Digits r, are
easily obtained by means of a mod m; converter (Barsi,
1991) whereas computing g;’s is a bit more difficult.
However, recalling (7”) and taking an integer j* such
that:

j*=zjand (j*,m) =1

g; can be obtained as:

J J
Ewi.j EWU
g = =1 _|l=
| ™ m e
J J
Ewi,j_ ZWU
= i=1 m
my )
1 J
N ‘_ wa - Wij
mj Pl = i=| myl Iz
1 J
=UNm Z”’u—’f
F1 =1 gl
0 (@)
| IS
mod j*
0 (w)
converter
| ——
cepmes
mod j* B oAb
------ mattipller [ 0@ ' o
)IJ_“,. 'H-l'ul-; R e
3.
']'Iﬂ-l'ul-; ‘ll'{—;,%’l
Hmod mj cony =p+hog) Hmed mp comv =n+log}
Hedder =} +l0g J Hmcdmpma =logj *
FIGURE 4

FIGURE §

3.3. Computing @ + R mod M
A carry generator logic can be provided to add integers Q
and R by using a carry look ahead approach. In fact,
carry from the jth position is given the same expression
as in binary addition:
¢j =g+ pjcj-1,60 =0
where, recalling limitations (7"):
7 + qj-1
gj = {—Ja gj = {07 1}
m;
ie.

Py = l’; + qj_nj _ {r, + q,_IJ, =01} (12)

m;—1 m;

ie.
pj=11frj+qj_1=mj—lelscpj=0

It is immediately verified that g; and p; cannot
simultaneously assume the value ‘I’. They can be
computed by a tree structure (carry chain computation
logic) (Brent and Kung, 1982) having a n-bit input and a
(logn) depth. The required mixed radix digits are then
obtained as:

wy = |1+ qj-y + -1 |m,
Figure -5 shows a possible design for computing
S=r+q1, 8 and Dj-

4. AREA AND TIME ASYMPTOTIC
COMPLEXITIES

To evaluate the asymptotic complexity of the proposed
implementation, area and time will be derived according
to the VLSI model first introduced by Thompson
(Thompson, 1980; Mehlhorn and Preparata, 1983). We
abstract the model by recalling the major assumptions:

1. All wires have minimum width A.
2. Transistors have minimum area krA? and I/O pads
have minimum area k; /o/\z.
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O( o Times
x
= ]
----------------- ' 0@ e
S S N
X, 1 ;
O (@) 0(%)
!
Wallace tree O(elogn) | Otoss )
|
adder O (log ®) ® o(krien )
. g O, »
Wi | ©
% O () 0(-’%+b§ ®)
ema il
18,0 OGog ) | 0L+l @)
rr—T—] |
O (logn) carry logic O(bgn )
i S |
mod m O ®)
adder " ]O (og @) 0(-5*&:. °)
1
O(CD) Wa
2
O(néco) pe
v"ﬂgu-;:_;
FIGURE 6
3. The time of an elementary action is constant

regardless of wire length.

The computation time is the sum of the times of all
elementary actions.

The I/O protocol is semellective and unilocal (i.e. each
input is read exactly once and at exactly one input
site)

Asymptotic area and time complexities could be
easily derived from Figure 1 and recalling the proposed
implementations of each computational step. However,
for the sake of simplicity, Figure 6 shows a detailed
description of the nth column together with the area
occupancies and the execution times of all elementary

The total area is immediately derived observing that
the proposed structurehaswidthO(w + 2w + - - + nw) =
O(n*w) and depth O(nw), i.e.

A= 0w (13)

To derive the conversion time, it can be observed that
it is determined by the time required by the slowest
column to process data and by the time O(log n) which is
necessary for computing carries. The conversion time is
then obtained as:

1
T= 0<ﬂ%+logw+ logn)

and, taking w = p/ log u to achieve the best computation,
time (equation 11), it follows:

_0 (log + logn log i

+ log n)

= 6(

0.} pepeojumo

Recalling the assumption logm; = 6(u)

=)
@
3

j=A{1,...,n} and observing that n < m, it is concludeds
Tmin = O(loglogm + logn) =

or, equivalently: %
Tconv = O(loglogm + logn) = O(log (nlogm)) §
= O(logys) (14@

w

where s = logm" = nlogm represents the total numbe}?
of input bits.

As Q(logs) is a trivial lower bound for T, it is proveiE
that the proposed layout represents a time optxm&”l;*
solution for the mixed radix conversion.

B

Similarly, with the same assumptions, the area
o

occupancy (13) becomes: <
S

logm ( n ) 2
A=0|r——| =0(s—— 13’

(n log? logm) log?logm ( §

Preceding results can be compared with thg
complexity of the conversion structures proposed in th§
literature by Alia and Martinelli (1984) yielding 0(log 5
time with area O(s’logs) and by Capocelli an

S

Z@-UG*I

blocks. Giancarlo (1988) exhibiting O(logslogn) time witk
TABLE 2 Area %
| = A
. Time !
U |
o(cons) [oce) Oiogs) |0Cogs) Oﬂow 1% . o o) lo<s’/logs)
8(logs) [8(s/logs) | Oogs) [OCtog %) | Otogs loglogs) bs%v)) O(s 10gs) |O(s?1oglogs)
. 3 o e 1
e(sllogs)Je(logz) O(sogs) O(log %) | OClogs log lof;)O'\bss kzs‘losx) (x;"iogz} O(s’los;;:)
o) [occons) [Opy [O0or ™ fo0g%) o) 0070g8), |(s%log %)
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area A = O(s*n/ lognlogs). To this purpose, Table 2
reports complexity figures as a function of the total
number of bits for some typical (n,log m) pairs.

It is concluded that the proposed VLSI design
represents the only time optimal solution to the problem
of converting a residue representation into a weighted
notation. It is noteworthy that the area occupancies as
well compare favourably for n = O(log s).

5. ICIMPLEMENTATIONS

To evaluate in practice the proposed method, a sketch
of design will be presented using ofi-the-shelf ICs
for implementing an MR converter. To emphasize time
performances, our choice will be limited to ECL
components. The proposed layout, which is reported in
Figure 7, has been derived directly from the algorithm of
Section 2 without any pipelined scheme of computation.
It can be observed that:

1. Modular multiplications by constants for computing
terms wy; (equation 7') are performed by means of
CSA trees (see Appendix C for details).

2. Mixed radix digits g;, r; (equation 7”) and w; are
computed by using a comparator/subtractor logic
whereas one adder and a comparator yield g; and p;
(equation 12).

X Xn
b b TIMES

Modular | e-eerersosesecacnas Modatar
scaler scaler propagstioa through
CSA lavels and
+b b 4 sddition times
Modul Modutar
scaler scaler
Wlu+ b
propagation through
CSA heves
Adder adder time
"Ihwa A beri@e+l
Subtmdoror Sdder time
q)
Gn1 bir l—'/b—'
b 1
Adder
Comparator g ::M ¥
"
Sk n
b+ Carry gen.
Cn-1
Comparator
Subtractor adder time
0 o
FIGURE 7

The time required to perform conversion can be
derived following Figure 7. It can be expressed as:

Ture = 2[Xstp + tany) + los@am)] T+ Anlp + Ia+)

+ Ies(bra+1) T LA@R) T tep) T+ fary(n) T+ Ics(b+1)
(15)

where ), indicates, in general, the minimum number of
CSA levels which is necessary to process A input data (see
Appendix C); ¢, is the propagation time through one
CSA level; ta), fcmy» fos(ny are the times required to add
two A-bit numbers and to compare or compare/subtract
an h-bit input number, respectively; and fery (s is the
time required to generate n binary carries from n + n bit
input.

Observing that a comparator/subtractor can be
designed as a row of adders followed by a trivial test
logic, it will be assumed that fcg) = fa(s) and equation
(15) will become:

Tyre = 2/\pr + /\,,Ip + 2’A(b+/\g) + 2’A(b+z\¢+1) + La(b+A,)
+ A1) T A+ F IA@) T i) T farry()
(15"

As an example, let b = [logm] = 12 be the number of
residue digits bits and n = 13 be the number of moduli,
with a dynamic range of 156 bits. Then, I, =X, =5
(Hwang, 1979).

Using 6-bit 100180 type elements with 2 ns execution
time for constructing adders and 9 bit 10E166 type
comparators with 1.4 ns, we obtained:

IA@+x) = TA(b+A) = faQ7) = 618
IA(+ M +1) = IA(B+A+1) = fa(1s) = 618
IA(B+1) = fa(13) = 618
tA(b) = tA(]2) =4ns
Icaz) = 2.8ns.

Taking a 2ns carry generator logic 100179 type and
assuming 1ns/(CSA-tree level) propagation time, the
conversion time is derived from equation (15') as:

Tmrc = 66ns

In a look-up table approach, modular scalers can be
replaced by 2° x b tables and the conversion time is
obtained from equation (15) by substituting the memory
access time fr for the term 2[Apt, + tasi,) + tospeny))s
i.e.

TMRC(lookups) =tIr+ /\,,tp + fa+a) T IA(b++1)
+ tap+) + a@) + tep) + Leany(m (17)

In the residue system of the preceding example, using a
fast 4k x 4 ECL RAM module 10A484 type with 5ns
access time yields:

Trc(lookups) = 37ns
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TABLE 3
b n s Twurc (nS) Turc (RAM) (ns)
8 19 152 58 35
10 15 150 64 35
10 28 280 65 36
12 13 156 66 37
12 26 312 70 41
28 9 252 114 not allowed
40 3 120 145 not allowed
40 6 240 148 not allowed

A more complete evaluation of the conversion times is
shown in Table 3 for some typical RNSs with 100-
300 bit ranges. Data have been derived by using similar
ECL components and fast RAM modules. The results
reported in Table 3 stress once again that a memory
approach is not viable whenever, as in applications using
a limited number of large moduli, the value of b exceeds a
given threshold. At the present state of technology,
b =22 (i.e. 4M memory modules) is to be considered as
an upper bound.

6. CONCLUSIONS

A new parallel method to perform mixed radix
conversion has been presented which is based upon an
innovative formulation of the CRT. This method can be
used for both conventional logic and look-up table
implementations and produces, in a fully modular and
parallel fashion, the result in the form of a pair (R, Q) of
mixed radix integers whose sum is the explicit mixed
radix representation of the number to be converted.

An implementation of the method has been compared
with previous results (Huang, 1983; Chakraborti et al.,
1986) by adopting similar complexity criteria and it
has been verified that significant enhancements are
obtained for the conversion time, whereas the hardware
requirements are slightly increased.

The method has also been evaluated from an
asymptotic point of view by using a general VLSI
model of computation and an appropriate layout, and it
has been found that the proposed algorithm enables time
optimal VLSI implementations.

Practical ECL IC implementations have been
indicated exhibiting a conversion time of 60—70ns for
dynamic ranges up to 300bit whereas RAM-based
implementations attain 35-40 ns.
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APPENDIX B

A pseudo (Wallace, 1964) or carry save adder (CSA) is a
three input—two output device consisting of a set of
disconnected full adder elements whose sum and carry
outputs form the output of CSA. When a multioperand
adder is to be designed, a CSA-tree connection [Wallace
Tree (Wallace, 1964)] represents the best known solution
to reduce the addition time.

In this paper, some minor modifications to the original
WT structure have been introduced in order to maintain
a pipelined scheme of computation with input and
output strings of the same width w.

Let, in general, Jyr be the number of a Wallace Tree
levels. With w-bit inputs, the WT outputs S (sum) and C
(carry) will produce (w+ hyr — 1) and (w + lywy) bits,
respectively, as shown in Figure B1.

To remove this obstacle and to infer the solution, let us
consider the WT outputs starting from the beginnings.
As shown in Figure B2, the w least significant bits of s(1)

Wallace tree

] [}

! 1

] ]

[] ]

[] []
el | :
] ] st
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My e !

[ ] 1

FIGURE B1

; — ] s
C ] 1)
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FIGURE B2

and ¢(1) can be fed into final adder, whereas a four input
WT is necessary to derive the second (and, in general,
the hth) output pair s”(2) and ¢"(2) of width w to be
considered as the second output string of weight 2.
Figures B3 and B4 shows in detail how this four input
WT can be constructed by using two CSAs.
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APPENDIX C

Modular multiplication by a constant (modular scaling)
can be performed without using multipliers by adding at

_ most b values stored in a set of registers, where b is the

number of bits which are necessary to represent residye
digits.
Let k be the scaling constant and suppose that:

| xklm,

is to be computed. Observing that:

b-1
x= Zx,,Z", x, € {0,1}
u=0

it is obtained:
O
b1 b-1 g
=]
|xk|m = E kx, 24| = E xu|k 2|, 5
u=0 m; u=0 m; %
[oX

Assuming that a set of registers are storing constants3
|k2“|,, and observing that x,|k2"|,, =0 or |k2“|,, thex
scaling operation can be performed by means of a CSA%
tree followed by a two operand adder and a comparatorfs
subtractor logic. The number of CSA-tree levels will bex
derived directly or according to tables reported i
Hwang (1979). (
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